
European IT Certification Curriculum
Self-Learning Preparatory Materials

EITC/AI/DLPTFK
Deep Learning with Python, TensorFlow and Keras

https://eitci.org

This document constitutes European IT Certification curriculum self-learning preparatory material for the
EITC/AI/DLPTFK Deep Learning with Python, TensorFlow and Keras programme.

This self-learning preparatory material covers requirements of the corresponding EITC certification programme
examination. It is intended to facilitate certification programme's participant learning and preparation towards
the EITC/AI/DLPTFK Deep Learning with Python, TensorFlow and Keras programme examination. The
knowledge contained within the material is sufficient to pass the corresponding EITC certification examination
in regard to relevant curriculum parts. The document specifies the knowledge and skills that participants of the
EITC/AI/DLPTFK Deep Learning with Python, TensorFlow and Keras certification programme should have in
order to attain the corresponding EITC certificate.

Disclaimer

This document has been automatically generated and published based on the most recent updates of the
EITC/AI/DLPTFK Deep Learning with Python, TensorFlow and Keras certification programme curriculum as
published on its relevant webpage, accessible at:

https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/

As such, despite every effort to make it complete and corresponding with the current EITC curriculum it may
contain inaccuracies and incomplete sections, subject to ongoing updates and corrections directly on the EITC
webpage. No warranty is given by EITCI as a publisher in regard to completeness of the information contained
within the document and neither shall EITCI be responsible or liable for any errors, omissions, inaccuracies,
losses or damages whatsoever arising by virtue of such information or any instructions or advice contained
within this publication. Changes in the document may be made by EITCI at its own discretion and at any time
without notice, to maintain relevance of the self-learning material with the most current EITC curriculum. The
self-learning preparatory material is provided by EITCI free of charge and does not constitute the paid
certification service, the costs of which cover examination, certification and verification procedures, as well as
related infrastructures.

© 2023 European IT Certification Institute, EITCI, Brussels, Belgium, EU
All rights reserved. The document or any part of it cannot be reproduced in any form except
as permitted by EITCI. Inquiries about permission to reproduce the document should be directed to EITCI.

https://eitci.org
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

TABLE OF CONTENTS

Introduction 4
 Deep learning with Python, TensorFlow and Keras 4
Data 12
 Loading in your own data 12
Convolutional neural networks (CNN) 21
 Introduction to convolutional neural networks (CNN) 21
TensorBoard 29
 Analyzing models with TensorBoard 29
 Optimizing with TensorBoard 37
 Using trained model 48
Recurrent neural networks 54
 Introduction to Recurrent Neural Networks (RNN) 54
 Introduction to Cryptocurrency-predicting RNN 63
 Normalizing and creating sequences Crypto RNN 72
 Balancing RNN sequence data 80
 Cryptocurrency-predicting RNN Model 86

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 3/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: INTRODUCTION
TOPIC: DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - Introduction - Deep learning with
Python, TensorFlow and Keras

Artificial intelligence (AI) has become an integral part of our lives, revolutionizing various industries and
enhancing our daily experiences. One of the key branches of AI is deep learning, a powerful technique that
enables computers to learn and make decisions by mimicking the human brain's neural networks. In this
didactic material, we will explore the fundamentals of deep learning using Python, TensorFlow, and Keras.

Python, a versatile and beginner-friendly programming language, has gained immense popularity in the field of
deep learning due to its simplicity and extensive libraries. TensorFlow, an open-source machine learning
framework developed by Google, provides a robust platform for building and deploying deep learning models.
Keras, a high-level neural networks API, acts as an interface for TensorFlow, simplifying the process of building
and training deep learning models.

To embark on our deep learning journey, it is essential to understand the core concepts. At the heart of deep
learning lies the artificial neural network (ANN), a computational model inspired by the structure and
functionality of the human brain. ANNs consist of interconnected nodes, called neurons, organized in layers. The
input layer receives the data, which propagates through the hidden layers, and finally generates an output.

Deep learning models are characterized by their depth, referring to the presence of multiple hidden layers. With
each layer, the model learns increasingly complex representations of the input data, enabling it to capture
intricate patterns and make accurate predictions. The ability to automatically extract features from raw data is
one of the key advantages of deep learning over traditional machine learning algorithms.

TensorFlow, with its extensive library of pre-built functions and tools, provides a solid foundation for
implementing deep learning models. It offers a flexible computational graph architecture, where mathematical
operations are represented as nodes, and data flows through the edges. By defining the network architecture
and specifying the optimization algorithm, TensorFlow allows us to train the model using large datasets
efficiently.

Keras, built on top of TensorFlow, simplifies the process of constructing deep learning models even further. Its
high-level API enables rapid prototyping and experimentation, making it an ideal choice for both beginners and
experienced practitioners. With Keras, we can easily define the layers, specify activation functions, and
configure the model's optimization parameters. This abstraction layer allows us to focus more on the design and
experimentation aspects of deep learning.

One of the fundamental tasks in deep learning is image classification, where the model learns to classify images
into predefined categories. Convolutional Neural Networks (CNNs) are widely used for image classification tasks
due to their ability to capture spatial hierarchies and extract relevant features. CNNs consist of convolutional
layers, pooling layers, and fully connected layers, which collectively enable the model to learn and recognize
complex patterns in images.

Recurrent Neural Networks (RNNs) are another important class of deep learning models, primarily used for
sequential data analysis. RNNs are designed to process data with temporal dependencies, such as time series or
natural language data. By maintaining an internal memory, RNNs can retain information from previous inputs,
making them suitable for tasks like speech recognition, language translation, and sentiment analysis.

Deep learning with Python, TensorFlow, and Keras offers a powerful framework for building and training
complex neural networks. By leveraging the capabilities of these tools, we can solve a wide range of real-world
problems, from image classification to natural language processing. Understanding the fundamentals and
gaining hands-on experience with deep learning will empower us to harness the full potential of artificial
intelligence.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 4/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/introduction-9/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/introduction-9/topic/deep-learning-with-python-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

DETAILED DIDACTIC MATERIAL

Deep learning with Python, TensorFlow, and Keras is a powerful combination that allows for the development
and implementation of complex neural networks. In this material, we will provide an introduction to deep
learning and explore the basics of neural networks.

Neural networks are machine learning models that aim to map input data to a desired output. For example, we
may want to determine whether an image contains a dog or a cat. The input data, represented as X1, X2, X3, is
fed into the neural network. The output layer consists of neurons that represent the possible outputs, such as
dog or cat.

To map the inputs to the output, we use hidden layers. Each input is connected to the neurons in the hidden
layer, and each connection has a unique weight associated with it. By introducing hidden layers, we can capture
nonlinear relationships between the inputs and the desired output. A neural network with one hidden layer is
considered a basic neural network, while a neural network with two or more hidden layers is referred to as a
deep neural network.

At the individual neuron level, the inputs are summed together, taking into account the unique weights
associated with each input. This sum is then passed through an activation function, which simulates the firing of
a neuron. Common activation functions include step functions and sigmoid functions, which return values
between 0 and 1.

Python, TensorFlow, and Keras provide high-level APIs that simplify the implementation of deep learning
models. These tools allow users to focus on the design and architecture of the neural network, rather than
getting caught up in low-level TensorFlow code.

To get started with deep learning, it is recommended to have Python 3.6 or later installed. TensorFlow currently
supports Python 3.6, but support for later versions may be available soon. Once the necessary software is
installed, users can begin exploring the world of deep learning and building their own neural networks.

Deep learning with Python, TensorFlow, and Keras offers a simplified approach to developing and working with
neural networks. By understanding the basics of neural networks, including the use of hidden layers and
activation functions, users can leverage these tools to solve complex machine learning problems.

In deep learning, the final output layer of a neural network typically uses a sigmoid activation function. This
function assigns probabilities to different classes or categories. For example, let's say we have two classes: dog
and cat. The output layer might assign a probability of 0.79 to dog and 0.21 to cat. These probabilities add up to
1.0. To determine the predicted class, we take the class with the highest probability, which in this case is dog
with 79% confidence.

To build a neural network, we need to import the TensorFlow library. You can do this by running the command
"pip install --upgrade tensorflow". Make sure you have TensorFlow version 1.1 or greater. Once imported, you
can check the current version using "import tensorflow as tf" and "tf.version".

Next, we need to import a dataset. In this example, we will use the MNIST dataset, which consists of 28x28
images of handwritten digits from 0 to 9. Each image is a unique representation of a digit. The goal is to feed
the pixel values of these images into the neural network and have it predict the corresponding digit.

To import the dataset, we can use the "tensorflow.keras.datasets.mnist" module. We will unpack the dataset
into training and testing variables, namely "X_train", "Y_train", "X_test", and "Y_test".

To visualize the dataset, we can use the "matplotlib" library. Import it using "import matplotlib.pyplot as plt".
Then, use "plt.imshow(X_train[0])" to display the first image in the training set. The image will be in black and
white, as it is a binary representation of the digit.

Before training the neural network, it is important to normalize the data. In this case, the pixel values range
from 0 to 255. We can scale these values between 0 and 1 using the "tf.keras.utils.normalize" function. Apply
this function to both the training and testing data.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 5/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Now, let's build the model. We will use the "tf.keras.models.Sequential" type of model, which is a common
choice for feed-forward neural networks. The first layer of the model is the input layer. Since our images are
28x28, we need to flatten them into a 1D array. This can be done using the
"model.add(tf.keras.layers.Flatten())" syntax.

After the input layer, we can add additional layers to the model using the "model.add" syntax. These layers can
be fully connected layers, convolutional layers, or other types of layers depending on the problem at hand.

We can use the "flattened" layer from the "chaos" library as one of the built-in layers in our deep learning
model. This layer is specifically useful when working with Convolutional Neural Networks (CNNs) as it helps to
flatten the output before passing it to the next layer. In our case, we will use it as the input layer to simplify our
model.

Moving on to the hidden layers, we will add two dense layers using the "model.add" syntax. In each dense layer,
we will specify the number of units (neurons) and the activation function. For our model, we will use 128 units in
each hidden layer and the rectified linear activation function (ReLU) as it is a commonly used default activation
function.

Next, we will add the output layer, which will also be a dense layer. The number of units in the output layer will
depend on the classification task at hand. In our case, we have 10 classifications, so we will use 10 units.
However, the activation function for the output layer will be different. Since we want to obtain a probability
distribution, we will use the softmax activation function.

With the model architecture defined, we now need to set some parameters for training the model. We will use
the "model.compile" function to specify the optimizer, loss metric, and the metrics we want to track during
training. The optimizer we will use is the Adam optimizer, which is a commonly used optimizer in deep learning.
For the loss metric, we will use categorical cross-entropy, which is suitable for multi-class classification tasks.
Finally, we will track the accuracy metric during training.

Once all the parameters are defined, we can proceed to train the model using the "model.fit" function. We will
pass the training data (X_train and y_train) and specify the number of epochs (total number of training
iterations). In this case, we will use 3 epochs.

After training the model, we can evaluate its performance. In this case, we achieved a 97% accuracy after only
three epochs, which is quite good. However, it is important to note that this accuracy is obtained on the training
data, and we need to check if the model has overfit the data.

Deep learning is a powerful technique in the field of artificial intelligence that allows models to learn patterns
and generalize from data. The goal is for the model to understand the underlying attributes that distinguish
different classes or categories, rather than simply memorizing every single sample it is trained on.

To evaluate the performance of a deep learning model, it is important to calculate the validation loss and
validation accuracy. This can be done using the `evaluate` function in TensorFlow and Keras. By passing the
test data (`X_test` and `Y_test`) to this function, we can obtain the loss and accuracy values. In the example
given, the loss is approximately 0.11 and the accuracy is around 96.5%. It is worth noting that the out-of-sample
accuracy may be slightly lower and the loss slightly higher compared to the training accuracy and loss. This is
expected and indicates that the model is generalizing well.

It is important to monitor the difference between the training and validation metrics. If there is a large
difference, it suggests that the model may be overfitting the training data. In such cases, it is advisable to
adjust the model to prevent overfitting.

In addition to evaluating the model, it is also useful to know how to save and load a trained model. This can be
done using the `save` and `load_model` functions in TensorFlow and Keras. By saving the model, we can reuse
it later for predictions or further training. The saved model can be loaded using the `load_model` function,
providing the exact model name.

To make predictions with a loaded model, we can use the `predict` function. It is important to note that the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 6/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

`predict` function expects a list as input. In the given example, the predictions are stored in the variable
`predictions`, and the input is the test data `X_test`. The predictions are in the form of one-hot arrays, which
represent probability distributions for each class. To extract the predicted class, we can use the `argmax`
function from the NumPy library.

In the example, the predicted class for the first test sample (`X_test[0]`) is 7. This means that the model
predicts the sample belongs to class 7. To visualize the sample, the `plt` library can be used. By plotting the
pixel values of the sample, we can see the image representation of the digit.

This covers the basics of deep learning with Python, TensorFlow, and Keras. It is important to note that this is
just an introduction and there are many more advanced topics to explore. Some of these topics include loading
external datasets, using TensorBoard for model visualization, and troubleshooting models when they don't
perform as expected.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 7/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - INTRODUCTION - DEEP
LEARNING WITH PYTHON, TENSORFLOW AND KERAS - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF HIDDEN LAYERS IN A NEURAL NETWORK?

The purpose of hidden layers in a neural network is to enable the network to learn complex patterns and
relationships in the data. Neural networks are a type of machine learning model that are inspired by the
structure and functioning of the human brain. They consist of interconnected nodes, called neurons, organized
in layers. These layers include an input layer, one or more hidden layers, and an output layer. The hidden layers
are the key component that allows neural networks to learn and make predictions.

In a neural network, the input layer receives the raw data and passes it to the hidden layers. Each neuron in the
hidden layers receives inputs from the previous layer and applies a mathematical function to compute an
output. These outputs are then passed to the next layer until they reach the output layer, which produces the
final prediction or decision.

The purpose of the hidden layers is to transform the input data into a more meaningful representation that
captures the underlying patterns and relationships. Each neuron in the hidden layers learns to extract and
represent different features from the input data. By combining these features, the hidden layers can learn
complex patterns and make accurate predictions.

The number of hidden layers and the number of neurons in each layer can vary depending on the complexity of
the problem and the amount of data available. Deep neural networks, which have multiple hidden layers, are
capable of learning more abstract and hierarchical representations of the data. This allows them to handle
highly complex tasks such as image recognition, natural language processing, and speech recognition.

To illustrate the importance of hidden layers, let's consider an example of image recognition. Suppose we have
a neural network that needs to classify images into different categories, such as cats and dogs. The input layer
of the network receives the pixel values of the image as input. The hidden layers can learn to detect edges,
textures, and shapes in the images. As the information propagates through the hidden layers, the network can
learn to recognize more complex features like eyes, ears, and tails. Finally, the output layer produces the
prediction of whether the image contains a cat or a dog.

Hidden layers in a neural network play a crucial role in enabling the network to learn complex patterns and
relationships in the data. By transforming the input data into a more meaningful representation, the hidden
layers allow the network to make accurate predictions and decisions. The number and size of the hidden layers
can be adjusted based on the complexity of the problem at hand.

HOW CAN YOU DETERMINE THE PREDICTED CLASS IN A NEURAL NETWORK WITH A SIGMOID
ACTIVATION FUNCTION?

In the field of Artificial Intelligence, specifically in Deep Learning with Python, TensorFlow, and Keras,
determining the predicted class in a neural network with a sigmoid activation function involves a series of steps.
In this answer, we will explore these steps in detail, providing a comprehensive explanation based on factual
knowledge.

Firstly, it is important to understand the role of the sigmoid activation function in a neural network. The sigmoid
function, also known as the logistic function, is a common activation function used in binary classification
problems. It maps the input values to a range between 0 and 1, which can be interpreted as probabilities. When
the output of the sigmoid function is closer to 0, it indicates a low probability of the input belonging to the
positive class, while an output closer to 1 indicates a high probability of belonging to the positive class.

To determine the predicted class in a neural network with a sigmoid activation function, we follow these steps:

1. Forward Propagation: The input data is fed into the neural network, and the forward propagation process
begins. Each neuron in the network receives inputs, applies a weighted sum, and passes the result through the
sigmoid activation function.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 8/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/introduction-eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/deep-learning-with-python-tensorflow-and-keras/examination-review-deep-learning-with-python-tensorflow-and-keras/what-is-the-purpose-of-hidden-layers-in-a-neural-network/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/introduction-eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/deep-learning-with-python-tensorflow-and-keras/examination-review-deep-learning-with-python-tensorflow-and-keras/how-can-you-determine-the-predicted-class-in-a-neural-network-with-a-sigmoid-activation-function/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/introduction-eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/deep-learning-with-python-tensorflow-and-keras/examination-review-deep-learning-with-python-tensorflow-and-keras/how-can-you-determine-the-predicted-class-in-a-neural-network-with-a-sigmoid-activation-function/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

2. Output Layer: In a binary classification problem, the output layer of the neural network typically consists of a
single neuron. This neuron applies the sigmoid activation function to its inputs and produces a value between 0
and 1, representing the predicted probability of the input belonging to the positive class.

3. Thresholding: To convert the predicted probabilities into predicted classes, we need to choose a threshold
value. This threshold value determines the decision boundary for classifying the inputs. For example, if the
threshold is set to 0.5, any predicted probability above 0.5 is classified as the positive class, and any probability
below 0.5 is classified as the negative class.

4. Class Prediction: Once the threshold is set, we compare the predicted probability with the threshold value. If
the predicted probability is greater than or equal to the threshold, we assign the positive class label to the
input. Otherwise, we assign the negative class label.

It is worth noting that the choice of threshold value can have a significant impact on the classification
performance. Adjusting the threshold can help balance the trade-off between precision and recall, depending on
the specific requirements of the problem at hand. In some cases, it may be beneficial to tune the threshold
using techniques such as receiver operating characteristic (ROC) analysis or precision-recall curves.

Let's illustrate this process with an example. Suppose we have a binary classification problem where we want to
predict whether an email is spam or not. After training a neural network with a sigmoid activation function, we
obtain the predicted probability of 0.75 for a given email. If we set the threshold to 0.5, we classify this email as
spam since the predicted probability is higher than the threshold. However, if we set the threshold to 0.8, we
would classify this email as not spam since the predicted probability is below the threshold.

Determining the predicted class in a neural network with a sigmoid activation function involves forward
propagation, applying the sigmoid activation function, thresholding the predicted probabilities, and assigning
class labels based on the chosen threshold. The threshold value can be adjusted to achieve the desired balance
between precision and recall. Understanding this process is crucial for effectively utilizing neural networks in
binary classification tasks.

WHAT IS THE PURPOSE OF NORMALIZING DATA BEFORE TRAINING A NEURAL NETWORK?

Normalizing data before training a neural network is an essential preprocessing step in the field of artificial
intelligence, specifically in deep learning with Python, TensorFlow, and Keras. The purpose of normalizing data is
to ensure that the input features are on a similar scale, which can significantly improve the performance and
convergence of the neural network.

When training a neural network, it is crucial to have input features that are in a comparable range. This is
because the weights and biases in the network are updated during the learning process based on the input
data. If the input features have different scales, the network may assign higher importance to features with
larger values and neglect features with smaller values. This can lead to biased and inaccurate predictions.

Normalizing the data addresses this issue by transforming the input features to a standardized scale. The most
common normalization technique is called feature scaling, which involves subtracting the mean of the feature
and dividing by its standard deviation. This process ensures that the feature has a mean of zero and a standard
deviation of one. Other normalization techniques, such as min-max scaling, can also be used to scale the
features to a specific range, typically between zero and one.

By normalizing the data, we bring all the input features to a similar scale, making them equally important during
the training process. This helps the neural network to learn more effectively and make better predictions.
Additionally, normalization can also help to speed up the training process by improving the convergence of the
network. When the input features are on a similar scale, the gradient descent optimization algorithm used to
update the network's weights and biases can converge faster, leading to quicker training times.

To illustrate the importance of normalizing data, let's consider an example. Suppose we have a dataset that
contains two input features: age and income. Age is measured in years, ranging from 0 to 100, while income is
measured in dollars, ranging from 0 to 1,000,000. If we train a neural network on this dataset without
normalizing the data, the network may assign more importance to income due to its larger scale. As a result,
the predictions of the network may be biased towards income, neglecting the influence of age. However, by

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 9/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/introduction-eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/deep-learning-with-python-tensorflow-and-keras/examination-review-deep-learning-with-python-tensorflow-and-keras/what-is-the-purpose-of-normalizing-data-before-training-a-neural-network/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

normalizing the data, both age and income will be on a similar scale, allowing the network to consider both
features equally.

Normalizing data before training a neural network is crucial for ensuring that the input features are on a similar
scale. This helps to prevent bias and improve the accuracy of predictions. Normalization also aids in the
convergence of the network, leading to faster training times. By employing normalization techniques such as
feature scaling or min-max scaling, we can enhance the performance of deep learning models in various
applications.

HOW CAN YOU EVALUATE THE PERFORMANCE OF A TRAINED DEEP LEARNING MODEL?

To evaluate the performance of a trained deep learning model, several metrics and techniques can be
employed. These evaluation methods allow researchers and practitioners to assess the effectiveness and
accuracy of their models, providing valuable insights into their performance and potential areas for
improvement. In this answer, we will explore various evaluation techniques commonly used in the field of deep
learning.

One of the fundamental evaluation metrics for classification tasks is accuracy. Accuracy measures the
proportion of correctly classified instances over the total number of instances in the dataset. While accuracy is a
widely used metric, it may not always provide a complete picture of a model's performance, especially when
dealing with imbalanced datasets. In such cases, additional evaluation metrics like precision, recall, and
F1-score can be utilized.

Precision represents the proportion of true positive predictions (correctly predicted positive instances) over the
total number of positive predictions. It indicates how well the model avoids false positives. On the other hand,
recall, also known as sensitivity, calculates the proportion of true positive predictions over the total number of
actual positive instances. Recall measures how well the model avoids false negatives. F1-score is the harmonic
mean of precision and recall, providing a balanced evaluation metric that takes into account both precision and
recall.

Another evaluation technique is the confusion matrix, which provides a more detailed analysis of a model's
performance. A confusion matrix is a square matrix that displays the number of true positive, true negative,
false positive, and false negative predictions made by the model. By analyzing the confusion matrix, one can
gain insights into the specific types of errors made by the model, such as misclassifications between different
classes.

Receiver Operating Characteristic (ROC) curve and Area Under the Curve (AUC) are evaluation techniques
commonly used for binary classification tasks. The ROC curve plots the true positive rate (sensitivity) against
the false positive rate (1-specificity) at various classification thresholds. AUC, which ranges from 0 to 1,
represents the overall performance of the model. A higher AUC indicates better discrimination between positive
and negative instances.

For regression tasks, evaluation metrics such as mean squared error (MSE) and mean absolute error (MAE) are
typically used. MSE measures the average squared difference between the predicted and actual values, while
MAE calculates the average absolute difference. These metrics allow researchers to assess the accuracy of their
regression models and compare their performance.

Cross-validation is another essential technique for evaluating the performance of deep learning models. It
involves partitioning the dataset into multiple subsets or folds, training the model on a subset, and evaluating
its performance on the remaining folds. This process is repeated several times, ensuring that the model is
tested on different subsets of the data. Cross-validation provides a more robust estimate of a model's
performance by reducing the impact of dataset bias and variance.

In addition to these techniques, it is crucial to consider domain-specific evaluation metrics. For example, in
natural language processing tasks, metrics like BLEU (Bilingual Evaluation Understudy) and ROUGE (Recall-
Oriented Understudy for Gisting Evaluation) are commonly used to evaluate the quality of machine translation
or text summarization models.

Evaluating the performance of a trained deep learning model involves a combination of metrics and techniques.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 10/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/introduction-eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/deep-learning-with-python-tensorflow-and-keras/examination-review-deep-learning-with-python-tensorflow-and-keras/how-can-you-evaluate-the-performance-of-a-trained-deep-learning-model/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Accuracy, precision, recall, F1-score, confusion matrix, ROC curve, AUC, MSE, MAE, and cross-validation are
some of the commonly used evaluation methods. These techniques provide researchers and practitioners with
valuable insights into the strengths and weaknesses of their models, enabling them to make informed decisions
and improve their deep learning algorithms.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 11/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: DATA
TOPIC: LOADING IN YOUR OWN DATA

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - Data - Loading in your own data

Deep learning models require large amounts of data to effectively learn and make accurate predictions. While
there are pre-existing datasets available for various tasks, there may be instances where you want to use your
own data to train a deep learning model. In this didactic material, we will explore the process of loading your
own data into a deep learning model using Python, TensorFlow, and Keras.

To begin, it is important to ensure that your data is properly organized and formatted. Typically, deep learning
models require data to be in a specific format, such as images stored in a directory structure or tabular data
stored in a CSV file. Depending on the type of data you have, you may need to preprocess it before loading it
into the model.

Once your data is properly organized, you can use the Python programming language along with libraries such
as TensorFlow and Keras to load the data into your deep learning model. TensorFlow is a popular open-source
library for numerical computation and machine learning, while Keras is a high-level neural networks API that
runs on top of TensorFlow.

In TensorFlow, data can be loaded using the `tf.data.Dataset` API. This API provides a flexible and efficient way
to handle large datasets. You can use functions like `from_tensor_slices` to create a dataset from in-memory
data, or `from_generator` to create a dataset from a generator function that yields data in real-time.
Additionally, you can use functions like `map`, `batch`, and `shuffle` to perform transformations on the data.

Keras, on the other hand, provides a higher-level interface for loading data. It offers a variety of utilities for
loading common types of data, such as images and text. For example, you can use the `ImageDataGenerator`
class to load images from a directory and apply data augmentation techniques. Similarly, the
`TextVectorization` class can be used to load and preprocess text data.

When loading your own data, it is important to split it into training, validation, and testing sets. This allows you
to evaluate the performance of your model on unseen data and avoid overfitting. TensorFlow and Keras provide
functions like `train_test_split` and `validation_split` to easily split your data into these sets.

In addition to loading the data, you may also need to perform preprocessing steps such as normalization,
scaling, or one-hot encoding. These steps ensure that the data is in a suitable format for training the deep
learning model. TensorFlow and Keras provide a wide range of functions and classes for performing these
preprocessing tasks.

Once your data is loaded and preprocessed, you can proceed to train your deep learning model. This involves
defining the architecture of the model, compiling it with an appropriate loss function and optimizer, and fitting
the model to the training data. The model can then be evaluated on the validation set and fine-tuned if
necessary.

Loading your own data into a deep learning model involves organizing and formatting the data, using libraries
such as TensorFlow and Keras to load the data, splitting it into training and validation sets, and performing any
necessary preprocessing steps. By following these steps, you can effectively train deep learning models on your
own data and make accurate predictions.

DETAILED DIDACTIC MATERIAL

In this tutorial, we will be discussing how to load an external dataset in deep learning using Python, TensorFlow,
and Keras. Specifically, we will be using the cats and dogs dataset from Microsoft, which was initially a Kaggle
challenge. The objective of this tutorial is to train a neural network to identify whether an image contains a cat
or a dog.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 12/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/data-2/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/data-2/topic/loading-in-your-own-data/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

To begin, you will need to download the cats and dogs dataset. Once downloaded, you should see two
directories: "cat" and "dog". These directories contain images of cats and dogs, respectively. Each directory
contains approximately 12,500 samples, providing ample examples to train a model.

Before we proceed, let's ensure that we have the necessary libraries installed. We will be using numpy for array
operations, matplotlib for visualizing images, and OpenCV (cv2) for image operations. If you do not have these
libraries installed, you can use the following commands to install them:
- numpy: `pip install numpy`
- matplotlib: `pip install matplotlib`
- OpenCV: `pip install opencv-python`

Now that we have the required libraries, let's start by specifying the data directory. In this case, the data is
located in the "data sets" folder under "pip images" in the "X files" directory. We will also define the categories
we need to deal with, which are "dog" and "cat".

Next, we will iterate through all the examples of dogs and cats. To do this, we will use the `os` library to join the
data directory path with the category path. Then, we will use `os.listdir` to iterate through all the images in that
path. For each image, we will convert it to an array using `cv2.imread`, which reads the image from the
specified path. We will also convert the image to grayscale using `cv2.cvtColor` since we do not believe that
color is essential for this specific task.

To visualize the images, we will use `plt.imshow` from the matplotlib library. We will set the colormap to "gray"
to display the grayscale image. This step is optional but can help us verify that the images are as expected.

In the end, we will have an array representation of the images, which can be used for further processing and
training our deep learning model.

It's important to note that the tutorial assumes basic familiarity with Python and deep learning concepts.

In the field of artificial intelligence, deep learning is a popular technique that involves training neural networks
with large amounts of data to perform complex tasks. One important aspect of deep learning is loading and
preprocessing data, which we will explore in this didactic material.

When working with images in deep learning, it is often necessary to normalize them to a consistent shape.
Although it is possible to use variable-sized images for classification, it is generally simpler to resize all images
to the same shape. For example, we can choose an image size of 50 by 50 pixels.

To resize the images, we can use the `resize` function from the `cv2` library. This function takes the image
array and the desired image size as parameters, and returns the resized image array. We can then display the
resized image using the `imshow` function from the `matplotlib` library, specifying a gray color map.

It is important to note that the choice of image size depends on the specific task and the characteristics of the
images. Smaller image sizes may lead to loss of details, while larger image sizes may capture more fine-grained
features. In the example discussed, an image size of 50 by 50 pixels was deemed suitable for classification.

Once the desired image size is determined, we can proceed to create the training dataset. We start by
initializing an empty list called `training_data`. Then, we define a function called `create_training_data` to
iterate through the images and build the dataset.

In this function, we need to map the class labels (e.g., "dog" and "cat") to numerical values. We can do this by
assigning the index of each class label in a list of categories to a corresponding numerical value. For example,
we can assign 0 to "dog" and 1 to "cat". This mapping allows us to convert the class labels to numerical values
that can be processed by the neural network.

Next, we iterate over the images, resize them using the previously determined image size, and append the
resized image array and its corresponding class label to the `training_data` list. It is also recommended to
handle any potential errors that may occur during the resizing process.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 13/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

After creating the training dataset, it is important to ensure that the data is properly balanced. In the case of
binary classification, such as distinguishing between cats and dogs, it is ideal to have an equal number of
samples for each class. This balance helps prevent biases in the training process. However, if the number of
samples for each class is different, class weights can be used during model training to account for the
imbalance.

To check the balance of the training data, we can print the length of the `training_data` list. This will give us an
indication of how many samples we have for each class and whether any class imbalances need to be
addressed.

When working with deep learning and image classification tasks, it is important to normalize the images to a
consistent size. This can be achieved by resizing the images using the appropriate libraries and functions.
Additionally, creating a balanced training dataset is crucial for accurate model training.

To ensure the effectiveness of deep learning models, it is important to properly handle imbalanced datasets.
One approach is to balance the dataset by equalizing the number of samples for each class. This can prevent
the model from favoring the majority class and improve its overall performance.

Another important step is to shuffle the data before feeding it into the neural network. Shuffling the data
ensures that the model does not learn patterns based on the order of the samples. Instead, it learns from a
random mix of samples, which can enhance its ability to generalize to unseen data.

To balance the dataset, you can import the 'random' module and use the 'shuffle' function. This function
shuffles the training data, ensuring that it is evenly distributed between the different classes. For example, you
can use the following code:

1. import random
2.
3. random.shuffle(training_data)

After shuffling the data, you can proceed to pack it into variables that will be used as input for the neural
network. Typically, you will have a feature set (X) and corresponding labels (Y). To store these, you can create
empty lists for X and Y. For example:

1. X = []
2. Y = []

Next, you can iterate over the shuffled training data and append the features and labels to the respective lists.
This will organize the data in a format that can be fed into the neural network. Here is an example of how you
can achieve this:

1. for features, label in training_data:
2. X.append(features)
3. Y.append(label)

Before feeding the data into the neural network, it is important to convert the feature set (X) into a NumPy array
and reshape it appropriately. The reshape operation ensures that the data is in the correct format for the neural
network to process. For example, if your images are grayscale and have a fixed size, you can use the following
code:

1. import numpy as np
2.
3. X = np.array(X).reshape(-1, image_size, image_size, 1)

In this code, 'image_size' represents the size of the images in your dataset. The '-1' in the reshape function
indicates that the number of samples can vary, while '1' represents the number of channels (grayscale images
have one channel).

Finally, it is a good practice to save the preprocessed data to avoid repeating the preprocessing steps in future
runs. You can use various methods to save the data, such as pickle or saving it in a specific file format. Saving

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 14/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

the data allows you to load it quickly for subsequent model training or evaluation.

When working with your own data in deep learning, it is crucial to balance the dataset and shuffle the data
before feeding it into the neural network. Balancing the dataset ensures equal representation of each class,
while shuffling prevents the model from learning patterns based on sample order. Additionally, converting the
feature set into a NumPy array and reshaping it correctly prepares the data for the neural network. Saving the
preprocessed data can also save time and resources in future experiments.

In the process of working with neural networks, it is common to continuously make adjustments to the model.
This means that you may not have all the answers right away, especially when dealing with more complex
problems. Therefore, it is important to avoid rebuilding your dataset every time you make a change.

To address this issue, we can make use of a Python library called "pickle". Pickle allows us to save our data in a
serialized format, so that we can easily load it back when needed.

To save our training data, we can start by importing the "pickle" module. Then, we can open a file using the
"open()" function and assign it to a variable, let's say "pickle_out". We can then use the "dump()" function from
the "pickle" module to save our data. In this case, we want to save the variable "X", which represents our
features. Finally, we can close the file using the "close()" method. We can follow the same process to save the
variable "Y", which represents our labels.

To read the data back in, we can open the file using the "open()" function and assign it to a variable, let's say
"pickle_in". We can then use the "load()" function from the "pickle" module to load the data. In this case, we
want to load the variable "X". We can assign the loaded data to a new variable, let's say "x1", which represents
our images. Similarly, we can load the variable "Y" and assign it to a new variable, let's say "y1", which
represents our labels.

In the next tutorial, we will take the dataset that we have compiled and feed it through a convolutional neural
network. Before that, we will cover some basics of convolution and related concepts. If you have any questions
or suggestions, please feel free to leave them below. Otherwise, I will see you in the next tutorial.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 15/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - DATA - LOADING IN
YOUR OWN DATA - REVIEW QUESTIONS:

WHAT ARE THE NECESSARY LIBRARIES REQUIRED TO LOAD AND PREPROCESS DATA IN DEEP
LEARNING USING PYTHON, TENSORFLOW, AND KERAS?

To load and preprocess data in deep learning using Python, TensorFlow, and Keras, there are several necessary
libraries that can greatly facilitate the process. These libraries provide various functionalities for data loading,
preprocessing, and manipulation, enabling researchers and practitioners to efficiently prepare their data for
deep learning tasks.

One of the fundamental libraries for data loading and manipulation in Python is NumPy. NumPy is a powerful
library that provides support for large, multi-dimensional arrays and matrices, along with a collection of
mathematical functions to operate on these arrays. It is extensively used in deep learning frameworks like
TensorFlow and Keras for efficient numerical computations. With NumPy, you can easily load data from various
sources, such as CSV files, and perform operations like reshaping, slicing, and concatenation.

Another important library is Pandas, which builds upon NumPy and provides high-performance data structures
and data analysis tools. Pandas offers a DataFrame object that allows you to easily manipulate and analyze
structured data. It provides functions to read data from various file formats, such as CSV, Excel, and SQL
databases. Pandas also supports data preprocessing tasks like data cleaning, transformation, and feature
engineering. With its intuitive API, you can perform operations like filtering, grouping, and merging, making it a
valuable tool for data preprocessing in deep learning.

When it comes to loading and preprocessing image data, the Python Imaging Library (PIL) is commonly used. PIL
provides a wide range of image processing capabilities, such as image resizing, cropping, rotation, and filtering.
It supports various image formats, including JPEG, PNG, and BMP. PIL is often used in conjunction with NumPy to
convert images into numerical arrays that can be directly fed into deep learning models.

For loading and preprocessing textual data, the Natural Language Toolkit (NLTK) is a popular choice. NLTK is a
comprehensive library that offers a wide range of tools and resources for natural language processing tasks. It
provides functions for tokenization, stemming, lemmatization, and part-of-speech tagging. NLTK also includes
various corpora and lexical resources, which can be useful for tasks like word embeddings and language
modeling.

In the context of deep learning, TensorFlow and Keras provide their own set of libraries for data loading and
preprocessing. TensorFlow's tf.data module offers a high-performance pipeline for efficiently loading and
preprocessing large datasets. It provides functions for reading data from various file formats, applying
transformations, and batching the data. With tf.data, you can easily parallelize the data loading and
preprocessing process, enabling faster training of deep learning models.

Keras, on the other hand, provides a convenient API for data preprocessing through its preprocessing module.
This module includes functions for tasks like text tokenization, sequence padding, and image augmentation.
Keras also supports data generators, which allow you to efficiently load and preprocess data in real-time,
enabling training on datasets that do not fit into memory.

To load and preprocess data in deep learning using Python, TensorFlow, and Keras, you can leverage libraries
such as NumPy, Pandas, PIL, NLTK, TensorFlow's tf.data, and Keras' preprocessing module. These libraries
provide a wide range of functionalities for data loading, manipulation, and preprocessing, enabling you to
efficiently prepare your data for deep learning tasks.

HOW CAN YOU RESIZE IMAGES IN DEEP LEARNING USING THE CV2 LIBRARY?

Resizing images is a common preprocessing step in deep learning tasks, as it allows us to standardize the input
dimensions of the images and reduce computational complexity. In the context of deep learning with Python,
TensorFlow, and Keras, the cv2 library provides a convenient and efficient way to resize images.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 16/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/data/loading-in-your-own-data/examination-review-loading-in-your-own-data/what-are-the-necessary-libraries-required-to-load-and-preprocess-data-in-deep-learning-using-python-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/data/loading-in-your-own-data/examination-review-loading-in-your-own-data/what-are-the-necessary-libraries-required-to-load-and-preprocess-data-in-deep-learning-using-python-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/data/loading-in-your-own-data/examination-review-loading-in-your-own-data/how-can-you-resize-images-in-deep-learning-using-the-cv2-library/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

To resize images using the cv2 library, we need to follow a few steps. First, we need to import the cv2 library
into our Python environment. This can be done using the following code:

1. import cv2

Next, we need to load the image that we want to resize. The cv2 library provides the `imread` function for this
purpose. The `imread` function takes the path to the image file as input and returns a NumPy array
representing the image. Here's an example:

1. image = cv2.imread('path/to/image.jpg')

After loading the image, we can use the `resize` function from the cv2 library to resize it. The `resize` function
takes the image array and the desired dimensions as input. We can specify the dimensions either as an
absolute size (width and height) or as a scaling factor. Here's an example that resizes the image to a specific
size:

1. resized_image = cv2.resize(image, (new_width, new_height))

Alternatively, we can resize the image by specifying a scaling factor. The scaling factor should be greater than
0, where a value less than 1 will reduce the size of the image, and a value greater than 1 will increase the size.
Here's an example:

1. resized_image = cv2.resize(image, None, fx=scale_factor, fy=scale_factor)

After resizing the image, we can save it to a file using the `imwrite` function from the cv2 library. The `imwrite`
function takes the path to the output file and the resized image array as input. Here's an example:

1. cv2.imwrite('path/to/resized_image.jpg', resized_image)

It's important to note that when resizing images, we may need to consider the aspect ratio to avoid distortion.
In some cases, we may want to preserve the aspect ratio and pad the image to the desired dimensions. The cv2
library provides various options for handling aspect ratio preservation, such as `INTER_NEAREST`,
`INTER_LINEAR`, `INTER_AREA`, and `INTER_CUBIC`, which can be specified as an argument to the `resize`
function.

To resize images in deep learning using the cv2 library, we need to import the cv2 library, load the image using
the `imread` function, resize the image using the `resize` function, and save the resized image using the
`imwrite` function. We can specify the desired dimensions or scaling factor as arguments to the `resize`
function.

WHY IS IT IMPORTANT TO BALANCE THE TRAINING DATASET IN DEEP LEARNING?

Balancing the training dataset is of utmost importance in deep learning for several reasons. It ensures that the
model is trained on a representative and diverse set of examples, which leads to better generalization and
improved performance on unseen data. In this field, the quality and quantity of training data play a crucial role
in the success of a deep learning model.

One reason to balance the training dataset is to prevent the model from being biased towards the majority
class. In many real-world scenarios, the dataset is often imbalanced, meaning that some classes have
significantly more samples than others. If the model is trained on such imbalanced data, it tends to favor the
majority class, resulting in poor performance on the minority classes. This bias can be detrimental, especially in
applications where the minority classes are of particular interest, such as fraud detection or medical diagnosis.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 17/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/data/loading-in-your-own-data/examination-review-loading-in-your-own-data/why-is-it-important-to-balance-the-training-dataset-in-deep-learning/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

By balancing the training dataset, we can address this issue and ensure that the model learns equally from all
classes. This can be achieved through various techniques such as oversampling the minority class,
undersampling the majority class, or a combination of both. Oversampling involves replicating instances from
the minority class to increase its representation, while undersampling reduces the number of instances from the
majority class. These techniques help to create a more balanced distribution of samples across all classes,
allowing the model to learn from each class more effectively.

Another reason to balance the training dataset is to avoid overfitting. Overfitting occurs when the model
becomes too specialized in the training data and fails to generalize well on unseen data. Imbalanced datasets
can exacerbate this problem, as the model may simply memorize the majority class and perform poorly on new
examples. By balancing the dataset, we provide the model with a more diverse set of examples, reducing the
risk of overfitting and enabling it to learn more robust and generalizable patterns.

Balancing the training dataset also improves the interpretability of the model. A model trained on imbalanced
data may assign high importance to certain features that are prevalent in the majority class, even if they are
not relevant for classification. This can lead to misleading interpretations of the model's decision-making
process. By balancing the dataset, we ensure that the model focuses on the relevant features and learns
meaningful representations that align with the true underlying patterns in the data.

To illustrate the importance of balancing the training dataset, consider the task of classifying images of cats and
dogs. If the dataset contains 80% cat images and only 20% dog images, an imbalanced training dataset may
cause the model to classify most images as cats, regardless of their actual content. However, by balancing the
dataset, the model learns to distinguish between the two classes based on their distinctive features, resulting in
more accurate and reliable predictions.

Balancing the training dataset in deep learning is crucial for several reasons. It helps to prevent bias towards
the majority class, improves generalization and performance on unseen data, reduces the risk of overfitting, and
enhances the interpretability of the model. By ensuring that the model learns from a representative and diverse
set of examples, we can build more robust and reliable deep learning models.

HOW CAN YOU SHUFFLE THE TRAINING DATA TO PREVENT THE MODEL FROM LEARNING PATTERNS
BASED ON SAMPLE ORDER?

To prevent a deep learning model from learning patterns based on the order of training samples, it is essential
to shuffle the training data. Shuffling the data ensures that the model does not inadvertently learn biases or
dependencies related to the order in which the samples are presented. In this answer, we will explore various
techniques to shuffle training data effectively.

One common approach to shuffling data is to randomly permute the order of the samples. This can be achieved
by using the `numpy` library in Python. The `numpy.random.shuffle()` function can be used to randomly shuffle
the indices of the training data. By applying this shuffled index order to both the input features and
corresponding labels, we can effectively shuffle the data. Here's an example:

1. import numpy as np
2. # Assuming you have a dataset with input features 'X' and labels 'y'
3. # Shuffle the indices
4. indices = np.arange(X.shape[0])
5. np.random.shuffle(indices)
6. # Apply the shuffled indices to the data
7. shuffled_X = X[indices]
8. shuffled_y = y[indices]

Another approach to shuffling data is to use the `sklearn.utils.shuffle()` function from the scikit-learn library.
This function shuffles the data along the first axis, preserving the relationship between input features and
labels. Here's an example:

1. from sklearn.utils import shuffle
2. # Assuming you have a dataset with input features 'X' and labels 'y'

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 18/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/data/loading-in-your-own-data/examination-review-loading-in-your-own-data/how-can-you-shuffle-the-training-data-to-prevent-the-model-from-learning-patterns-based-on-sample-order/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/data/loading-in-your-own-data/examination-review-loading-in-your-own-data/how-can-you-shuffle-the-training-data-to-prevent-the-model-from-learning-patterns-based-on-sample-order/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

3. # Shuffle the data
4. shuffled_X, shuffled_y = shuffle(X, y)

Both of these approaches effectively randomize the order of the training samples, preventing the model from
learning patterns based on sample order.

It's worth noting that shuffling the data should be done before any preprocessing or feature engineering steps.
This ensures that the shuffling is applied consistently to both the input features and labels, maintaining their
correspondence.

Shuffling the training data is crucial to prevent the model from learning patterns based on the sample order. By
randomly permuting the indices or using the `shuffle()` function from scikit-learn, the order of the samples can
be effectively randomized. Remember to perform the shuffling before any preprocessing steps to maintain the
integrity of the data.

WHAT IS THE PURPOSE OF USING THE "PICKLE" LIBRARY IN DEEP LEARNING AND HOW CAN YOU
SAVE AND LOAD TRAINING DATA USING IT?

The "pickle" library in Python is a powerful tool that allows for the serialization and deserialization of Python
objects. In the context of deep learning, the "pickle" library can be used to save and load training data,
providing an efficient and convenient way to store and retrieve large datasets.

The primary purpose of using the "pickle" library in deep learning is to save the state of a trained model,
including its architecture, weights, and optimizer parameters. By saving the model, it becomes possible to later
load it and continue training, perform inference, or deploy the model in a production environment.

To save training data using the "pickle" library, one can follow a simple process. First, the training data, such as
input features and corresponding labels, need to be prepared and organized in a suitable data structure, such
as a Python list or a NumPy array. Once the data is ready, it can be written to a file using the "pickle.dump()"
function. This function takes two arguments: the data to be saved and the file object to which the data should
be written.

Here is an example of how to save training data using the "pickle" library:

1. import pickle
2. # Prepare and organize training data
3. training_data = [input_features, labels]
4. # Save training data to a file
5. with open('training_data.pickle', 'wb') as file:
6. pickle.dump(training_data, file)

The above code snippet demonstrates how to save the training data to a file named "training_data.pickle". The
file is opened in write binary mode ('wb'), and the "pickle.dump()" function is used to write the training data to
the file.

To load the saved training data, the "pickle.load()" function can be used. This function takes a file object as an
argument and returns the deserialized Python object.

Here is an example of how to load training data using the "pickle" library:

1. import pickle
2. # Load training data from a file
3. with open('training_data.pickle', 'rb') as file:
4. training_data = pickle.load(file)

In the above code snippet, the file "training_data.pickle" is opened in read binary mode ('rb'), and the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 19/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/data/loading-in-your-own-data/examination-review-loading-in-your-own-data/what-is-the-purpose-of-using-the-pickle-library-in-deep-learning-and-how-can-you-save-and-load-training-data-using-it/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/data/loading-in-your-own-data/examination-review-loading-in-your-own-data/what-is-the-purpose-of-using-the-pickle-library-in-deep-learning-and-how-can-you-save-and-load-training-data-using-it/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

"pickle.load()" function is used to load the training data from the file.

By using the "pickle" library, deep learning practitioners can easily save and load training data, allowing for
efficient and convenient management of large datasets. This capability enables the reusability of trained
models, facilitates model deployment, and enhances the overall productivity of deep learning projects.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 20/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: CONVOLUTIONAL NEURAL NETWORKS (CNN)
TOPIC: INTRODUCTION TO CONVOLUTIONAL NEURAL NETWORKS (CNN)

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - Convolutional neural networks (CNN)
- Introduction to convolutional neural networks (CNN)

Convolutional neural networks (CNNs) are a type of deep learning algorithm that have revolutionized the field of
computer vision. They are particularly effective at solving tasks such as image classification, object detection,
and image segmentation. In this section, we will provide an introduction to CNNs and discuss their key
components and operations.

At a high level, a CNN is composed of multiple layers, each responsible for extracting and transforming features
from input data. The most fundamental building blocks of a CNN are convolutional layers, which apply a set of
learnable filters to the input image. These filters, also known as kernels, slide over the input image and perform
a dot product operation at each spatial location. The resulting output, called a feature map, captures the
presence of specific patterns or features in the input image.

One key advantage of CNNs is their ability to automatically learn these filters during the training process. This is
achieved through a technique called backpropagation, which adjusts the weights of the filters based on the
error signal propagated from the network's output. By iteratively updating the filter weights, the CNN can
gradually learn to recognize more complex patterns and hierarchies of features.

In addition to convolutional layers, CNNs also incorporate other types of layers to enhance their performance.
Pooling layers, for example, reduce the spatial dimensions of the feature maps by downsampling them. This
helps to reduce the computational complexity of subsequent layers and makes the network more robust to
spatial translations. Common pooling operations include max pooling and average pooling, which select the
maximum or average value within a local neighborhood, respectively.

Another important component of CNNs is the activation function. After each convolutional or pooling operation,
an activation function is applied element-wise to the resulting feature map. This introduces non-linearity into the
network, allowing it to model complex relationships between the input and output. Popular choices for activation
functions include the rectified linear unit (ReLU), sigmoid, and hyperbolic tangent (tanh) functions.

To train a CNN, a large labeled dataset is required. This dataset is used to compute the loss or error between
the network's predictions and the ground truth labels. The weights of the network are then updated using an
optimization algorithm, such as stochastic gradient descent (SGD), to minimize this loss. This process is
repeated for multiple iterations or epochs until the network converges to a satisfactory level of performance.

In practice, building and training a CNN involves several steps. First, the input images are preprocessed to
ensure they are in a suitable format and range. This may involve resizing, normalization, or data augmentation
techniques. Next, the architecture of the CNN is defined, specifying the number and type of layers, as well as
their parameters. The network is then trained using the labeled dataset, and its performance is evaluated on a
separate validation set. Finally, the trained network can be used to make predictions on new, unseen images.

Convolutional neural networks are a powerful tool for solving computer vision tasks. By leveraging the
hierarchical structure of images and automatically learning relevant features, CNNs have achieved state-of-the-
art performance in various domains. Understanding the key components and operations of CNNs is essential for
anyone interested in diving deeper into the field of deep learning.

DETAILED DIDACTIC MATERIAL

Convolutional neural networks (CNNs) are a type of deep learning model that are particularly effective in
processing and analyzing image data. In this tutorial, we will explore the basics of CNNs and how they can be
applied to classify dogs versus cats using the Python programming language, TensorFlow, and Keras.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 21/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/convolutional-neural-networks-cnn/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/convolutional-neural-networks-cnn/topic/introduction-to-convolutional-neural-networks-cnn/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

To understand how CNNs work, let's start with the basic steps involved. The first step is convolution, which
involves applying a convolutional window to the input image. This window, often referred to as a filter or kernel,
is a small matrix that slides over the image, performing a mathematical operation at each position. The purpose
of convolution is to extract useful features from the image.

After convolution, the next step is pooling. Pooling is a downsampling operation that reduces the dimensionality
of the feature maps. The most common form of pooling is max pooling, which involves taking the maximum
value within a small window. This helps to retain the most salient features while discarding irrelevant details.

The process of convolution and pooling is repeated multiple times to extract increasingly complex features from
the image. The initial layers of a CNN typically detect simple features like edges and lines, while deeper layers
can recognize more complex patterns like shapes and objects.

It's important to note that CNNs are trained using a large dataset of labeled images. During training, the model
learns to automatically adjust the weights of the filters to optimize the classification accuracy. This process is
known as backpropagation.

In our example, we will be using a pre-built dataset of dog and cat images. The images will be converted to pixel
data, and a convolutional window will be applied to extract features. The resulting feature maps will then
undergo pooling to reduce dimensionality. This process of convolution and pooling will be repeated multiple
times to extract relevant features from the images.

By training the CNN on this dataset, we aim to teach the model to accurately classify images as either dogs or
cats. The model will learn to recognize patterns and features that are indicative of each class, enabling it to
make accurate predictions on new, unseen images.

Convolutional neural networks are a powerful tool for image classification tasks. By leveraging the concepts of
convolution and pooling, CNNs can effectively extract features from images and learn to classify them
accurately. In the next part of this tutorial series, we will delve deeper into the implementation details of CNNs
using Python, TensorFlow, and Keras.

Convolutional neural networks (CNNs) are a type of deep learning model commonly used for image classification
tasks. In this didactic material, we will introduce the basic concepts of CNNs and demonstrate how to build a
simple CNN using Python, TensorFlow, and Keras.

To begin, we need to import the necessary libraries. We will import TensorFlow as TF and the required modules
from TensorFlow and Keras. Specifically, we will import Sequential from TensorFlow.keras.models, Dense,
Dropout, Activation, Flatten, Conv2D, and MaxPooling2D from TensorFlow.keras.layers. Additionally, we will
import the pickle module for data loading.

After importing the necessary modules, we will load the data using pickle. The data consists of images and their
corresponding labels. To prepare the data for training, we will normalize the pixel values. Since the pixel values
range from 0 to 255, we can easily normalize the data by dividing it by 255.

Next, we will build our CNN model. We will start by creating a Sequential model using the syntax model =
Sequential(). This model allows us to stack layers sequentially.

The first layer we will add is a Conv2D layer. This layer performs convolutional filtering on the input data. We
can specify the number of filters, the filter size, and the input shape. In our case, we will use 64 filters with a
filter size of 3x3 and an input shape of (50, 50, 1).

Following the Conv2D layer, we will add an Activation layer. The activation function we will use is the rectified
linear activation function (ReLU). This function introduces non-linearity into the model.

After the Activation layer, we will add a MaxPooling2D layer. This layer performs max pooling, which reduces the
spatial dimensions of the input data. In our case, we will use a pooling size of 2x2.

We can repeat the above steps to add more convolutional layers to our model. Each additional Conv2D layer will
have the same structure as the first one, but without the need to specify the input shape.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 22/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Once we have added all the convolutional layers, we need to flatten the data before passing it to the fully
connected layers. We can achieve this by adding a Flatten layer.

Finally, we will add a Dense layer as the output layer. The number of nodes in this layer will depend on the
number of classes in our classification task. In our case, we will use 64 nodes. We will also add an Activation
layer to introduce non-linearity to the output.

With the model built, we can now compile and train it using the appropriate optimizer and loss function.
However, these steps are beyond the scope of this didactic material.

We have introduced the basic concepts of convolutional neural networks (CNNs) and demonstrated how to build
a simple CNN using Python, TensorFlow, and Keras. CNNs are powerful deep learning models commonly used for
image classification tasks. By stacking convolutional, activation, and pooling layers, we can effectively extract
features from images and make accurate predictions.

Convolutional neural networks (CNNs) are a type of deep learning model commonly used in image recognition
and computer vision tasks. In this tutorial, we will provide an introduction to CNNs and discuss their basic
structure and components.

CNNs consist of multiple layers, including convolutional layers, pooling layers, and fully connected layers. These
layers work together to extract and learn features from input images. The convolutional layers apply filters to
the input image, which helps to detect different patterns and features. The pooling layers downsample the
output of the convolutional layers, reducing the spatial dimensions of the input. Finally, the fully connected
layers are responsible for making predictions based on the learned features.

To build a CNN model using Python, TensorFlow, and Keras, we first need to define the architecture of the
model. This involves specifying the number and type of layers, as well as the parameters for each layer. In this
tutorial, we will focus on a simple CNN architecture with one convolutional layer.

To define the model architecture, we use the Keras Sequential model. We start by creating an instance of the
Sequential class:

1. model = Sequential()

Next, we add the convolutional layer using the `Conv2D` function. This layer applies a specified number of
filters to the input image. We can also specify the size of the filters and the activation function to be used. For
example, to add a convolutional layer with 64 filters, a filter size of 3x3, and a ReLU activation function, we can
use the following code:

1. model.add(Conv2D(64, (3, 3), activation='relu'))

After adding the convolutional layer, we can add more layers to the model, such as pooling layers or additional
convolutional layers. These layers help to further extract and learn features from the input image.

Once the model architecture is defined, we need to compile the model. This involves specifying the loss
function, optimizer, and metrics to be used during training. For example, to use the categorical cross-entropy
loss function, the Adam optimizer, and accuracy as the metric, we can use the following code:

1. model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'
])

After compiling the model, we can train the model using the `fit` function. This function takes the input data
and labels, as well as other parameters such as the batch size and number of epochs. For example, to train the
model with a batch size of 32 and 10 epochs, we can use the following code:

1. model.fit(X, Y, batch_size=32, epochs=10)

During training, the model will iterate over the input data in batches, adjusting the model's parameters to

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 23/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

minimize the loss function. The number of epochs determines how many times the model will iterate over the
entire dataset.

Finally, we can evaluate the performance of the trained model using the `evaluate` function. This function takes
the test data and labels and returns the loss and accuracy of the model on the test set. For example, to
evaluate the model on the test set, we can use the following code:

1. loss, accuracy = model.evaluate(X_test, Y_test)

In this tutorial, we have provided an introduction to convolutional neural networks (CNNs) and discussed the
basic steps involved in building and training a CNN model using Python, TensorFlow, and Keras. We have also
briefly mentioned the importance of evaluating the model's performance and discussed some common patterns
and red flags to watch out for during training.

Convolutional neural networks (CNN) are a powerful technique used in the field of Artificial Intelligence (AI) for
image recognition and processing. In this tutorial, we will introduce the concept of CNN and its importance in
deep learning with Python, TensorFlow, and Keras.

CNNs are specifically designed to process visual data, making them highly effective in tasks such as object
detection, image classification, and facial recognition. They are inspired by the human visual system, which is
known for its ability to recognize patterns and features in images.

One key component of CNNs is the convolutional layer. This layer applies a set of filters to the input image,
extracting relevant features by performing convolution operations. These filters are learned through the training
process and are responsible for detecting edges, corners, and other visual patterns.

Another important component of CNNs is the pooling layer. This layer reduces the spatial dimensions of the
input by downsampling, which helps in reducing the computational complexity of the network. Common pooling
techniques include max pooling and average pooling.

The fully connected layer is the last layer in a CNN, responsible for making predictions based on the extracted
features. This layer takes the output from the previous layers and applies a set of weights to produce the final
prediction.

To implement CNNs in Python, we can utilize popular libraries such as TensorFlow and Keras. TensorFlow
provides a powerful framework for building and training neural networks, while Keras offers a high-level API that
simplifies the process of constructing CNN architectures.

In the next tutorial, we will delve into the topic of TensorBoard, a tool that is essential for training and analyzing
CNN models. TensorBoard provides visualizations and metrics that help in understanding the behavior and
performance of the network during training.

By understanding the fundamentals of CNNs and utilizing tools like TensorFlow, Keras, and TensorBoard, we can
unlock the potential of deep learning for image-related tasks. Stay tuned for the next tutorial, where we will
explore the capabilities of TensorBoard in more detail.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 24/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - CONVOLUTIONAL
NEURAL NETWORKS (CNN) - INTRODUCTION TO CONVOLUTIONAL NEURAL NETWORKS (CNN) -
REVIEW QUESTIONS:

WHAT ARE THE BASIC STEPS INVOLVED IN CONVOLUTIONAL NEURAL NETWORKS (CNNS)?

Convolutional Neural Networks (CNNs) are a type of deep learning model that have been widely used for various
computer vision tasks such as image classification, object detection, and image segmentation. In this field of
study, CNNs have proven to be highly effective due to their ability to automatically learn and extract meaningful
features from images.

The basic steps involved in building a CNN can be summarized as follows:

1. Preprocessing: The first step in building a CNN is to preprocess the input images. This typically involves
resizing the images to a fixed size, normalizing the pixel values, and augmenting the dataset if necessary.
Preprocessing helps in reducing the computational complexity and improving the performance of the model.

2. Convolutional Layers: The core building blocks of a CNN are the convolutional layers. These layers perform
the convolution operation, which involves sliding a small filter (also known as a kernel) over the input image and
computing the dot product between the filter and the local receptive field of the image. The output of this
operation is a feature map that represents the presence of certain features in the input image. Multiple
convolutional layers can be stacked together to learn complex and hierarchical features.

3. Activation Function: After the convolution operation, an activation function is applied element-wise to the
output of each convolutional layer. The most commonly used activation function in CNNs is the Rectified Linear
Unit (ReLU), which introduces non-linearity into the model and helps in learning complex patterns.

4. Pooling Layers: Pooling layers are used to reduce the spatial dimensions of the feature maps while retaining
the most important information. The most commonly used pooling operation is max pooling, which selects the
maximum value from a local neighborhood in the feature map. Pooling helps in reducing the computational
complexity and making the model more robust to small translations and distortions in the input images.

5. Fully Connected Layers: After several convolutional and pooling layers, the feature maps are flattened into a
one-dimensional vector and passed through one or more fully connected layers. These layers connect every
neuron in one layer to every neuron in the next layer, similar to a traditional neural network. Fully connected
layers are responsible for learning the high-level features and making the final predictions.

6. Output Layer: The output layer of a CNN depends on the specific task at hand. For example, in image
classification, the output layer typically consists of a softmax activation function that produces a probability
distribution over the different classes. In object detection, the output layer may consist of multiple neurons
representing the presence or absence of different objects in the image.

7. Loss Function: The loss function measures the difference between the predicted output of the CNN and the
ground truth labels. The choice of the loss function depends on the specific task. For example, in image
classification, the cross-entropy loss is commonly used.

8. Optimization: The goal of optimization is to update the parameters of the CNN in order to minimize the loss
function. This is typically done using an optimization algorithm such as stochastic gradient descent (SGD) or
Adam. The parameters of the CNN are updated iteratively by computing the gradients of the loss function with
respect to the parameters and adjusting them accordingly.

9. Training and Evaluation: The CNN is trained on a labeled dataset by feeding the input images through the
network and adjusting the parameters using the optimization algorithm. The training process involves multiple
iterations or epochs, where each epoch consists of passing the entire dataset through the network. The
performance of the CNN is evaluated on a separate validation set to monitor its generalization ability. Once the
CNN is trained, it can be used for making predictions on new, unseen images.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 25/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/convolutional-neural-networks-cnn/introduction-to-convolutional-neural-networks-cnn/examination-review-introduction-to-convolutional-neural-networks-cnn/what-are-the-basic-steps-involved-in-convolutional-neural-networks-cnns/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Building a Convolutional Neural Network involves preprocessing the input images, applying convolutional layers
to extract features, applying activation functions to introduce non-linearity, using pooling layers to reduce
spatial dimensions, using fully connected layers to learn high-level features, defining an output layer based on
the task, choosing an appropriate loss function, optimizing the parameters using an optimization algorithm, and
training and evaluating the CNN on labeled data.

HOW DOES POOLING HELP IN REDUCING THE DIMENSIONALITY OF FEATURE MAPS?

Pooling is a technique commonly used in convolutional neural networks (CNNs) to reduce the dimensionality of
feature maps. It plays a crucial role in extracting important features from input data and improving the
efficiency of the network. In this explanation, we will delve into the details of how pooling helps in reducing the
dimensionality of feature maps in the context of artificial intelligence, specifically deep learning with Python,
TensorFlow, and Keras.

To understand the concept of pooling, let's first discuss the role of convolutional layers in CNNs. Convolutional
layers apply filters to input data, which results in the extraction of various features. These features, also known
as feature maps or activation maps, represent different patterns present in the input data. However, these
feature maps can be large in size, containing a vast amount of information that may not all be relevant for the
subsequent layers of the network. This is where pooling comes into play.

Pooling is a technique that reduces the dimensionality of feature maps by downsampling them. It achieves this
by dividing the input feature map into a set of non-overlapping regions, called pooling regions or pooling
windows. The most commonly used pooling operation is max pooling, where the maximum value within each
pooling region is selected as the representative value for that region. Other pooling operations, such as average
pooling, exist but are less frequently used.

The process of pooling helps in reducing the dimensionality of feature maps in several ways. Firstly, it reduces
the spatial size of the feature maps, resulting in a smaller representation of the input data. This reduction in size
is beneficial as it helps to decrease the computational complexity of the network, making it more efficient to
train and evaluate. Additionally, pooling helps in extracting the most salient features from the input data by
retaining the maximum values within each pooling region. By selecting the maximum value, the pooling
operation ensures that the most significant features are preserved while discarding less relevant information.

Furthermore, pooling aids in achieving translation invariance, a desirable property in many computer vision
tasks. Translation invariance refers to the ability of a model to recognize patterns regardless of their position
within the input data. Pooling helps in achieving this by downsampling the feature maps, making them less
sensitive to small translations or shifts in the input data. For example, if a particular feature is present in a
specific region of the input image, max pooling will select the maximum value within that region, regardless of
its precise location. This property allows the model to focus on the presence of features rather than their exact
position, making it more robust to variations in the input data.

To illustrate the effect of pooling on reducing the dimensionality of feature maps, consider an example. Suppose
we have an input image of size 32x32x3 (width, height, and number of channels). After applying convolutional
layers, we obtain a feature map of size 28x28x64. By applying max pooling with a pooling window of size 2×2
and a stride of 2, the resulting feature map would have a size of 14x14x64. As we can observe, the spatial
dimensions are reduced by half while retaining the same number of channels.

Pooling is a crucial technique in CNNs that helps in reducing the dimensionality of feature maps. It achieves this
by downsampling the feature maps, resulting in a smaller representation of the input data. Pooling aids in
extracting salient features, improving computational efficiency, and achieving translation invariance. By
selecting the maximum value within each pooling region, the most significant features are retained while
discarding less relevant information.

WHAT IS THE PURPOSE OF BACKPROPAGATION IN TRAINING CNNS?

Backpropagation serves a crucial role in training Convolutional Neural Networks (CNNs) by enabling the network
to learn and update its parameters based on the error it produces during the forward pass. The purpose of

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 26/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/convolutional-neural-networks-cnn/introduction-to-convolutional-neural-networks-cnn/examination-review-introduction-to-convolutional-neural-networks-cnn/how-does-pooling-help-in-reducing-the-dimensionality-of-feature-maps/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/convolutional-neural-networks-cnn/introduction-to-convolutional-neural-networks-cnn/examination-review-introduction-to-convolutional-neural-networks-cnn/what-is-the-purpose-of-backpropagation-in-training-cnns/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

backpropagation is to efficiently compute the gradients of the network's parameters with respect to a given loss
function, allowing for the application of gradient-based optimization algorithms such as Stochastic Gradient
Descent (SGD) to update the weights and biases of the network iteratively.

During the forward pass of a CNN, the input data is passed through a series of convolutional, activation, and
pooling layers, eventually leading to the output layer. The output produced by the network is then compared to
the desired output using a suitable loss function, such as categorical cross-entropy for multi-class classification
tasks. The goal of backpropagation is to compute the gradients of the loss function with respect to each weight
and bias in the network, which provides information about the direction and magnitude of the parameter
updates required to minimize the loss.

To understand the mechanics of backpropagation, let's consider a simple example. Suppose we have a CNN
with a single convolutional layer followed by a fully connected layer and an output layer. During the forward
pass, the input data is convolved with a set of learnable filters, and the resulting feature maps are passed
through the fully connected layer to produce the final output. The error between the predicted output and the
ground truth is then computed using the chosen loss function.

Backpropagation starts by calculating the gradient of the loss function with respect to the output layer's
activations. This gradient represents how sensitive the loss is to changes in the output of the network. The
gradient is then propagated backward through the network, layer by layer, using the chain rule of calculus. At
each layer, the gradient is multiplied by the derivative of the layer's activation function, which captures the
sensitivity of the layer's output to changes in its inputs. This process continues until the gradients reach the
input layer.

Once the gradients have been computed, they are used to update the network's parameters. This is done by
applying an optimization algorithm, such as SGD, that adjusts the weights and biases in the direction opposite
to the computed gradients, with a step size determined by the learning rate. By iteratively applying
backpropagation and parameter updates, the network gradually adjusts its weights and biases to minimize the
loss function and improve its predictive performance.

The purpose of backpropagation in training CNNs is to efficiently compute the gradients of the network's
parameters with respect to a given loss function. This enables the network to update its weights and biases
using gradient-based optimization algorithms, ultimately improving its ability to make accurate predictions.

HOW DO WE PREPARE THE DATA FOR TRAINING A CNN MODEL?

To prepare the data for training a Convolutional Neural Network (CNN) model, several important steps need to
be followed. These steps involve data collection, preprocessing, augmentation, and splitting. By carefully
executing these steps, we can ensure that the data is in an appropriate format and contains enough diversity to
train a robust CNN model.

The first step in preparing data for training a CNN model is data collection. This involves gathering a sufficiently
large and representative dataset that covers the desired classes or categories. The dataset should be diverse
enough to capture the variations and complexities present in the real-world scenarios that the model is
expected to handle. For instance, if we are building a CNN model to classify images of animals, we need to
collect a dataset that includes various breeds, poses, lighting conditions, and backgrounds.

Once the dataset is collected, the next step is data preprocessing. This step involves converting the raw data
into a format suitable for training the CNN model. Preprocessing typically includes resizing the images to a
consistent size, normalizing the pixel values, and converting the data into a suitable numerical representation.
Resizing the images to a fixed size is necessary to ensure that all input images have the same dimensions, as
CNN models require inputs of fixed sizes. Normalizing the pixel values helps in reducing the effect of lighting
variations and brings the data into a common range. The numerical representation of the data can be achieved
by converting the images to grayscale or using color channels (e.g., RGB) based on the requirements of the CNN
model.

After preprocessing, data augmentation techniques can be applied to increase the diversity and size of the
dataset. Data augmentation involves applying random transformations to the existing data, such as rotations,

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 27/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/convolutional-neural-networks-cnn/introduction-to-convolutional-neural-networks-cnn/examination-review-introduction-to-convolutional-neural-networks-cnn/how-do-we-prepare-the-data-for-training-a-cnn-model/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

translations, flips, and zooms. These transformations generate new samples that are similar to the original ones
but have slight variations. By augmenting the data, we can increase the amount of training data available,
which helps in improving the generalization and robustness of the CNN model. For instance, when training a
CNN model for object detection, we can apply random translations and rotations to the input images to simulate
variations in object positions and orientations.

Once the data is preprocessed and augmented, it is essential to split it into training, validation, and testing sets.
The training set is used to train the CNN model, the validation set is used to fine-tune the model's
hyperparameters and monitor its performance during training, and the testing set is used to evaluate the final
performance of the trained model. The data should be split in a way that preserves the class distribution and
ensures that each set contains representative samples. Typically, a common practice is to allocate around
70-80% of the data for training, 10-15% for validation, and the remaining 10-15% for testing.

Preparing data for training a CNN model involves data collection, preprocessing, augmentation, and splitting.
Data collection involves gathering a diverse and representative dataset. Preprocessing includes resizing,
normalizing, and converting the data into a suitable numerical representation. Data augmentation techniques
can be applied to increase the dataset's diversity and size. Finally, the data is split into training, validation, and
testing sets to train, fine-tune, and evaluate the CNN model, respectively.

WHAT IS THE ROLE OF THE FULLY CONNECTED LAYER IN A CNN?

The fully connected layer, also known as the dense layer, plays a crucial role in convolutional neural networks
(CNNs) and is an essential component of the network architecture. Its purpose is to capture global patterns and
relationships in the input data by connecting every neuron from the previous layer to every neuron in the fully
connected layer. This layer is typically placed at the end of the CNN, following the convolutional and pooling
layers.

The primary function of the fully connected layer is to perform high-level reasoning and decision-making based
on the features extracted by the preceding layers. It accomplishes this by learning complex non-linear
mappings between the input and output data. Each neuron in the fully connected layer receives inputs from all
the neurons in the previous layer and produces an output by applying a set of weights and biases, followed by
an activation function.

By connecting every neuron to every other neuron in the fully connected layer, the network is able to learn
intricate relationships and dependencies in the data. This allows the model to make predictions based on a
combination of different features rather than relying solely on individual features. The fully connected layer acts
as a powerful feature extractor, transforming the learned features into a format that can be used for
classification or regression tasks.

To illustrate the role of the fully connected layer, consider a CNN trained to classify images of handwritten
digits. The convolutional layers extract low-level features such as edges, corners, and textures, while the
pooling layers reduce the spatial dimensions of the feature maps. The fully connected layer then takes these
abstracted features and combines them to make predictions about the digit shown in the image. For example, it
might learn that a combination of curved lines, loops, and closed shapes indicates the presence of a particular
digit.

In addition to its feature extraction capabilities, the fully connected layer also contributes to regularization and
model capacity control. The large number of parameters in the fully connected layer enables the network to
learn complex representations, but it also increases the risk of overfitting. To mitigate this, regularization
techniques such as dropout or L2 regularization can be applied to the fully connected layer, preventing the
network from relying too heavily on any single connection.

The fully connected layer in a CNN is responsible for capturing global patterns and relationships in the input
data by connecting every neuron from the previous layer to every neuron in the fully connected layer. It
performs high-level reasoning and decision-making based on the learned features and contributes to
regularization and model capacity control.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 28/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/convolutional-neural-networks-cnn/introduction-to-convolutional-neural-networks-cnn/examination-review-introduction-to-convolutional-neural-networks-cnn/what-is-the-role-of-the-fully-connected-layer-in-a-cnn/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: TENSORBOARD
TOPIC: ANALYZING MODELS WITH TENSORBOARD

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - TensorBoard - Analyzing models with
TensorBoard

Artificial Intelligence (AI) has revolutionized various industries, and one of its key components is deep learning.
Deep learning models have shown remarkable performance in tasks such as image recognition, natural
language processing, and speech recognition. Python, TensorFlow, and Keras are popular tools used to
implement deep learning algorithms. In this didactic material, we will explore the use of TensorBoard, a
powerful visualization tool, to analyze and optimize deep learning models.

TensorBoard is a web-based tool provided by TensorFlow that allows users to visualize and analyze the
performance of their deep learning models. It provides a comprehensive set of functionalities for monitoring and
debugging models during training. TensorBoard can be used to visualize the model architecture, track training
metrics, analyze the model's computational graph, and even visualize embeddings and high-dimensional data.

To use TensorBoard, we first need to install TensorFlow and Keras. Both can be installed using pip, the Python
package manager. Once installed, we can import the necessary libraries in our Python script or Jupyter
Notebook. TensorFlow provides a high-level API called Keras, which simplifies the process of building and
training deep learning models. Keras also integrates seamlessly with TensorBoard, making it easy to monitor
and analyze the models.

To enable TensorBoard in Keras, we need to add a callback during model training. A callback is a set of
functions that can be applied at different stages of the training process. The TensorBoard callback allows us to
specify the log directory where the training data and metrics will be saved. We can also specify the frequency at
which the data should be saved, such as after every epoch or a specific number of steps.

After training our model with the TensorBoard callback, we can launch TensorBoard using the command line or
within Jupyter Notebook. TensorBoard provides a user-friendly interface that can be accessed through a web
browser. By default, TensorBoard runs on localhost, but we can specify a different host and port if needed. Once
launched, TensorBoard displays a dashboard with various tabs, each providing different visualization options.

The "Scalars" tab in TensorBoard allows us to monitor and compare training metrics such as loss and accuracy
over time. We can plot multiple metrics on the same graph, making it easy to analyze the model's performance.
The "Graphs" tab displays the computational graph of the model, showing the flow of data and operations. This
visualization helps in understanding the model's architecture and identifying any issues or inefficiencies.

TensorBoard also provides the "Histograms" tab, which allows us to visualize the distribution of weights and
biases in the model. This can be useful for identifying any issues with weight initialization or optimization. The
"Distributions" tab provides a similar visualization, but for the distribution of activations in the model. By
analyzing these distributions, we can gain insights into the behavior of the model during training.

Another powerful feature of TensorBoard is the ability to visualize embeddings. Embeddings are low-
dimensional representations of high-dimensional data, often used for tasks like word embeddings in natural
language processing. TensorBoard allows us to visualize these embeddings in a 3D space, making it easier to
understand relationships between different entities.

In addition to the built-in functionalities, TensorBoard also supports custom visualizations using TensorFlow's
Summary API. This allows users to create their own visualizations and add them to the TensorBoard dashboard.
Custom visualizations can be useful for analyzing specific aspects of the model or for visualizing intermediate
outputs during training.

TensorBoard is a powerful tool for analyzing and optimizing deep learning models. Its intuitive interface and
comprehensive set of functionalities make it an essential tool for deep learning practitioners. By visualizing and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 29/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/tensorboard/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/tensorboard/topic/analyzing-models-with-tensorboard/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

analyzing various aspects of the model, we can gain insights into its performance and make informed decisions
to improve its accuracy and efficiency.

DETAILED DIDACTIC MATERIAL

TensorBoard is a powerful tool for analyzing and optimizing deep learning models in Python using TensorFlow
and Keras. It allows us to visualize the training process of our models over time, making it easier to understand
and improve their performance.

One of the main uses of TensorBoard is to monitor metrics such as accuracy and loss during training. By
visualizing these metrics, we can identify patterns and trends that can help us make informed decisions about
our models.

To use TensorBoard, we need to import the necessary libraries. In this case, we import the TensorBoard callback
from the Keras library. This callback allows us to save the necessary logs for visualization in TensorBoard.

Next, we need to define our model and give it a useful name. This is important because we may train multiple
models and it's helpful to be able to identify them easily. For example, we can name our model "2 times 64
confident".

Once we have our model defined, we can add the TensorBoard callback to our training process. This callback
will save the necessary logs for visualization. In this example, we only specify the log directory, but there are
other parameters that can be customized depending on our needs.

After adding the TensorBoard callback, we can start training our model. As the training progresses, TensorBoard
will update the logs and we can visualize the metrics in real-time. We can see how accuracy and loss change
over time, and use this information to make adjustments and improvements to our model.

In addition to monitoring metrics, TensorBoard also offers other useful features. For example, we can use the
ModelCheckpoint callback to save the best model based on certain criteria, such as the best validation accuracy
or the lowest loss. This can be helpful when we want to avoid overtraining our model.

TensorBoard is a valuable tool for analyzing and optimizing deep learning models. By visualizing the training
process and monitoring metrics, we can gain insights into our models and make informed decisions to improve
their performance.

In this didactic material, we will discuss how to analyze models using TensorBoard in the context of Artificial
Intelligence, specifically Deep Learning with Python, TensorFlow, and Keras.

When working with models, it is important to assign a unique name to each model. This can be achieved by
including a timestamp in the name, ensuring that each model is distinct. By doing this, we prevent overwriting
or appending models with the same name, which can lead to confusion in the analysis.

To specify the callback object for TensorBoard, we use the TensorBoard object. This object allows us to define
where the log directory should be located. We can use the name of the model as part of the log directory path.
Additionally, it is worth noting that customizing or creating our own callbacks is possible, providing flexibility in
the analysis process.

To pass the TensorBoard callback into the fitment, we use the "callbacks" parameter. This parameter takes in a
list of callbacks, and in our case, we have only one callback, which is the TensorBoard callback.

Once the model is trained, a new directory called "logs" will be created. This directory contains the model's
information. To view the model in real-time, we need to open the command window (terminal or command
prompt) and navigate to the directory that houses the logs. From there, we can run the TensorBoard command
by typing "tensorboard --logdir=logs" and accessing the provided address in a browser.

It is important to note that on Windows, specifying the log directory can be a bit finicky. However, by following
the correct syntax and ensuring no quotes are used, the TensorBoard should run smoothly.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 30/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

After successfully running TensorBoard, we can visualize the graphs of the model. This includes the in-sample
accuracy, in-sample loss, out-of-sample accuracy, and out-of-sample loss. Ideally, we want to see an increase in
accuracy and a decrease in loss for both in-sample and out-of-sample data. However, it is not uncommon to
observe validation loss creeping back up after a certain number of epochs. This can be attributed to the model
transitioning from generalizing to memorizing the input samples.

Analyzing models using TensorBoard is an essential step in the Deep Learning process. By assigning unique
names to models and utilizing the TensorBoard callback, we can effectively visualize and evaluate the
performance of our models.

When evaluating a model, it is important to focus on the validation loss. This metric provides valuable insights
into the model's performance. In this tutorial, we will explore how to analyze models using TensorBoard.

To begin, we can experiment with different model configurations. For example, we can remove the dense layer
from our model and train it for twenty epochs. However, it is essential to note that removing layers may impact
the model's performance negatively. Additionally, it is recommended to update the model's name to reflect any
changes made.

During the training process, we may encounter errors or crashes. In such cases, it is crucial to ensure that the
recording and other processes are not affected. Restarting the training process and monitoring TensorBoard for
updates can help us analyze the model's performance.

Analyzing the model's performance, we observe that without the dense layer, the model's accuracy is worse.
However, the out-of-sample loss is better. This indicates that the model without the dense layer performs better
on unseen data, which is more important than the in-sample performance. Overfitting is a concern when the in-
sample performance is significantly better than the out-of-sample performance.

In TensorBoard, we can utilize various features to analyze models. For instance, we can toggle the visibility of
individual runs or select multiple runs to compare their performance. Additionally, we can adjust the smoothing
to visualize the data with different levels of smoothness. This helps us understand the trends and patterns in the
model's performance.

Furthermore, we can filter and search for specific models based on criteria such as model architecture or
hyperparameters. This enables us to efficiently navigate through a large number of models and focus on the
ones that meet our requirements.

In the next tutorial, we will explore how to optimize models using automated processes. This approach simplifies
the iterative process of modifying and retraining models. If you have any questions or concerns, please feel free
to leave them in the comments below or join our Discord community at discord.gg/Centex.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 31/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - TENSORBOARD -
ANALYZING MODELS WITH TENSORBOARD - REVIEW QUESTIONS:

WHAT IS THE MAIN PURPOSE OF TENSORBOARD IN ANALYZING AND OPTIMIZING DEEP LEARNING
MODELS?

TensorBoard is a powerful tool provided by TensorFlow that plays a crucial role in the analysis and optimization
of deep learning models. Its main purpose is to provide visualizations and metrics that enable researchers and
practitioners to gain insights into the behavior and performance of their models, facilitating the process of
model development, debugging, and optimization.

One of the key features of TensorBoard is its ability to visualize the computational graph of a deep learning
model. The computational graph represents the flow of data through the model, including the operations and
dependencies between different layers and nodes. By visualizing the graph, researchers can easily understand
the structure of their models, identify potential bottlenecks, and optimize the model architecture accordingly.
For example, they can identify if there are unnecessary layers or redundant operations that can be removed to
improve efficiency.

Furthermore, TensorBoard provides various visualization tools to monitor and analyze the training process of
deep learning models. It allows users to plot scalar values such as loss, accuracy, and other custom-defined
metrics over time. These visualizations enable researchers to track the progress of their models during training
and identify potential issues such as overfitting or underfitting. By analyzing these metrics, researchers can
make informed decisions to adjust hyperparameters or modify the model architecture to improve performance.

Another important aspect of TensorBoard is its ability to visualize the distribution of weights and biases in the
model. This feature is especially useful in deep learning models, where the number of parameters can be
extremely large. By visualizing the distribution of weights, researchers can identify if there are any outliers or
imbalances that may affect the model's performance. For example, they can detect if certain weights are
dominating the learning process or if there are vanishing or exploding gradients that may hinder convergence.
This information can guide researchers to apply appropriate regularization techniques or adjust the learning
rate to improve model stability and convergence.

In addition to these visualizations, TensorBoard also provides a tool called the "embedding projector" that
enables researchers to visualize high-dimensional data in a lower-dimensional space. This is particularly useful
in tasks such as natural language processing or image classification, where the input data is often represented
as high-dimensional vectors. By projecting these vectors onto a lower-dimensional space, researchers can
visually inspect the relationships between different data points and gain insights into the model's ability to learn
meaningful representations. For example, they can verify if similar data points are clustered together or if there
are any outliers that may indicate misclassifications.

To summarize, TensorBoard is an invaluable tool for analyzing and optimizing deep learning models. Its
visualizations and metrics provide researchers and practitioners with a comprehensive understanding of their
models' behavior and performance, enabling them to make informed decisions to improve model architecture,
hyperparameters, and convergence. By leveraging TensorBoard's capabilities, researchers can accelerate the
development and optimization of deep learning models, leading to more efficient and accurate solutions in the
field of artificial intelligence.

WHY IS IT IMPORTANT TO ASSIGN A UNIQUE NAME TO EACH MODEL WHEN USING TENSORBOARD?

Assigning a unique name to each model when using TensorBoard is of utmost importance in the field of deep
learning. TensorBoard is a powerful visualization tool provided by TensorFlow, a popular deep learning
framework. It allows researchers and developers to analyze and understand the behavior and performance of
their models through a user-friendly interface. By assigning unique names to models, users can easily
distinguish and compare multiple models, track their progress, and make informed decisions based on the
insights gained from the visualizations.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 32/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/analyzing-models-with-tensorboard/examination-review-analyzing-models-with-tensorboard/what-is-the-main-purpose-of-tensorboard-in-analyzing-and-optimizing-deep-learning-models/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/analyzing-models-with-tensorboard/examination-review-analyzing-models-with-tensorboard/what-is-the-main-purpose-of-tensorboard-in-analyzing-and-optimizing-deep-learning-models/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/analyzing-models-with-tensorboard/examination-review-analyzing-models-with-tensorboard/why-is-it-important-to-assign-a-unique-name-to-each-model-when-using-tensorboard/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

One key reason for assigning unique names to models in TensorBoard is to facilitate model comparison. Deep
learning practitioners often experiment with different architectures, hyperparameters, and training strategies to
find the best model for their task. By assigning unique names to each model, users can easily identify and
compare the performance of different models. For example, if a researcher is working on an image classification
task and wants to compare the accuracy of two different convolutional neural network (CNN) architectures,
having unique names for each model will allow them to easily select and compare the relevant visualizations in
TensorBoard.

Another important reason for assigning unique names to models is to enable tracking and monitoring of model
progress over time. During the iterative process of model development, it is common to train and evaluate
multiple versions of a model with different configurations. By assigning unique names to each model, users can
track the training and evaluation metrics of individual models over time. This enables them to assess the
progress made by each model and identify areas for improvement. For example, if a researcher is working on a
natural language processing task and wants to monitor the loss and accuracy of a recurrent neural network
(RNN) model during training, having unique names for each model will allow them to easily visualize and
compare the training curves in TensorBoard.

Furthermore, assigning unique names to models in TensorBoard helps in organizing and managing the
visualization of multiple models. When working on complex deep learning projects, it is common to have a large
number of models with different configurations and variations. By giving each model a unique name, users can
easily navigate and locate the relevant visualizations in TensorBoard. This helps in maintaining a clear and
structured overview of the project's models, making it easier to analyze and interpret the results. For example,
if a developer is working on a generative adversarial network (GAN) project and wants to analyze the generated
images of different GAN architectures, having unique names for each model will allow them to quickly find and
compare the corresponding image visualizations in TensorBoard.

Assigning a unique name to each model when using TensorBoard is crucial for effective model comparison,
tracking model progress, and organizing the visualization of multiple models. By providing a clear and
distinguishable identity to each model, users can leverage the full potential of TensorBoard's visualization
capabilities and gain valuable insights into the behavior and performance of their deep learning models.

HOW CAN WE SPECIFY THE LOG DIRECTORY FOR TENSORBOARD IN OUR PYTHON CODE?

To specify the log directory for TensorBoard in Python code, you can utilize the `TensorBoard` callback provided
by the TensorFlow library. TensorBoard is a powerful visualization tool that allows you to analyze and monitor
your deep learning models. By specifying the log directory, you can control where the log files generated by
TensorBoard are stored.

To begin, you need to import the necessary libraries:

1. import tensorflow as tf
2. from tensorflow.keras.callbacks import TensorBoard

Next, you can create an instance of the `TensorBoard` callback and specify the log directory using the `log_dir`
parameter. This parameter takes the path to the desired directory as its value. It is important to note that the
specified directory must exist prior to running the code.

1. log_dir = '/path/to/log/directory'
2. tensorboard_callback = TensorBoard(log_dir=log_dir)

You can then include this callback in the `fit` function when training your model:

1. model.fit(x_train, y_train, epochs=10, callbacks=[tensorboard_callback])

By doing this, TensorBoard will generate log files in the specified directory during the training process. These

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 33/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/analyzing-models-with-tensorboard/examination-review-analyzing-models-with-tensorboard/how-can-we-specify-the-log-directory-for-tensorboard-in-our-python-code/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

log files contain information such as loss, accuracy, and other metrics, which can be visualized using
TensorBoard.

For example, if you want to specify a log directory named 'logs', located in the current working directory, you
can do the following:

1. import os
2. log_dir = os.path.join(os.getcwd(), 'logs')
3. tensorboard_callback = TensorBoard(log_dir=log_dir)

This will create a 'logs' directory in the current working directory and save the log files there.

To specify the log directory for TensorBoard in your Python code, you need to create an instance of the
`TensorBoard` callback and set the `log_dir` parameter to the desired directory path. This callback can then be
included in the `fit` function when training your model. The log files generated by TensorBoard will be saved in
the specified directory, allowing you to analyze and visualize your models effectively.

WHAT IS THE SYNTAX FOR RUNNING TENSORBOARD ON WINDOWS?

To run TensorBoard on Windows, you need to follow a specific syntax that allows you to analyze your models
and visualize their performance using TensorBoard. TensorBoard is a powerful tool in the field of deep learning
that provides a user-friendly interface for monitoring and debugging TensorFlow models. In this answer, we will
explore the syntax required to run TensorBoard on Windows and provide a detailed explanation of each step.

Before we dive into the syntax, it is important to note that TensorBoard requires TensorFlow to be installed on
your system. If you haven't installed TensorFlow yet, you can do so by following the official TensorFlow
installation guide for Windows.

Once you have TensorFlow installed, you can proceed with running TensorBoard using the following steps:

1. Open the command prompt: Press the Windows key, type "cmd," and press Enter. This will open the
command prompt window.

2. Navigate to the directory where your TensorFlow project is located using the `cd` command. For example, if
your project is located in the "C:ProjectsMyTensorFlowProject" directory, you would enter the following
command:

1. cd C:ProjectsMyTensorFlowProject

3. Activate the virtual environment (if you are using one): If you are working within a virtual environment,
activate it by running the appropriate command. For example, if you are using Anaconda, you can activate the
environment by running:

1. activate myenv

4. Launch TensorBoard: To launch TensorBoard, use the `tensorboard` command followed by the `–logdir` flag
and the path to the directory where your TensorFlow log files are stored. For example, if your log files are stored
in the "logs" directory within your project, you would enter the following command:

1. tensorboard –logdir=logs

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 34/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/analyzing-models-with-tensorboard/examination-review-analyzing-models-with-tensorboard/what-is-the-syntax-for-running-tensorboard-on-windows/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

5. Access TensorBoard in your web browser: After running the TensorBoard command, you will see output
indicating that TensorBoard is running. It will display a URL similar to "http://localhost:6006/". Open your
preferred web browser and navigate to this URL to access the TensorBoard interface.

Once you have accessed TensorBoard in your web browser, you will be able to explore various visualizations
and analyze the performance of your TensorFlow models. TensorBoard provides a range of features, including
the ability to visualize scalar values, histograms, distributions, images, embeddings, and more.

The syntax for running TensorBoard on Windows involves opening the command prompt, navigating to the
project directory, activating the virtual environment (if applicable), launching TensorBoard with the
`tensorboard` command followed by the `–logdir` flag and the path to the log files directory, and accessing
TensorBoard in your web browser using the provided URL.

WHY IS THE VALIDATION LOSS METRIC IMPORTANT WHEN EVALUATING A MODEL'S PERFORMANCE?

The validation loss metric plays a crucial role in evaluating the performance of a model in the field of deep
learning. It provides valuable insights into how well the model is performing on unseen data, helping
researchers and practitioners make informed decisions about model selection, hyperparameter tuning, and
generalization capabilities. By monitoring the validation loss metric, one can assess the model's ability to
generalize well beyond the training data, which is a key requirement for building robust and reliable deep
learning models.

The validation loss metric is derived from the loss function, which quantifies the discrepancy between the
predicted outputs of the model and the ground truth labels. During the training process, the model iteratively
adjusts its parameters to minimize this loss, thereby improving its ability to make accurate predictions.
However, solely minimizing the loss on the training data may lead to overfitting, where the model becomes
overly specialized to the training set and fails to generalize to new, unseen data. This is where the validation
loss metric comes into play.

During model training, a separate dataset called the validation set is used to evaluate the model's performance
after each training epoch. The validation loss is computed by applying the model to the validation set and
comparing its predictions to the ground truth labels. This loss serves as an estimate of how well the model is
performing on unseen data.

The validation loss metric is important for several reasons. Firstly, it helps researchers and practitioners monitor
the model's training progress and detect potential issues such as overfitting or underfitting. An increase in the
validation loss over successive epochs indicates that the model's performance is deteriorating, suggesting that
adjustments may be needed, such as regularization techniques or changes in the model architecture.

Secondly, the validation loss metric provides a measure of the model's generalization capabilities. A low
validation loss indicates that the model is able to make accurate predictions on unseen data, suggesting that it
has learned meaningful patterns and is not simply memorizing the training examples. On the other hand, a high
validation loss suggests that the model is struggling to generalize and may be making predictions based on
spurious correlations present in the training data.

Furthermore, the validation loss metric is crucial for model selection and hyperparameter tuning. When
comparing different models or variations of the same model, the one with the lowest validation loss is generally
preferred, as it is likely to perform better on unseen data. Similarly, when tuning hyperparameters such as
learning rate or regularization strength, the validation loss can guide the selection of optimal values, helping to
strike a balance between underfitting and overfitting.

To illustrate the importance of the validation loss metric, consider a scenario where a deep learning model is
trained to classify images of cats and dogs. Without monitoring the validation loss, the model may appear to
perform exceptionally well on the training data, achieving a very low loss. However, when evaluated on a
separate validation set, it may exhibit a significantly higher loss, indicating poor generalization. By using the
validation loss metric, one can identify this discrepancy and take corrective measures, such as increasing the
dataset size, applying data augmentation techniques, or adjusting the model architecture.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 35/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/analyzing-models-with-tensorboard/examination-review-analyzing-models-with-tensorboard/why-is-the-validation-loss-metric-important-when-evaluating-a-models-performance/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

The validation loss metric is a crucial tool for evaluating the performance of deep learning models. It provides
insights into the model's ability to generalize, helps monitor the training process, guides model selection and
hyperparameter tuning, and aids in detecting potential issues such as overfitting. By leveraging the validation
loss metric, researchers and practitioners can build more robust and reliable deep learning models.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 36/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: TENSORBOARD
TOPIC: OPTIMIZING WITH TENSORBOARD

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - TensorBoard - Optimizing with
TensorBoard

Artificial intelligence (AI) has revolutionized various domains, including computer vision, natural language
processing, and robotics. Deep learning, a subset of AI, has emerged as a powerful technique for training
artificial neural networks with multiple layers. In this didactic material, we will explore the integration of deep
learning with Python, TensorFlow, and Keras, and how to optimize our models using TensorBoard.

Deep learning involves training neural networks with multiple layers to learn and recognize patterns in data.
Python, a versatile programming language, provides a wide range of libraries and frameworks for deep learning.
TensorFlow, an open-source library developed by Google, is one of the most popular choices for implementing
deep learning models. Keras, a high-level neural networks API, simplifies the process of building and training
deep learning models.

TensorBoard is a powerful visualization tool provided by TensorFlow that allows us to monitor and analyze the
performance of our deep learning models. It provides real-time insights into various metrics, such as loss,
accuracy, and computational graphs. By visualizing these metrics, we can gain a better understanding of our
models and make informed decisions to optimize their performance.

To begin, we need to install Python, TensorFlow, and Keras on our machine. Python can be easily installed from
the official website, while TensorFlow and Keras can be installed using the pip package manager. Once installed,
we can import the necessary libraries and start building our deep learning models.

When training deep learning models, it is crucial to monitor their performance and make necessary adjustments
to improve their accuracy. TensorBoard offers a range of features to visualize and analyze the training process.
We can log various metrics during training, such as loss and accuracy, and view them in real-time using the
TensorBoard web interface.

Additionally, TensorBoard allows us to visualize the computational graph of our deep learning models. The
computational graph represents the flow of data through the layers of our neural network. By visualizing the
graph, we can identify bottlenecks and potential areas for optimization.

One of the key features of TensorBoard is the ability to compare different models and experiments. We can log
multiple runs of our models with different hyperparameters or architectures and compare their performance
using TensorBoard. This enables us to make informed decisions about the best configurations for our deep
learning models.

Furthermore, TensorBoard provides profiling capabilities to identify performance bottlenecks in our models. We
can analyze the time taken by each operation in our computational graph and optimize them accordingly. This
is particularly useful when dealing with large datasets or complex models.

To optimize our deep learning models using TensorBoard, we can leverage its visualization capabilities to gain
insights into the training process. By analyzing the loss and accuracy curves, we can identify underfitting or
overfitting issues and adjust the model accordingly. TensorBoard also allows us to visualize the distribution of
weights and biases in our neural network, which can help us detect any anomalies or imbalances.

Integrating deep learning with Python, TensorFlow, and Keras provides a powerful framework for developing and
training neural networks. TensorBoard enhances this process by offering visualization and optimization
capabilities. By leveraging TensorBoard, we can monitor and analyze the performance of our models, compare
different experiments, and optimize our deep learning models for better accuracy and efficiency.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 37/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/tensorboard/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/tensorboard/topic/optimizing-with-tensorboard/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

DETAILED DIDACTIC MATERIAL

TensorBoard is a powerful tool that can be used to optimize models in deep learning. By visualizing different
attempts at models, we can identify areas for improvement and make changes accordingly. In this tutorial, we
will explore how to optimize models using TensorBoard.

When optimizing a model, there are several aspects that we can test and tweak. Some of these include the
optimizer, learning rate, number of dense layers, units per layer, activation units, kernel size, stride, decay rate,
and more. With so many possible combinations, the number of models to test can quickly become
overwhelming.

To simplify the optimization process, it is recommended to start with the most obvious changes. In this case, we
will focus on tweaking the number of layers, nodes per layer, and whether or not to include a dense layer at the
end. These changes can have a significant impact on the performance of the model.

To implement these changes, we can use Python code. We will define some choices for the number of dense
layers (0, 1, or 2) and layer sizes (32, 64, 128). These choices are based on previous successful models. We will
iterate through these choices to create different combinations of models.

Next, we need to assign names to each model combination. This can be done using a naming convention that
includes the number of convolutional layers, dense layers, and layer sizes. Additionally, we can include a
timestamp to differentiate between different runs.

Once we have all the model combinations and their respective names, we can proceed to apply these changes
to our model. This involves modifying the code to include the desired changes for each model combination.

By utilizing TensorBoard, we can visualize the performance of each model and compare the results. This allows
us to identify the best performing models and make further improvements if necessary.

TensorBoard is a valuable tool for optimizing models in deep learning. By systematically testing different
combinations of model parameters, we can improve the performance of our models. Through visualization and
analysis, we can make informed decisions on how to further optimize our models.

In this didactic material, we will discuss the process of optimizing deep learning models using TensorBoard, a
powerful visualization tool provided by TensorFlow. TensorBoard allows us to track and analyze various aspects
of our models, such as loss, accuracy, and computational graph visualization.

Before diving into the optimization process, it is important to understand the structure of our deep learning
model. The model consists of convolutional layers (conv layers) and dense layers. The conv layers extract
features from the input data, while the dense layers perform classification based on these extracted features.

To begin, we need to define the input shape for the first layer of our model. This is necessary to ensure
compatibility between the input data and the model architecture. Additionally, the first dense layer must be
flattened to accommodate the output of the conv layers.

To handle the conv layers, we iterate through a range of "com layer - 1" (the number of conv layers minus one),
adding the necessary components for each conv layer. Similarly, we iterate through a range of "dense layer" to
add the dense layers. It is important to note that the output layer is considered a dense layer, but we refer to
the dense layers before the output layer.

In our example, we use a fixed size of 64 for the dense layers. However, in practice, it is common to use
different sizes for the dense layers compared to the conv layers. This is because the conv layers extract
features, while the dense layers perform classification, and these tasks have different requirements.

Once the model architecture is defined, we can proceed with the optimization process. It is recommended to
adjust the size of the layers and experiment with different configurations to achieve optimal performance.

To run the code, it is necessary to have TensorFlow installed. For those using the CPU version, installation
instructions can be found in the tutorial mentioned in the text-based version of this material. For GPU users, the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 38/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

installation process is similar, but requires additional steps, such as installing CUDA toolkit and extracting
cuDNN into the CUDA toolkit.

To speed up the training process, it is also possible to run the code on a cloud-based platform like PaperSpace,
which offers a variety of GPUs at competitive prices. A referral link to PaperSpace is provided in the description,
offering a $10 credit to get started.

After running the code, we can visualize the training process using TensorBoard. By specifying the log directory,
TensorBoard will generate interactive visualizations of our model's performance. These visualizations include
metrics like loss and accuracy over time, as well as the computational graph that represents the model's
structure.

Optimizing deep learning models involves defining the model architecture, adjusting layer sizes, and
experimenting with different configurations. TensorBoard is a valuable tool for visualizing and analyzing the
training process, allowing us to make informed decisions to improve model performance.

When working with Artificial Intelligence (AI) and specifically Deep Learning, it is important to optimize and fine-
tune the models to achieve the best possible performance. In this didactic material, we will explore the use of
TensorBoard, a powerful visualization tool that comes bundled with TensorFlow, to optimize our deep learning
models.

TensorBoard allows us to visualize and analyze various aspects of our models, such as training and validation
metrics, model architectures, and even the distribution of weights and biases. By using TensorBoard, we can
gain insights into the behavior of our models and make informed decisions on how to improve them.

To begin, let's assume that we have already trained a deep learning model and have logged the training and
validation metrics using TensorBoard. We can then load these logs into TensorBoard and start analyzing the
results.

One common issue that we might encounter is the incorrect path to the log files. If the logs are not being loaded
properly, we can try changing the path to the correct location. It is important to ensure that the log files are
stored in the designated directory and that the path is correctly specified in the code.

Once the logs are successfully loaded, we can visualize various metrics such as validation loss and accuracy.
These metrics provide valuable insights into the performance of our model. For example, we can identify the
best performing models by examining the validation loss and accuracy curves. The models with the lowest
validation loss and highest accuracy are usually considered the best.

In addition to the metrics, we can also analyze the model architecture. TensorBoard provides a graphical
representation of the model, allowing us to visualize the layers, their connections, and the flow of data through
the network. This visualization helps us understand the complexity and structure of our model.

Another useful feature of TensorBoard is the ability to compare different models. By running multiple
experiments with different hyperparameters or architectures, we can compare their performance and identify
the best configuration. TensorBoard allows us to overlay multiple curves on the same graph, making it easy to
compare and analyze the results.

To optimize our model, we can experiment with different configurations, such as the number of convolutional
layers, the number of nodes per layer, and the presence or absence of dense layers. By analyzing the results in
TensorBoard, we can identify patterns and make informed decisions on which configurations yield the best
performance.

It is important to note that overfitting can be a common issue in deep learning models. Overfitting occurs when
the model performs well on the training data but fails to generalize to new, unseen data. To avoid overfitting,
we should carefully monitor the validation metrics and ensure that the model is not memorizing the training
data. If the validation metrics start to deteriorate while the training metrics continue to improve, it is a sign of
overfitting.

TensorBoard is a powerful tool that can greatly assist in optimizing deep learning models. By visualizing and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 39/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

analyzing various aspects of the model's performance, architecture, and metrics, we can make informed
decisions on how to improve the model's performance. Experimenting with different configurations and
monitoring validation metrics are crucial steps in optimizing deep learning models.

Deep learning is a powerful technique in the field of artificial intelligence that allows machines to learn and
make predictions from large amounts of data. In this didactic material, we will discuss the use of Python,
TensorFlow, and Keras for deep learning, specifically focusing on TensorBoard and optimizing with TensorBoard.

One important aspect of deep learning is the architecture of the neural network. In particular the use of dense
and convolutional layers. Dense layers are fully connected layers where each neuron is connected to every
neuron in the previous layer. Convolutional layers, on the other hand, are used for image processing tasks and
are particularly effective in recognizing patterns in images.

Also the concept of validation loss should be mentioned. Validation loss is a metric used to evaluate the
performance of a model during training. It represents the difference between the predicted and actual values on
a validation dataset. It is important to monitor the validation loss to ensure that the model is not overfitting or
underfitting the data.

The number of dense and convolutional layers can be adjusted based on the specific task and dataset. It should
be stressed that adding a dense layer might help in memorizing information, but it is important to note that this
may not be applicable to all datasets. The size of the model and the number of samples in the dataset play a
crucial role in determining the effectiveness of the model.

The importance of trial and error in optimizing the model should also be highlighted. Making incremental
changes and observing the impact on the model's performance is a common approach. This process can be
time-consuming, especially when training large models.

Activation functions are another important aspect of deep learning. The rectified linear activation function
(ReLU) is a good choice. The choice of activation function depends on the specific task and the type of data
being processed.

Scaling the data should also be mentioned as an important step. Scaling ensures that all features have a similar
range, which can improve the performance of the model.

In terms of tools, what should be stressed is the use of TensorBoard for visualizing and optimizing models.
TensorBoard is a powerful tool that provides visualizations of various metrics, including loss, accuracy, and
model architecture. It helps in understanding the behavior of the model and identifying areas for improvement.

Finally, it should be added that even professionals in the field of deep learning follow a similar trial and error
approach. This highlights the iterative nature of model optimization and the importance of experimentation.

This didactic material has provided an overview of deep learning with Python, TensorFlow, and Keras. It has
discussed the use of TensorBoard for model visualization and optimization. It has also highlighted the
importance of architectural choices, trial and error, activation functions, data scaling, and the iterative nature of
model optimization.

In deep learning with Python, TensorFlow, and Keras, TensorBoard is a powerful tool for optimizing models. It
allows us to visualize and analyze various aspects of our model's performance. In this didactic material, we will
explore the process of optimizing with TensorBoard.

When working with deep learning models, we start by defining our model and specifying the activation
functions. These functions determine the output of each neuron in the network. Then, we move on to the
training phase. During training, we compile the model, selecting an optimizer and providing the necessary data
and target values. This is where the model learns from the data and adjusts its parameters to minimize the loss.

After training, we can test the model to evaluate its performance. This can be done using a command-line
interface or any other suitable method. However, it is important to note that the code used for testing in the
provided material is not considered optimal or Pythonic.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 40/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

This didactic material provides an overview of optimizing deep learning models using TensorBoard. It
emphasizes the importance of defining the model, selecting appropriate activation functions, and utilizing the
right optimizer during training. The material also highlights preference for higher-level APIs. Finally it explores
the visualization capabilities of TensorBoard.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 41/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - TENSORBOARD -
OPTIMIZING WITH TENSORBOARD - REVIEW QUESTIONS:

WHAT ARE SOME ASPECTS OF A DEEP LEARNING MODEL THAT CAN BE OPTIMIZED USING
TENSORBOARD?

TensorBoard is a powerful visualization tool provided by TensorFlow that allows users to analyze and optimize
their deep learning models. It provides a range of features and functionalities that can be utilized to improve the
performance and efficiency of deep learning models. In this answer, we will discuss some of the aspects of a
deep learning model that can be optimized using TensorBoard.

1. Model Graph Visualization: TensorBoard allows users to visualize the computational graph of their deep
learning model. This graph represents the flow of data and operations within the model. By visualizing the
model graph, users can gain a better understanding of the model's structure and identify potential areas for
optimization. For example, they can identify redundant or unnecessary operations, identify potential
bottlenecks, and optimize the overall architecture of the model.

2. Training and Validation Metrics: During the training process, it is crucial to monitor the performance of the
model and track the progress. TensorBoard provides functionalities to log and visualize various training and
validation metrics such as loss, accuracy, precision, recall, and F1-score. By monitoring these metrics, users can
identify if the model is overfitting or underfitting, and take appropriate actions to optimize the model. For
example, they can adjust hyperparameters, modify the architecture, or apply regularization techniques.

3. Hyperparameter Tuning: TensorBoard can be used to optimize hyperparameters, which are parameters that
are not learned by the model but are set by the user. Hyperparameter tuning is an essential step in optimizing
deep learning models. TensorBoard provides a feature called "HPARAMS" that allows users to define and track
different hyperparameters and their corresponding values. By visualizing the performance of the model for
different hyperparameter configurations, users can identify the optimal set of hyperparameters that maximize
the model's performance.

4. Embedding Visualization: Embeddings are low-dimensional representations of high-dimensional data.
TensorBoard allows users to visualize embeddings in a meaningful way. By visualizing embeddings, users can
gain insights into the relationships between different data points and identify clusters or patterns. This can be
particularly useful in tasks such as natural language processing or image classification, where understanding
the semantic relationships between data points is crucial for model optimization.

5. Profiling and Performance Optimization: TensorBoard provides profiling functionalities that allow users to
analyze the performance of their models. Users can track the time taken by different operations in the model
and identify potential performance bottlenecks. By optimizing the performance of the model, users can reduce
training time and improve the overall efficiency of the model.

TensorBoard provides a range of features and functionalities that can be leveraged to optimize deep learning
models. From visualizing the model graph to monitoring training metrics, tuning hyperparameters, visualizing
embeddings, and profiling performance, TensorBoard offers a comprehensive set of tools for model
optimization.

HOW CAN WE SIMPLIFY THE OPTIMIZATION PROCESS WHEN WORKING WITH A LARGE NUMBER OF
POSSIBLE MODEL COMBINATIONS?

When working with a large number of possible model combinations in the field of Artificial Intelligence – Deep
Learning with Python, TensorFlow and Keras – TensorBoard – Optimizing with TensorBoard, it is essential to
simplify the optimization process to ensure efficient experimentation and model selection. In this response, we
will explore various techniques and strategies that can be employed to achieve this goal.

1. Grid Search:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 42/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/what-are-some-aspects-of-a-deep-learning-model-that-can-be-optimized-using-tensorboard/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/what-are-some-aspects-of-a-deep-learning-model-that-can-be-optimized-using-tensorboard/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/how-can-we-simplify-the-optimization-process-when-working-with-a-large-number-of-possible-model-combinations/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/how-can-we-simplify-the-optimization-process-when-working-with-a-large-number-of-possible-model-combinations/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Grid Search is a popular technique for hyperparameter optimization. It involves defining a grid of possible
hyperparameter values and exhaustively searching through all possible combinations. This approach allows us
to evaluate each model configuration and select the one with the best performance. While Grid Search can be
computationally expensive, it is suitable for smaller hyperparameter spaces.

Example:

1. from sklearn.model_selection import GridSearchCV
2. from sklearn.svm import SVC
3. parameters = {'kernel': ['linear', 'rbf'], 'C': [1, 10]}
4. svm = SVC()
5. grid_search = GridSearchCV(svm, parameters)
6. grid_search.fit(X_train, y_train)

2. Random Search:

Random Search is an alternative to Grid Search that offers a more efficient approach for hyperparameter
optimization. Instead of exhaustively searching through all combinations, Random Search randomly selects a
subset of hyperparameter configurations to evaluate. This technique is particularly useful when the
hyperparameter space is large, as it allows for a more focused exploration of the search space.

Example:

1. from sklearn.model_selection import RandomizedSearchCV
2. from sklearn.ensemble import RandomForestClassifier
3. from scipy.stats import randint as sp_randint
4. param_dist = {"max_depth": [3, None],
5. "max_features": sp_randint(1, 11),
6. "min_samples_split": sp_randint(2, 11),
7. "bootstrap": [True, False],
8. "criterion": ["gini", "entropy"]}
9. random_search = RandomizedSearchCV(RandomForestClassifier(n_estimators=20), param_di

stributions=param_dist, n_iter=10)
10. random_search.fit(X_train, y_train)

3. Bayesian Optimization:

Bayesian Optimization is a sequential model-based optimization technique that uses Bayesian inference to
efficiently search for the optimal set of hyperparameters. This approach builds a probabilistic model of the
objective function and uses it to select the most promising hyperparameters to evaluate. By iteratively updating
the model based on the observed results, Bayesian Optimization focuses on exploring the most promising
regions of the search space, leading to faster convergence.

Example:

1. from skopt import BayesSearchCV
2. from sklearn.svm import SVC
3. opt = BayesSearchCV(SVC(), {"C": (1e-6, 1e+6, "log-uniform"), "gamma": (1e-6, 1e+1,

"log-uniform"), "degree": (1, 8), "kernel": ["linear", "poly", "rbf"]})
4. opt.fit(X_train, y_train)

4. Automated Hyperparameter Tuning:

Automated Hyperparameter Tuning techniques, such as AutoML, provide a more hands-off approach to
hyperparameter optimization. These tools leverage advanced algorithms to automatically search for the best

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 43/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

hyperparameters, often combining multiple optimization strategies. They can significantly simplify the
optimization process, especially for complex models and large hyperparameter spaces.

Example:

1. from autokeras import StructuredDataClassifier
2. clf = StructuredDataClassifier(max_trials=10)
3. clf.fit(X_train, y_train)

5. Parallelization and Distributed Computing:

When dealing with a large number of model combinations, parallelization and distributed computing can
significantly speed up the optimization process. By leveraging multiple computational resources, such as GPUs
or a cluster of machines, it is possible to evaluate multiple models simultaneously. This approach reduces the
overall optimization time and allows for a more extensive exploration of the hyperparameter space.

Example:

1. import multiprocessing
2. def evaluate_model(parameters):
3. # Model evaluation code goes here
4. pool = multiprocessing.Pool(processes=4)
5. results = pool.map(evaluate_model, parameter_combinations)

When working with a large number of possible model combinations, it is crucial to simplify the optimization
process to ensure efficiency. Techniques such as Grid Search, Random Search, Bayesian Optimization,
Automated Hyperparameter Tuning, and parallelization can all contribute to streamlining the optimization
process and improving the overall performance of the models.

WHAT ARE SOME RECOMMENDED CHANGES TO FOCUS ON WHEN STARTING THE OPTIMIZATION
PROCESS?

When starting the optimization process in the field of Artificial Intelligence, specifically in Deep Learning with
Python, TensorFlow, and Keras, there are several recommended changes to focus on. These changes aim to
improve the performance and efficiency of the deep learning models. By implementing these recommendations,
practitioners can enhance the overall training process and achieve better results in terms of accuracy,
convergence speed, and resource utilization.

1. **Data Preprocessing**: One crucial step in optimization is to preprocess the data effectively. This involves
techniques such as normalization, feature scaling, and handling missing values. Normalization ensures that all
features have a similar scale, which can help the model converge faster. Feature scaling, on the other hand,
transforms the data to a specific range, such as [0, 1] or [-1, 1], which can improve the model's stability during
training. Additionally, handling missing values appropriately, either by imputing them or removing them, can
prevent biases and improve the quality of the training data.

2. **Model Architecture**: The architecture of the deep learning model plays a crucial role in optimization. It is
essential to choose an appropriate network structure, including the number of layers, types of layers (e.g.,
convolutional, recurrent), and their sizes. A well-designed architecture should strike a balance between
complexity and simplicity, ensuring that the model is expressive enough to capture the underlying patterns in
the data without being overly complex, which can lead to overfitting. Experimenting with different architectures
and hyperparameters can help identify the optimal configuration for a specific task.

3. **Hyperparameter Tuning**: Hyperparameters are parameters that are not learned during the training
process but need to be set beforehand. Examples of hyperparameters include learning rate, batch size,
regularization strength, and activation functions. Optimizing these hyperparameters can significantly impact the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 44/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/what-are-some-recommended-changes-to-focus-on-when-starting-the-optimization-process/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/what-are-some-recommended-changes-to-focus-on-when-starting-the-optimization-process/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

performance of the model. Techniques such as grid search, random search, or more advanced methods like
Bayesian optimization can be employed to find the optimal values for these hyperparameters. Regularization
techniques, such as L1 or L2 regularization, can also help prevent overfitting and improve generalization.

4. **Optimization Algorithms**: The choice of optimization algorithm is critical for training deep learning models
effectively. Algorithms like Stochastic Gradient Descent (SGD), Adam, or RMSprop are commonly used. Each
algorithm has its own advantages and disadvantages, and selecting the appropriate one for a specific task is
essential. It is recommended to experiment with different optimization algorithms and their hyperparameters to
find the one that yields the best results in terms of convergence speed and generalization.

5. **Monitoring and Visualization**: Monitoring the training process is crucial for optimization. Tools like
TensorBoard can be used to visualize the loss, accuracy, and other metrics during training. This allows for real-
time analysis of the model's performance and can help identify issues such as overfitting or underfitting. By
closely monitoring the training process, practitioners can make informed decisions on when to stop training,
adjust hyperparameters, or modify the model architecture.

6. **Regularization Techniques**: Regularization techniques are used to prevent overfitting and improve the
generalization ability of the model. Techniques like dropout, batch normalization, and early stopping are
commonly employed. Dropout randomly sets a fraction of the input units to zero during training, preventing the
model from relying too heavily on specific features. Batch normalization normalizes the inputs to a layer,
reducing the internal covariate shift and accelerating training. Early stopping stops the training process when
the model's performance on a validation set starts to deteriorate, preventing overfitting.

7. **Hardware Optimization**: Deep learning models can benefit from hardware optimizations to leverage the
full potential of modern hardware architectures. Techniques such as GPU acceleration, distributed training
across multiple machines, or using specialized hardware like TPUs (Tensor Processing Units) can significantly
speed up the training process. Utilizing hardware acceleration can reduce the training time and enable the
exploration of larger models or datasets.

When starting the optimization process in Deep Learning with Python, TensorFlow, and Keras, practitioners
should focus on data preprocessing, model architecture, hyperparameter tuning, optimization algorithms,
monitoring and visualization, regularization techniques, and hardware optimization. By carefully considering and
implementing these recommended changes, practitioners can enhance the performance and efficiency of their
deep learning models.

HOW CAN WE ASSIGN NAMES TO EACH MODEL COMBINATION WHEN OPTIMIZING WITH
TENSORBOARD?

When optimizing with TensorBoard in deep learning, it is often necessary to assign names to each model
combination. This can be achieved by utilizing the TensorFlow Summary API and the tf.summary.FileWriter
class. In this answer, we will discuss the step-by-step process of assigning names to model combinations in
TensorBoard.

Firstly, it is important to understand that TensorBoard is a powerful visualization tool that allows us to monitor
and analyze our deep learning models. It provides various functionalities, including the ability to visualize the
model graph, track training progress, and analyze performance metrics. To optimize our models effectively, it is
crucial to assign meaningful names to different model combinations, which will help us in identifying and
comparing them in TensorBoard.

To assign names to model combinations, we need to follow these steps:

Step 1: Import the necessary libraries

To begin, we need to import the required libraries, including TensorFlow and tf.summary. These libraries provide
the necessary functions and classes for working with TensorBoard.

1. import tensorflow as tf
2. from tensorflow.summary import FileWriter

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 45/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/how-can-we-assign-names-to-each-model-combination-when-optimizing-with-tensorboard/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/how-can-we-assign-names-to-each-model-combination-when-optimizing-with-tensorboard/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Step 2: Create a unique name for each model combination

Next, we need to create a unique name for each model combination. This name should be descriptive and
reflect the specific configuration or parameters of the model.

For example, if we are optimizing a convolutional neural network (CNN) for image classification and
experimenting with different numbers of filters and kernel sizes, we can create a name that includes these
parameters.

1. model_name = "CNN_filters_32_kernel_3x3"

Step 3: Create a FileWriter object

Now, we need to create a FileWriter object to write the summaries to the TensorBoard log directory. This object
allows us to specify the log directory where the summaries will be stored.

1. log_dir = "logs/"
2. file_writer = FileWriter(log_dir)

Step 4: Assign a name to the model combination

To assign a name to the model combination, we can make use of the tf.summary.scalar() function. This function
allows us to write a scalar summary, such as a loss or accuracy value, to TensorBoard.

1. with file_writer.as_default():
2. tf.summary.scalar("Model Name", model_name, step=0)

In the above code, we use the file_writer.as_default() context manager to set the FileWriter object as the default
for writing summaries. The tf.summary.scalar() function is then used to write the model_name as a scalar
summary with the name "Model Name" and step 0.

Step 5: Save the model and close the FileWriter

After assigning the name to the model combination, we can save the model and close the FileWriter object.

1. # Save the model
2. model.save("model.h5")
3. # Close the FileWriter
4. file_writer.close()

Saving the model allows us to reuse it later, and closing the FileWriter ensures that the summaries are written
to the log directory.

By following these steps, we can assign names to each model combination when optimizing with TensorBoard.
These names will help us in identifying and comparing different model configurations in TensorBoard, making it
easier to analyze and optimize our deep learning models.

HOW DOES TENSORBOARD HELP IN VISUALIZING AND COMPARING THE PERFORMANCE OF
DIFFERENT MODELS?

TensorBoard is a powerful tool that greatly aids in visualizing and comparing the performance of different
models in the field of Artificial Intelligence, specifically in the realm of Deep Learning using Python, TensorFlow,
and Keras. It provides a comprehensive and intuitive interface for analyzing and understanding the behavior of

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 46/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/how-does-tensorboard-help-in-visualizing-and-comparing-the-performance-of-different-models/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/optimizing-with-tensorboard/examination-review-optimizing-with-tensorboard/how-does-tensorboard-help-in-visualizing-and-comparing-the-performance-of-different-models/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

neural networks during training and evaluation. By leveraging TensorBoard, researchers and practitioners can
gain valuable insights into the dynamics of their models, make informed decisions, and optimize their deep
learning workflows.

One of the primary benefits of TensorBoard is its ability to visualize the training process. During the training
phase, the model's performance is continuously monitored and logged. TensorBoard allows users to effortlessly
track and visualize various metrics, such as loss and accuracy, over time. These visualizations provide a clear
and concise overview of how the model is learning and improving over successive training iterations or epochs.
By observing the trends and patterns in these metrics, researchers can identify potential issues, such as
overfitting or underfitting, and take appropriate measures to address them. For instance, if the loss curve
plateaus or starts increasing, it may indicate that the model is not converging as expected, prompting the need
for adjustments in the architecture or hyperparameters.

Furthermore, TensorBoard offers an array of visualization tools that enable users to delve deeper into the inner
workings of their models. One such tool is the graph visualization, which provides a graphical representation of
the model's structure. This visualization is particularly useful for complex architectures, as it allows users to
inspect the connections between different layers and understand the flow of information within the network. By
visualizing the graph, researchers can easily identify potential bottlenecks or areas of improvement in the
model's design.

Another powerful feature of TensorBoard is its ability to visualize embeddings. Embeddings are low-dimensional
representations of high-dimensional data, such as images or text, that capture meaningful relationships
between instances. TensorBoard can project these embeddings onto a 2D or 3D space, allowing users to visually
explore and analyze the relationships between different data points. This visualization can be immensely helpful
in tasks such as natural language processing or image classification, where understanding the similarity and
dissimilarity between instances is crucial.

In addition to visualizing the training process and model structure, TensorBoard facilitates the comparison of
multiple models. With TensorBoard, users can overlay different runs or experiments on the same graph, making
it easy to compare their performance side by side. This capability enables researchers to assess the impact of
different hyperparameters, architectures, or training strategies on the model's performance. By visually
comparing the metrics and trends of different models, researchers can gain valuable insights into what factors
contribute to superior performance and make informed decisions about model selection and optimization.

To summarize, TensorBoard is a powerful tool that offers a range of visualization capabilities for analyzing and
comparing the performance of different models in the field of Deep Learning. It provides an intuitive interface
for visualizing training metrics, inspecting model structures, exploring embeddings, and comparing multiple
models. By leveraging the insights gained from TensorBoard, researchers and practitioners can optimize their
deep learning workflows, improve model performance, and make informed decisions.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 47/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: TENSORBOARD
TOPIC: USING TRAINED MODEL

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - TensorBoard - Using trained model

Artificial Intelligence (AI) has revolutionized various industries by enabling machines to perform tasks that
typically require human intelligence. Deep learning, a subset of AI, has gained significant popularity due to its
ability to automatically learn and extract complex patterns from large datasets. In this didactic material, we will
explore deep learning using Python, TensorFlow, and Keras, and understand how to utilize TensorBoard to
visualize and analyze the performance of trained models.

Deep learning involves training neural networks with multiple layers to learn representations of data. Python, a
versatile and widely-used programming language, provides a rich ecosystem of libraries for deep learning.
TensorFlow, an open-source machine learning framework developed by Google, offers a flexible platform for
building and training deep neural networks. Keras, a high-level neural networks API, simplifies the process of
building and training deep learning models.

One of the challenges in deep learning is effectively evaluating and monitoring the performance of trained
models. TensorBoard, a visualization toolkit included with TensorFlow, addresses this challenge by providing a
suite of interactive tools for visualizing and analyzing various aspects of the training process. It allows users to
track metrics such as loss and accuracy, visualize model architectures, and explore embeddings and histograms
of model parameters.

To use TensorBoard, we first need to install TensorFlow and Keras. This can be done by using pip, a package
installer for Python. Once installed, we can import the necessary libraries in our Python script or Jupyter
Notebook. Next, we need to define and train our deep learning model using TensorFlow and Keras. This involves
specifying the network architecture, compiling the model with an optimizer and loss function, and fitting the
model to our training data.

After training the model, we can use TensorBoard to visualize the training process and evaluate the model's
performance. By adding a few lines of code, we can create a callback that logs the necessary data for
TensorBoard. This data includes scalar values (e.g., loss and accuracy), histograms of weights and biases, and
images of model predictions. Once the callback is added, we can start TensorBoard by running a command in
our terminal or command prompt.

TensorBoard provides an intuitive web interface where we can explore various visualizations. The Scalars
dashboard displays the scalar values over time, allowing us to track the progress of our model during training.
The Graphs dashboard visualizes the model architecture, making it easier to understand the flow of data
through the network. The Histograms dashboard provides insights into the distribution of weights and biases,
helping us identify any potential issues with the model's parameters.

Additionally, TensorBoard offers the Embeddings and Projector features, which allow us to visualize high-
dimensional data in a lower-dimensional space. This can be particularly useful for tasks such as visualizing word
embeddings or exploring the learned representations of images. By leveraging these features, we can gain a
deeper understanding of how our model is learning and make informed decisions to improve its performance.

Deep learning with Python, TensorFlow, and Keras provides a powerful framework for solving complex problems.
By utilizing TensorBoard, we can effectively visualize and analyze the performance of trained models, enabling
us to make data-driven decisions and optimize our deep learning workflows.

DETAILED DIDACTIC MATERIAL

Deep learning models are trained using large amounts of data to make accurate predictions. In this context, the
concept of a "Data saver variable" is mentioned. This variable is used to store external images that are utilized
for making predictions. The process involves training the model on a dataset and then evaluating its

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 48/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/tensorboard/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/tensorboard/topic/using-trained-model/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

performance on these external images.

To train a deep learning model, it is crucial to have a diverse and representative dataset. This dataset should
contain a wide range of examples that the model will learn from. Once the model is trained, it can be used to
make predictions on new, unseen data.

The "Data saver variable" mentioned in the transcript refers to a mechanism for storing these external images.
This variable allows the model to access and use these images for prediction purposes. By using this variable,
the model can utilize the information contained in these external images to make accurate predictions.

After training the model and storing the external images in the "Data saver variable," the next step is to make
predictions on these images. The trained model can be used to process these images and generate predictions
based on the learned patterns and features. This process allows the model to generalize its knowledge and
make predictions on new, unseen data.

The "Data saver variable" is a mechanism used in deep learning to store external images that are used for
prediction purposes. By training the model on a dataset and evaluating its performance on these external
images, the model can make accurate predictions on new, unseen data.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 49/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - TENSORBOARD - USING
TRAINED MODEL - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF THE "DATA SAVER VARIABLE" IN DEEP LEARNING MODELS?

The "Data saver variable" in deep learning models serves a crucial purpose in optimizing the storage and
memory requirements during the training and evaluation phases. This variable is responsible for efficiently
managing the storage and retrieval of data, enabling the model to process large datasets without overwhelming
the available resources.

Deep learning models often deal with massive amounts of data, which can pose challenges in terms of memory
consumption and computational efficiency. The data saver variable helps address these challenges by
implementing techniques such as data batching and data streaming.

One of the primary functions of the data saver variable is to enable data batching. Batching involves dividing
the dataset into smaller subsets or batches, allowing the model to process a smaller portion of the data at a
time. By doing so, the model can fit the data into memory more efficiently, reducing the strain on system
resources. Moreover, batching facilitates parallel processing, enabling the model to take advantage of multi-
core processors and GPUs, which can significantly speed up training and evaluation.

Additionally, the data saver variable enables data streaming, which is particularly useful when dealing with
datasets that are too large to fit entirely in memory. Data streaming involves loading and processing the data in
small chunks or streams, rather than loading the entire dataset at once. This approach allows the model to
access and process the data incrementally, thereby conserving memory and enabling the use of datasets that
exceed the available memory capacity.

Furthermore, the data saver variable can also be used to implement techniques such as data augmentation and
data shuffling. Data augmentation involves applying various transformations or modifications to the input data,
such as rotations, translations, or noise addition, to increase the diversity of the training data and improve the
model's generalization capabilities. By integrating data augmentation into the data saver variable, the model
can dynamically generate augmented data during the training process, further enhancing its performance.

Data shuffling, on the other hand, refers to the randomization of the order in which the data samples are
presented to the model during training. This technique helps prevent the model from learning patterns specific
to the order of the data, ensuring that it can generalize well to unseen data. The data saver variable can be
used to shuffle the data samples before each training epoch, ensuring that the model receives a different order
of samples in each iteration.

The data saver variable in deep learning models plays a pivotal role in optimizing memory usage and
computational efficiency. It enables techniques such as data batching, data streaming, data augmentation, and
data shuffling, allowing the model to effectively process large datasets while conserving system resources and
enhancing performance.

HOW DOES HAVING A DIVERSE AND REPRESENTATIVE DATASET CONTRIBUTE TO THE TRAINING OF A
DEEP LEARNING MODEL?

Having a diverse and representative dataset is crucial for training a deep learning model as it greatly
contributes to its overall performance and generalization capabilities. In the field of artificial intelligence,
specifically deep learning with Python, TensorFlow, and Keras, the quality and diversity of the training data play
a vital role in the success of the model.

A diverse dataset ensures that the model encounters a wide range of examples, covering various aspects and
variations of the problem at hand. This diversity helps the model to learn and understand the underlying
patterns and features more effectively. By exposing the model to different variations, it becomes more robust
and less prone to overfitting, where it memorizes the training data instead of learning the underlying patterns.
This is especially important in deep learning models, which are known for their high capacity to learn complex

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 50/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/what-is-the-purpose-of-the-data-saver-variable-in-deep-learning-models/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/how-does-having-a-diverse-and-representative-dataset-contribute-to-the-training-of-a-deep-learning-model/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/how-does-having-a-diverse-and-representative-dataset-contribute-to-the-training-of-a-deep-learning-model/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

representations.

Representativeness of the dataset ensures that it accurately reflects the real-world distribution of the problem
domain. For example, in a computer vision task of classifying different types of animals, a representative
dataset would include images of various species, sizes, backgrounds, and lighting conditions. By incorporating
representative data, the model learns to handle the inherent variations and complexities present in real-world
scenarios. Consequently, it becomes more capable of making accurate predictions on unseen data.

Moreover, a diverse and representative dataset helps to mitigate bias in the model's predictions. Bias can arise
when the training data is skewed towards certain groups or lacks diversity. For instance, if a facial recognition
system is trained on a dataset that primarily consists of images of lighter-skinned individuals, it may struggle to
accurately recognize faces of darker-skinned individuals. By ensuring diversity and representation in the
training data, the model becomes more inclusive and fair in its predictions.

In addition, a diverse dataset can also help in identifying and addressing potential challenges and edge cases.
By including examples that cover a wide range of scenarios, the model learns to handle different situations and
becomes more robust. This is particularly important in real-world applications where the model needs to
perform well in various conditions and handle unexpected inputs.

To illustrate the importance of a diverse and representative dataset, let's consider an example of a deep
learning model trained for sentiment analysis of movie reviews. If the training dataset only consists of positive
reviews, the model may struggle to accurately classify negative or neutral reviews since it has not been
exposed to such examples. However, by incorporating a diverse and representative dataset that includes a
balanced distribution of positive, negative, and neutral reviews, the model can learn to identify and classify
sentiments accurately across the entire spectrum.

Having a diverse and representative dataset is crucial for training a deep learning model effectively. It helps the
model to generalize well, handle various scenarios, mitigate bias, and improve overall performance. By
incorporating a wide range of examples, the model becomes more robust, inclusive, and capable of making
accurate predictions on unseen data.

HOW DOES THE "DATA SAVER VARIABLE" ALLOW THE MODEL TO ACCESS AND USE EXTERNAL
IMAGES FOR PREDICTION PURPOSES?

The "Data saver variable" plays a crucial role in enabling a model to access and utilize external images for
prediction purposes in the context of deep learning with Python, TensorFlow, and Keras. It provides a
mechanism for loading and processing images from external sources, thereby expanding the model's
capabilities and allowing it to make predictions on a wider range of data.

To understand how the "Data saver variable" facilitates the model's access to external images, let's delve into
the underlying mechanisms. In deep learning, models are typically trained on a set of labeled images, which are
stored in a dataset. However, during the prediction phase, it is often necessary to make predictions on images
that are not part of the original dataset. This is where the "Data saver variable" comes into play.

The "Data saver variable" acts as a bridge between the model and the external images. It provides a way to
load and preprocess these images so that they can be fed into the model for prediction. This variable is
responsible for handling the necessary steps, such as reading the image files, resizing them to the appropriate
dimensions, and applying any required preprocessing techniques, such as normalization or data augmentation.

By incorporating the "Data saver variable" into the model, we can seamlessly integrate external images into the
prediction pipeline. This allows the model to generalize its predictions beyond the training dataset and make
accurate predictions on previously unseen images. For example, if we have trained a model to classify different
types of animals using a dataset of labeled images, we can use the "Data saver variable" to load and preprocess
new images of animals from external sources, such as the internet or a user's device. The model can then make
predictions on these images, providing valuable insights or performing specific tasks based on the classification
results.

In practice, the "Data saver variable" can be implemented using various techniques and libraries available in

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 51/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/how-does-the-data-saver-variable-allow-the-model-to-access-and-use-external-images-for-prediction-purposes/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/how-does-the-data-saver-variable-allow-the-model-to-access-and-use-external-images-for-prediction-purposes/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Python, TensorFlow, and Keras. For instance, in TensorFlow, we can use the tf.data module to create a data
pipeline that incorporates the "Data saver variable." This module provides a range of functions and classes for
efficiently reading and preprocessing data, including images, and seamlessly integrating them into the model.

The "Data saver variable" serves as a crucial component in enabling a model to access and utilize external
images for prediction purposes. By incorporating this variable into the model, we can load, preprocess, and
integrate images from external sources, expanding the model's capabilities and allowing it to make accurate
predictions on previously unseen data.

WHAT IS THE ROLE OF THE TRAINED MODEL IN MAKING PREDICTIONS ON THE STORED EXTERNAL
IMAGES?

The role of a trained model in making predictions on stored external images is a fundamental aspect of artificial
intelligence, specifically in the field of deep learning. Deep learning models, such as those built using Python,
TensorFlow, and Keras, have the ability to analyze vast amounts of data and learn patterns, enabling them to
make accurate predictions on unseen or new data.

When training a deep learning model, we provide it with a large dataset containing labeled images. The model
then goes through an iterative process known as training, where it learns to recognize patterns and features in
the images. This process involves adjusting the weights and biases of the model's layers to minimize the
difference between the predicted output and the actual output.

Once the model has been trained, it can be used to make predictions on new, unseen images. These external
images can be stored in a variety of formats, such as JPEG or PNG. The trained model takes these images as
input and processes them through its layers, extracting relevant features and patterns. The output of the model
is a prediction or a probability distribution over a set of classes or labels.

To make predictions on stored external images, we need to load the trained model into memory. This can be
done using the appropriate libraries and functions provided by the deep learning framework being used. Once
the model is loaded, we can pass the stored images through the model and obtain predictions.

It is important to note that the trained model needs to be compatible with the deep learning framework being
used. For example, if the model was trained using TensorFlow, it should be loaded into a TensorFlow session for
making predictions. Similarly, if the model was trained using Keras, it should be loaded using Keras-specific
functions.

The trained model acts as a powerful tool for making predictions on stored external images because it has
learned to recognize relevant patterns and features during the training process. It can generalize from the
training data and apply this knowledge to new, unseen images. This ability to generalize is what makes deep
learning models so effective in various domains, including image recognition, object detection, and natural
language processing.

For instance, let's consider a deep learning model that has been trained on a dataset of cat and dog images.
After training, the model has learned to recognize the distinguishing features of cats and dogs. When presented
with a stored external image of a cat, the model can accurately predict that the image contains a cat. Similarly,
when given an image of a dog, the model can predict that it is a dog. This ability to classify images based on
learned patterns is the essence of the trained model's role in making predictions on stored external images.

The trained model plays a crucial role in making predictions on stored external images in the field of artificial
intelligence, deep learning, and specifically in the context of Python, TensorFlow, and Keras. It leverages the
knowledge gained during the training process to recognize patterns and features in new, unseen images,
enabling accurate predictions. By loading the trained model into memory and passing the stored images
through its layers, we can harness the power of deep learning to analyze and classify external images.

WHAT IS THE SIGNIFICANCE OF TRAINING THE MODEL ON A DATASET AND EVALUATING ITS
PERFORMANCE ON EXTERNAL IMAGES FOR MAKING ACCURATE PREDICTIONS ON NEW, UNSEEN
DATA?

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 52/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/what-is-the-role-of-the-trained-model-in-making-predictions-on-the-stored-external-images/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/what-is-the-role-of-the-trained-model-in-making-predictions-on-the-stored-external-images/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/what-is-the-significance-of-training-the-model-on-a-dataset-and-evaluating-its-performance-on-external-images-for-making-accurate-predictions-on-new-unseen-data/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/what-is-the-significance-of-training-the-model-on-a-dataset-and-evaluating-its-performance-on-external-images-for-making-accurate-predictions-on-new-unseen-data/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/tensorboard/using-trained-model/examination-review-using-trained-model/what-is-the-significance-of-training-the-model-on-a-dataset-and-evaluating-its-performance-on-external-images-for-making-accurate-predictions-on-new-unseen-data/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Training a model on a dataset and evaluating its performance on external images is of utmost significance in
the field of Artificial Intelligence, particularly in the realm of Deep Learning with Python, TensorFlow, and Keras.
This approach plays a crucial role in ensuring that the model can make accurate predictions on new, unseen
data. By training the model on a dataset and evaluating its performance on external images, we can ascertain
the model's ability to generalize and make robust predictions in real-world scenarios.

The process of training a model involves exposing it to a labeled dataset, where the input data is paired with
corresponding correct output labels. The model then learns from this dataset by adjusting its internal
parameters through an optimization algorithm, such as gradient descent, to minimize the discrepancy between
its predictions and the actual labels. This training process allows the model to capture patterns and
relationships within the data, enabling it to make predictions based on new inputs.

However, the true test of a model's efficacy lies in its ability to perform well on unseen data, which may differ
significantly from the training dataset. By evaluating the model's performance on external images, we can
assess its generalization capabilities and determine whether it can accurately predict outcomes in real-world
scenarios. This evaluation is typically done by measuring the model's performance metrics, such as accuracy,
precision, recall, and F1 score, on a separate validation or test dataset.

The significance of this approach can be better understood through an example. Let's consider a model trained
to classify images of cats and dogs. During the training phase, the model learns to differentiate between cats
and dogs based on the labeled images it is exposed to. However, to ensure that the model can accurately
classify new, unseen images of cats and dogs, it needs to be evaluated on a separate set of images that were
not part of the training dataset. This evaluation will reveal the model's ability to generalize and make accurate
predictions on new, unseen data.

By training the model on a dataset and evaluating its performance on external images, we can identify potential
issues such as overfitting or underfitting. Overfitting occurs when the model becomes too specialized to the
training dataset, resulting in poor performance on new data. On the other hand, underfitting occurs when the
model fails to capture the underlying patterns in the data, leading to subpar performance on both the training
and external datasets. By evaluating the model's performance on external images, we can detect and address
these issues, such as by adjusting the model's architecture, increasing the size of the training dataset, or
employing regularization techniques.

Training a model on a dataset and evaluating its performance on external images is essential for making
accurate predictions on new, unseen data. This approach allows us to assess the model's generalization
capabilities, detect potential issues like overfitting or underfitting, and refine the model to improve its
performance. By ensuring the model's ability to make accurate predictions in real-world scenarios, we can
enhance its practical utility and reliability.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 53/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: RECURRENT NEURAL NETWORKS
TOPIC: INTRODUCTION TO RECURRENT NEURAL NETWORKS (RNN)

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - Recurrent neural networks -
Introduction to Recurrent Neural Networks (RNN)

Recurrent Neural Networks (RNNs) are a type of artificial neural network that are particularly effective in
processing sequential data. Unlike traditional feedforward neural networks, RNNs have the ability to retain
information from previous inputs and use it to make predictions or decisions. This characteristic makes them
well-suited for tasks such as natural language processing, speech recognition, and time series analysis.

At the core of an RNN is the concept of recurrent connections, which allow information to flow from one step in
the sequence to the next. This enables the network to maintain a form of memory, which is essential for
processing sequential data. Each step in the sequence is associated with a hidden state, which serves as a
representation of the information processed so far. The hidden state is updated at each step based on the
current input and the previous hidden state.

One common type of RNN is the Long Short-Term Memory (LSTM) network. LSTMs are designed to address the
vanishing gradient problem, which can occur when training deep neural networks. The vanishing gradient
problem refers to the issue of the gradients becoming extremely small as they propagate backward through the
network, making it difficult for the network to learn long-term dependencies. LSTMs use a gating mechanism to
selectively retain or discard information, allowing them to better capture long-term dependencies in the data.

Another variant of the RNN is the Gated Recurrent Unit (GRU). GRUs are similar to LSTMs in that they also
address the vanishing gradient problem, but they use a simplified gating mechanism. GRUs have been shown to
be computationally more efficient than LSTMs, making them a popular choice in certain applications.

To implement RNNs in Python, we can use popular deep learning libraries such as TensorFlow and Keras. These
libraries provide high-level abstractions that make it easier to build and train neural networks. TensorFlow is an
open-source library developed by Google, while Keras is a user-friendly API that can be used on top of
TensorFlow.

In TensorFlow, RNNs can be constructed using the tf.keras.layers.RNN class, which provides a generic
implementation of an RNN cell. This class can be used to create different types of RNNs, such as LSTMs or GRUs,
by specifying the desired cell type. The RNN cell is then wrapped in a tf.keras.layers.RNN layer, which takes
care of handling the sequence inputs and outputs.

Here is an example of how to create a simple LSTM-based RNN using TensorFlow and Keras:

1. import tensorflow as tf
2. from tensorflow.keras.layers import LSTM, Dense
3.
4. # Define the RNN model
5. model = tf.keras.Sequential([
6. LSTM(64, input_shape=(Timesteps, Input_dim)),
7. Dense(1, activation='sigmoid')
8.])

9.
10. # Compile the model
11. model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'])
12.
13. # Train the model
14. model.fit(X_train, y_train, epochs=10, batch_size=32)

In this example, we define an RNN model with a single LSTM layer followed by a dense output layer. The input
shape is specified as (Timesteps, Input_dim), where Timesteps represents the length of the input sequence and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 54/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/topic/introduction-to-recurrent-neural-networks-rnn/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Input_dim is the dimensionality of each input step. The model is then compiled with the Adam optimizer and
binary cross-entropy loss function.

To train the model, we can use the fit() method, which takes the training data X_train and y_train as inputs. We
specify the number of epochs and the batch size, which determine how many times the entire training dataset
is passed through the network during training.

Recurrent Neural Networks (RNNs) are a powerful tool for processing sequential data. They can capture
dependencies over time and are particularly useful in tasks such as natural language processing and time series
analysis. TensorFlow and Keras provide convenient libraries for implementing RNNs in Python, allowing
researchers and practitioners to easily leverage the capabilities of these networks.

DETAILED DIDACTIC MATERIAL

A recurrent neural network (RNN) is a type of artificial neural network that is capable of processing sequential
data, where the order of the data is important. This is particularly useful for analyzing time series data or
natural language processing tasks, where the meaning of a sentence depends on the order of the words. In this
didactic material, we will explore the basic concepts of RNNs and how they work.

RNNs consist of recurrent cells, which are responsible for processing sequential data. There are different types
of recurrent cells, such as the basic recurrent cell, long short-term memory (LSTM) cell, and gated recurrent unit
(GRU). However, LSTMs are commonly used due to their effectiveness. These cells receive sequential data as
input and output to the next layer or the next node in the recurrent layer.

To understand how an LSTM cell works, let's consider a simple example. Imagine a green box representing a cell
in the recurrent layer. The data from the previous cell is passed to this cell, and it performs three main
operations: forget, input, and output. First, it decides what information to forget from the previous node. Then, it
takes input data and determines what information to add to the current bundle of information. Finally, based on
this bundle of information, it decides what to output to the next layer and the next node.

RNNs can be unidirectional or bidirectional. In unidirectional RNNs, the data flows in one direction, while in
bidirectional RNNs, the data flows in both directions. This allows for more complex patterns and relationships to
be captured.

Implementing an RNN involves structuring the dataset appropriately, as sequential data typically lacks explicit
targets. Pre-processing the data is often necessary. In this didactic material, we will use a simple example to
demonstrate the basics of building an RNN. However, keep in mind that the challenging part of working with
RNNs lies in preparing the dataset.

Now, let's start by importing the necessary libraries. We will import TensorFlow as tf and the Sequential module
from the Keras models.

1. import tensorflow as tf
2. from tensorflow.keras.models import Sequential

Please note that the above code assumes that TensorFlow is already installed. If not, you can install it using the
appropriate method.

In the next tutorial, we will dive into a realistic example using time series data, specifically crypto currency
prices. This will provide a more practical understanding of how RNNs can be applied.

In this didactic material, we will introduce the concept of Recurrent Neural Networks (RNN) in the context of
deep learning with Python, TensorFlow, and Keras.

To begin, we need to import the necessary modules from TensorFlow and Keras. Specifically, we will import the
Dense layer, Dropout, and LSTM cell. The Dense layer is used for the output layer, and it is common to include a
dense layer before the output layer as well. Dropout is used to prevent overfitting, and the LSTM cell is a type of
recurrent neural network cell that we will be using. If you are using the GPU version of TensorFlow, you may also
want to consider using the KUDNNLSTM cell, which is optimized for GPU and can provide faster performance.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 55/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Next, we need a dataset to train our model. For this example, we will use the MNIST dataset, which is a
collection of handwritten digits. We can easily load the dataset using the TF.keras.datasets.mnist function and
unpack it into training and testing data.

Now that we have the necessary modules and dataset, we can start building our model. We will use a sequential
model, which is a linear stack of layers. First, we add an LSTM layer with 128 cells. We specify the input shape
as 28 by 28, which corresponds to the dimensions of the MNIST images. We use the rectified linear activation
function for this layer. Additionally, we set the return_sequences parameter to True, indicating that we want this
layer to return sequences.

After the LSTM layer, we add a dropout layer with a dropout rate of 20%. This helps prevent overfitting by
randomly dropping out some connections during training. Then, we add another LSTM layer with 128 cells, using
the same activation function and dropout rate.

Next, we add a dense layer with 32 nodes and the rectified linear activation function. Finally, we add the output
layer, which is a dense layer with 10 nodes (corresponding to the 10 possible digits). We do not include dropout
for this layer.

To summarize, our model consists of two LSTM layers, each with 128 cells, followed by a dropout layer, another
LSTM layer, a dense layer with 32 nodes, and the output layer with 10 nodes.

Now that we have built our model, we can feed the training data through it. The training data is already in
sequences, with each sequence representing a row of pixels from the MNIST images. The hope is that the
recurrent neural network can learn to recognize patterns in these sequences and accurately classify the digits.

We have introduced the concept of Recurrent Neural Networks (RNN) and demonstrated how to build a basic
RNN model using Python, TensorFlow, and Keras. This model is capable of processing sequences of data,
making it suitable for tasks such as image recognition. In the next parts, we will explore more advanced topics
related to RNNs.

In this didactic material, we will introduce the concept of Recurrent Neural Networks (RNN) in the context of
deep learning with Python, TensorFlow, and Keras. RNNs are a type of artificial neural network that are
particularly well-suited for processing sequential data, such as time series or natural language.

To begin, let's discuss the structure of an RNN model. RNN models consist of multiple recurrent layers, which
allow the network to retain information from previous inputs. Each recurrent layer contains a number of units,
also known as cells or memory blocks. These units are responsible for processing the sequential data and
maintaining a hidden state that carries information from previous time steps.

When building an RNN model, it is important to choose an appropriate activation function. In this case, we will
use the softmax activation function, which is suitable for multi-class classification problems. The softmax
function outputs a probability distribution over the different classes, allowing us to make predictions.

After defining the model structure, we need to compile the model. To do this, we use the Adam optimizer from
TensorFlow and specify a learning rate of 1e-3. Additionally, we can introduce a decay factor to gradually
reduce the learning rate over time. This can help the model converge to a better solution by taking smaller
steps as it progresses.

Next, we specify the loss function to be used for training the model. In this case, we will use the sparse
categorical cross-entropy loss, which is commonly used for multi-class classification problems. We can also
define the metrics that we want to track during training, such as accuracy.

Once the model is compiled, we can train it using the fit() function. We provide the training data (X_train and
Y_train) and specify the number of epochs, which determines how many times the model will iterate over the
entire training dataset. We can also specify a validation dataset (X_test and Y_test) to monitor the model's
performance during training.

It is important to note that preprocessing the data can have a significant impact on the model's performance. In

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 56/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

this case, we can normalize the input data by dividing it by 255, which scales the values between 0 and 1. This
normalization step can help the model converge faster and improve its accuracy.

Additionally, we can explore other variations of RNNs, such as the CuDNNLSTM layer, which is optimized for GPU
acceleration. This layer uses the hyperbolic tangent (tanh) activation function and can provide faster training
times compared to the standard LSTM layer.

This didactic material provided an introduction to Recurrent Neural Networks (RNN) in the context of deep
learning with Python, TensorFlow, and Keras. We discussed the structure of an RNN model, the choice of
activation function, the compilation and training process, and the importance of data preprocessing. We also
explored alternative RNN layers, such as the CuDNNLSTM layer. By understanding these concepts, you can
begin to apply RNNs to various sequential data tasks.

Recurrent neural networks (RNNs) are a powerful type of artificial neural network that can effectively process
sequential data. In this didactic material, we will introduce the concept of RNNs and their application in deep
learning using Python, TensorFlow, and Keras.

RNNs are particularly useful when dealing with data that has a temporal or sequential nature, such as time
series data or natural language. Unlike traditional feedforward neural networks, RNNs have a feedback
connection that allows them to retain information from previous steps in the sequence. This makes them well-
suited for tasks that require memory or context, such as language translation or speech recognition.

One key advantage of RNNs is their ability to handle variable-length input sequences. This is achieved through
the use of recurrent connections, which allow information to flow from one step to the next. By maintaining an
internal state, RNNs can capture long-term dependencies in the data and make predictions based on the entire
sequence.

Let's discuss the accuracy achieved by the RNN model. Accuracy is a common metric used to evaluate the
performance of a classification model. It represents the percentage of correctly classified samples out of the
total number of samples. In this case, the model achieved an accuracy of 96% after a certain number of epochs.

Let's now considers the difference between accuracy and validation accuracy. Validation accuracy refers to the
accuracy of the model on a separate validation dataset, which is used to assess the generalization ability of the
model. It is common for the validation accuracy to be higher than the accuracy on the training dataset, as the
model has not seen the validation data during training.

The validation accuracy is usually higher than the accuracy at the end of each epoch. This can be attributed to
the fact that the accuracy is computed at the end of each epoch, while the validation accuracy is an average
over the entire epoch. It is worth noting that the validation accuracy can fluctuate during training, and it is
important to monitor it to avoid overfitting.

The consideration highlights the importance of continuing training if the validation accuracy is higher than the
accuracy. This suggests that the model could potentially benefit from further training to improve its
performance. However, it is crucial to strike a balance and avoid overfitting the model to the training data.

In the next topic a more complex example will be covered, involving a realistic time series dataset. This
highlights the versatility of RNNs in handling various types of sequential data. The pre-processing steps were
not discussed in detail in the current material, as the focus was on the implementation of RNNs.

RNNs are a powerful tool in the field of deep learning, particularly for tasks involving sequential data. They allow
for the processing of variable-length input sequences and can capture long-term dependencies. Monitoring
accuracy and validation accuracy is important during training to assess model performance and avoid
overfitting. In the next topic, a more complex example involving a realistic time series dataset will be explored.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 57/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - RECURRENT NEURAL
NETWORKS - INTRODUCTION TO RECURRENT NEURAL NETWORKS (RNN) - REVIEW QUESTIONS:

WHAT IS THE MAIN ADVANTAGE OF USING RECURRENT NEURAL NETWORKS (RNNS) FOR
PROCESSING SEQUENTIAL DATA?

Recurrent Neural Networks (RNNs) have gained significant attention in the field of Artificial Intelligence,
particularly in the domain of processing sequential data. These networks possess a unique advantage over
other types of neural networks when it comes to handling sequential data due to their ability to capture
temporal dependencies and retain information from previous inputs. This advantage stems from the recurrent
nature of the connections within the network, which allows them to maintain an internal memory state that can
be updated and utilized across different time steps.

One of the main advantages of using RNNs for processing sequential data is their ability to handle variable-
length input sequences. Unlike feedforward neural networks, which require fixed-size input vectors, RNNs can
process sequences of arbitrary length. This flexibility is crucial in many real-world applications where the length
of the input sequence varies, such as natural language processing, speech recognition, and time series analysis.

Another advantage of RNNs is their ability to model long-term dependencies in sequential data. Traditional
feedforward neural networks struggle to capture long-range dependencies because they lack the ability to
retain information from previous inputs. RNNs, on the other hand, maintain a hidden state that can capture and
propagate information across different time steps. This allows them to capture dependencies that span long
periods of time, making them well-suited for tasks that require understanding the context of previous inputs.

Furthermore, RNNs can handle sequential data with temporal dynamics. They are capable of capturing patterns
and trends that evolve over time, which is crucial in many real-world scenarios. For example, in speech
recognition, the context of previous phonemes is essential for accurately predicting the current phoneme. RNNs
can effectively model such temporal dependencies and make predictions based on the history of inputs.

In addition to their ability to handle variable-length input sequences, capture long-term dependencies, and
model temporal dynamics, RNNs also support online learning. Online learning refers to the ability to update the
model in real-time as new data becomes available. This is particularly useful in applications where the data
arrives in a sequential manner, and the model needs to adapt and learn from each new input. RNNs can update
their hidden state and internal parameters as new data is processed, making them suitable for online learning
scenarios.

To summarize, the main advantage of using RNNs for processing sequential data lies in their ability to handle
variable-length input sequences, capture long-term dependencies, model temporal dynamics, and support
online learning. These characteristics make RNNs a powerful tool for a wide range of applications, including
natural language processing, speech recognition, time series analysis, and more.

WHAT ARE THE DIFFERENT TYPES OF RECURRENT CELLS COMMONLY USED IN RNNS?

Recurrent Neural Networks (RNNs) are a class of artificial neural networks that are well-suited for sequential
data processing tasks. They have the ability to process inputs of arbitrary length and maintain a memory of past
information. The key component of an RNN is the recurrent cell, which is responsible for capturing and
propagating information across time steps. In this field of study, several types of recurrent cells have been
commonly used in RNN architectures. In this answer, we will discuss some of the most widely used recurrent cell
types, namely the Simple RNN, the Long Short-Term Memory (LSTM), and the Gated Recurrent Unit (GRU).

The Simple RNN, also known as the Elman network, is the most basic type of recurrent cell. It computes the
output by taking the current input and the previous time step's output into account. However, Simple RNNs
suffer from the vanishing gradient problem, which limits their ability to capture long-term dependencies in the
input sequence. This problem occurs because the gradients tend to become exponentially small as they are
backpropagated through time. Consequently, Simple RNNs are not suitable for tasks that require modeling long-
range dependencies.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 58/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-recurrent-neural-networks-rnn/examination-review-introduction-to-recurrent-neural-networks-rnn/what-is-the-main-advantage-of-using-recurrent-neural-networks-rnns-for-processing-sequential-data/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-recurrent-neural-networks-rnn/examination-review-introduction-to-recurrent-neural-networks-rnn/what-is-the-main-advantage-of-using-recurrent-neural-networks-rnns-for-processing-sequential-data/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-recurrent-neural-networks-rnn/examination-review-introduction-to-recurrent-neural-networks-rnn/what-are-the-different-types-of-recurrent-cells-commonly-used-in-rnns/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

To address the vanishing gradient problem, the LSTM cell was introduced. LSTM networks are designed to
remember information for long periods of time, making them effective in capturing long-term dependencies.
The LSTM cell achieves this by using a combination of three gates: the input gate, the forget gate, and the
output gate. These gates control the flow of information within the cell, allowing it to selectively remember or
forget information at each time step. The LSTM cell has been widely used in various applications, such as
language modeling, machine translation, and speech recognition.

Another popular recurrent cell type is the GRU. The GRU cell is similar to the LSTM cell in that it also uses gating
mechanisms to control the flow of information. However, the GRU cell has a simpler architecture with only two
gates: the update gate and the reset gate. The update gate determines how much of the previous state should
be retained, while the reset gate controls how much of the previous state should be ignored. The GRU cell has
been shown to perform comparably to the LSTM cell while requiring fewer parameters, making it a more
computationally efficient choice in some scenarios.

The three most commonly used recurrent cell types in RNN architectures are the Simple RNN, the LSTM, and the
GRU. The Simple RNN is the most basic type, but it suffers from the vanishing gradient problem. The LSTM cell
addresses this problem by using three gates to control the flow of information. The GRU cell is a simpler
alternative to the LSTM cell that achieves comparable performance with fewer parameters. The choice of
recurrent cell type depends on the specific requirements of the task at hand, and researchers and practitioners
often experiment with different cell types to find the most suitable one.

HOW DOES AN LSTM CELL WORK IN AN RNN?

An LSTM (Long Short-Term Memory) cell is a type of recurrent neural network (RNN) architecture that is widely
used in the field of deep learning for tasks such as natural language processing, speech recognition, and time
series analysis. It is specifically designed to address the vanishing gradient problem that occurs in traditional
RNNs, which makes it difficult for the network to learn long-term dependencies in sequential data.

To understand how an LSTM cell works, it is important to first grasp the concept of a traditional RNN. In a typical
RNN, the output of the previous time step is fed back to the network as an input for the current time step. This
allows the network to maintain a form of memory and capture sequential information. However, traditional
RNNs suffer from the vanishing gradient problem, where the gradients used to update the network weights
diminish exponentially as they propagate through time, making it challenging for the network to learn long-
range dependencies.

The LSTM cell overcomes the vanishing gradient problem by introducing a more sophisticated memory
mechanism. It consists of three main components: the input gate, the forget gate, and the output gate. These
gates control the flow of information into, out of, and within the cell.

At each time step, the LSTM cell takes three inputs: the current input, the previous hidden state, and the
previous cell state. The current input is multiplied by the input gate, which determines how much of the input
should be stored in the cell state. The forget gate decides how much of the previous cell state should be
forgotten, by multiplying it with the previous cell state. The result of these two operations is then added
together to update the cell state.

The cell state is the memory of the LSTM cell and carries information across time steps. It can selectively
remember or forget information based on the input and forget gates. The input gate allows new information to
be added to the cell state, while the forget gate allows irrelevant information to be discarded.

After updating the cell state, the LSTM cell calculates the output gate, which determines how much of the cell
state should be outputted as the hidden state for the current time step. The hidden state is the output of the
LSTM cell and can be used for further processing or as input to subsequent layers in a neural network.

The gates in an LSTM cell are implemented using sigmoid functions, which squash the values between 0 and 1.
This allows the gates to control the flow of information by either letting it pass through (close to 1) or blocking it
(close to 0). Additionally, the cell state is modified using a hyperbolic tangent function, which squashes the
values between -1 and 1.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 59/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-recurrent-neural-networks-rnn/examination-review-introduction-to-recurrent-neural-networks-rnn/how-does-an-lstm-cell-work-in-an-rnn/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

To summarize, an LSTM cell is a type of RNN architecture that addresses the vanishing gradient problem by
introducing a more sophisticated memory mechanism. It uses input, forget, and output gates to control the flow
of information into, out of, and within the cell. The cell state acts as the memory of the LSTM cell and selectively
remembers or forgets information based on the gates. The hidden state is the output of the LSTM cell and can
be used for further processing or as input to subsequent layers in a neural network.

WHAT IS THE DIFFERENCE BETWEEN UNIDIRECTIONAL AND BIDIRECTIONAL RNNS?

In the field of deep learning, specifically in the realm of recurrent neural networks (RNNs), there are two main
types of RNN architectures: unidirectional and bidirectional RNNs. These architectures differ in the way they
process sequential data, and understanding their differences is crucial for effectively utilizing RNNs in various
applications.

Unidirectional RNNs are the most basic form of RNNs, where the information flows in only one direction, from
the input sequence to the output sequence. This means that at each time step, the RNN considers only the past
information and does not have access to future information. The hidden state of the RNN is updated based on
the current input and the previous hidden state, allowing the network to capture dependencies within the
sequence. This makes unidirectional RNNs suitable for tasks where the past context is sufficient to make
predictions, such as language modeling or sentiment analysis.

To illustrate this concept, let's consider an example of language modeling using unidirectional RNNs. Suppose
we have a sentence "The cat is sitting on the mat." In this case, the unidirectional RNN would process the
sentence from left to right, considering each word in the sequence one at a time. The hidden state at each time
step would be updated based on the current word and the previous hidden state. This allows the RNN to capture
the context of each word based on the preceding words in the sentence.

On the other hand, bidirectional RNNs extend the unidirectional RNNs by introducing a second hidden state that
processes the input sequence in the reverse order. This means that the bidirectional RNN considers both past
and future information at each time step, allowing it to capture dependencies in both directions. The hidden
states from the forward and backward directions are typically concatenated or combined in some way to
produce the final output.

Continuing with our language modeling example, a bidirectional RNN would process the sentence in both
directions simultaneously. The forward hidden state would capture the context of each word based on the
preceding words, while the backward hidden state would capture the context based on the succeeding words.
The final output at each time step would be a combination of these two hidden states, providing a more
comprehensive representation of the context.

The choice between unidirectional and bidirectional RNNs depends on the specific task and the nature of the
data. Unidirectional RNNs are suitable when the future context is not relevant or accessible, and the past
context is sufficient for making predictions. On the other hand, bidirectional RNNs are beneficial when both past
and future context are important for the task at hand, such as speech recognition or named entity recognition.

Unidirectional RNNs process sequential data in one direction, capturing dependencies based on past context,
while bidirectional RNNs process the data in both directions, capturing dependencies from both past and future
context. The choice between these two architectures depends on the task and the nature of the data.

WHAT ARE THE KEY STEPS INVOLVED IN BUILDING AN RNN MODEL USING PYTHON, TENSORFLOW,
AND KERAS?

Building a recurrent neural network (RNN) model using Python, TensorFlow, and Keras involves several key
steps. In this answer, we will provide a detailed and comprehensive explanation of each step, along with
relevant examples, to facilitate a better understanding of the process.

Step 1: Importing the required libraries

To begin, we need to import the necessary libraries, including TensorFlow, Keras, and other supporting libraries

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 60/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-recurrent-neural-networks-rnn/examination-review-introduction-to-recurrent-neural-networks-rnn/what-is-the-difference-between-unidirectional-and-bidirectional-rnns/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-recurrent-neural-networks-rnn/examination-review-introduction-to-recurrent-neural-networks-rnn/what-are-the-key-steps-involved-in-building-an-rnn-model-using-python-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-recurrent-neural-networks-rnn/examination-review-introduction-to-recurrent-neural-networks-rnn/what-are-the-key-steps-involved-in-building-an-rnn-model-using-python-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

such as NumPy and Pandas. Here is an example of how to import these libraries:

1. import tensorflow as tf
2. from tensorflow import keras
3. import numpy as np
4. import pandas as pd

Step 2: Preparing the dataset

Next, we need to prepare the dataset for training our RNN model. This involves loading the dataset, performing
any necessary preprocessing steps such as data normalization or feature scaling, and splitting the dataset into
training and testing sets. Here is an example of how to prepare a dataset for a time series prediction task:

1. # Load the dataset
2. data = pd.read_csv('dataset.csv')
3. # Preprocess the data (e.g., normalize or scale features)
4. # Split the dataset into training and testing sets
5. train_data = data[:800]
6. test_data = data[800:]

Step 3: Preparing the input and output sequences

In an RNN model, the input and output sequences need to be properly formatted. This typically involves
creating input sequences of fixed length by sliding a window over the data and associating each input sequence
with its corresponding output sequence. Here is an example of how to prepare input and output sequences for a
time series prediction task:

1. # Prepare input sequences
2. def create_sequences(data, window_size):
3. X = []
4. y = []
5. for i in range(len(data) – window_size):
6. X.append(data[i:i+window_size])
7. y.append(data[i+window_size])
8. return np.array(X), np.array(y)
9. window_size = 10

10. X_train, y_train = create_sequences(train_data, window_size)
11. X_test, y_test = create_sequences(test_data, window_size)

Step 4: Building the RNN model

Now, we can proceed to build the RNN model using Keras. This involves defining the architecture of the model,
including the number and type of layers, activation functions, and other parameters. Here is an example of how
to build a simple RNN model using Keras:

1. model = keras.Sequential()
2. model.add(keras.layers.SimpleRNN(units=32, input_shape=(window_size, 1)))
3. model.add(keras.layers.Dense(units=1))
4. # Compile the model
5. model.compile(optimizer='adam', loss='mean_squared_error')

Step 5: Training the RNN model

Once the model is built, we can train it using the prepared training dataset. This involves specifying the number
of epochs (iterations) and batch size for training, and fitting the model to the training data. Here is an example
of how to train the RNN model:

1. epochs = 100

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 61/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

2. batch_size = 32
3. model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size)

Step 6: Evaluating the RNN model

After training the model, we need to evaluate its performance on the testing dataset. This involves predicting
the output sequences for the input sequences in the testing dataset and comparing them with the ground truth
values. Here is an example of how to evaluate the RNN model:

1. # Evaluate the model
2. loss = model.evaluate(X_test, y_test)
3. print("Test loss:", loss)

Step 7: Making predictions with the RNN model

Finally, we can use the trained RNN model to make predictions on new, unseen data. This involves providing
input sequences to the model and obtaining the corresponding output sequences. Here is an example of how to
make predictions with the RNN model:

1. # Make predictions
2. predictions = model.predict(X_test)
3. # Visualize the predictions and compare with the ground truth values

Building an RNN model using Python, TensorFlow, and Keras involves importing the required libraries, preparing
the dataset, preparing the input and output sequences, building the RNN model, training the model, evaluating
its performance, and making predictions. By following these key steps, you can effectively build and utilize RNN
models for various tasks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 62/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: RECURRENT NEURAL NETWORKS
TOPIC: INTRODUCTION TO CRYPTOCURRENCY-PREDICTING RNN

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - Recurrent neural networks -
Introduction to Cryptocurrency-predicting RNN

Artificial Intelligence (AI) has revolutionized various industries, including finance and investment. In recent
years, the use of deep learning techniques, such as recurrent neural networks (RNNs), has gained significant
attention in predicting cryptocurrency prices. RNNs are particularly effective in capturing sequential patterns
and dependencies, making them ideal for time series data analysis.

To understand how RNNs can be used for cryptocurrency price prediction, it is important to first grasp the
fundamentals of deep learning and the tools commonly employed in its implementation. Python, TensorFlow,
and Keras are popular choices due to their simplicity, flexibility, and extensive community support.

Python is a versatile programming language widely used in the field of artificial intelligence. Its extensive
libraries and frameworks make it a powerful tool for data analysis, machine learning, and deep learning tasks.
TensorFlow, an open-source machine learning library, provides a high-level interface for building and training
neural networks. Keras, built on top of TensorFlow, offers a user-friendly API for designing and implementing
deep learning models.

Recurrent neural networks (RNNs) are a type of deep learning architecture that can effectively process
sequential data. Unlike traditional feedforward neural networks, RNNs have connections that create loops,
allowing information to persist and be shared across different time steps. This characteristic makes RNNs well-
suited for time series analysis, where the order of data points is crucial.

In the context of cryptocurrency price prediction, RNNs can learn from historical price data and capture
temporal patterns that may influence future prices. By training an RNN model on a dataset consisting of past
cryptocurrency prices and associated features, it can learn to make predictions based on the learned patterns.
This approach allows for the creation of predictive models that can assist investors in making informed
decisions.

The first step in building an RNN model for cryptocurrency price prediction is to gather relevant historical data.
This data typically includes the timestamp, price, and other features that might influence the price, such as
trading volume or market sentiment. Once the data is collected, it needs to be preprocessed to ensure
compatibility with the RNN model.

Preprocessing involves tasks such as normalization, feature scaling, and splitting the data into training and
testing sets. Normalization ensures that all input features are on a similar scale, preventing certain features
from dominating the learning process. Feature scaling, on the other hand, transforms the data to a specific
range, such as between 0 and 1, to enhance the learning process. Splitting the data into training and testing
sets allows for model evaluation on unseen data, which is crucial in assessing its performance.

After preprocessing the data, the next step is to design the RNN architecture. This involves determining the
number of layers, the number of hidden units in each layer, and the type of RNN cell to be used. Popular choices
for RNN cells include Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), both of which are
capable of capturing long-term dependencies in sequential data.

Once the architecture is defined, the RNN model needs to be trained using the training dataset. During training,
the model learns to minimize a loss function by adjusting its internal parameters. The choice of loss function
depends on the specific task, but common choices for regression problems, such as cryptocurrency price
prediction, include mean squared error (MSE) and mean absolute error (MAE).

Training an RNN model can be computationally intensive, especially with large datasets. To address this,
techniques such as mini-batch gradient descent and early stopping can be employed. Mini-batch gradient

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 63/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/topic/introduction-to-cryptocurrency-predicting-rnn/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

descent divides the training dataset into smaller batches, reducing memory requirements and speeding up the
training process. Early stopping monitors the model's performance on a validation set and stops training when it
starts to overfit, preventing unnecessary computation.

Once the RNN model is trained, it can be used to make predictions on unseen data. The model takes as input
the historical prices and features of a specific cryptocurrency and generates a predicted price for the next time
step. These predictions can be evaluated using various metrics, such as mean absolute percentage error
(MAPE), to assess the model's accuracy and reliability.

The combination of artificial intelligence, deep learning, and recurrent neural networks has opened up new
possibilities in predicting cryptocurrency prices. By leveraging historical data and capturing sequential patterns,
RNN models can assist investors in making informed decisions. Python, TensorFlow, and Keras provide the
necessary tools and frameworks to implement these models effectively.

DETAILED DIDACTIC MATERIAL

In this didactic material, we will be discussing how to apply recurrent neural networks (RNNs) to a realistic
example of predicting cryptocurrency prices using Python, TensorFlow, and Keras. RNNs are a type of artificial
intelligence algorithm that can process sequential data by retaining information from previous steps.

In this case, we will be working with a time series dataset consisting of prices and volumes for various
cryptocurrencies. However, the concepts we cover can be applied to other types of sequential data as well. Our
goal is to use RNNs to track the price sequences of four major cryptocurrencies: Bitcoin, Litecoin, Ethereum, and
Bitcoin Cash.

To achieve this, we will take the last 60 minutes of price and volume data for each cryptocurrency and use it to
predict the future price of Litecoin. We will create sequences of this data, updating it every minute, and attempt
to predict whether the price of Litecoin will rise or fall three minutes into the future.

This example can be generalized to other applications, such as predicting server overheating or website traffic
based on sensor data and time of day. The ultimate objective is to either classify the data (e.g., predicting price
movement) or perform regression analysis (e.g., predicting price or percentage change).

Working with sequential data presents several challenges. First, we need to preprocess the data by building
sequences and normalizing it. Since the prices and volumes of different cryptocurrencies vary, we need to
ensure that the data is in relative terms. Additionally, we need to scale the data, which is more complex than
simply dividing by 255 as in image data.

Furthermore, working with sequential data requires us to address the challenge of out-of-sample prediction. This
means predicting data points that fall outside the training set, which requires additional considerations.

To get started, we have provided a dataset that you can download from the link provided in the description. The
dataset consists of four files, each containing the price data for one of the cryptocurrencies. The data includes
UNIX timestamps, low/high/open/close prices, and volume information. For our purposes, we will focus on the
closing price and volume columns.

To begin, we will read in the data and ensure that it is formatted correctly. Once the data is loaded, we can
proceed with the necessary preprocessing steps.

We need to import the pandas library. If you don't have it installed, you can open a terminal or command
prompt and use the command "pip install pandas". We will be using pandas to work with our data.

Next, we will read in our data from a CSV file called "crypto_data/LTC_USD.csv". The columns in the CSV file are
not named, so we will specify the column names as "time", "low", "high", "open", and "volume". We will use the
pandas function "read_csv" to read in the data and store it in a DataFrame called "DF".

Now, let's print the first few rows of the DataFrame using the "head" function to see what the data looks like.

We have successfully read in the data and can now analyze it. We are primarily interested in the "close" and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 64/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

"volume" columns. However, we have multiple CSV files with similar data, and we want to combine them based
on the common index, which is the "time" column.

To achieve this, we will create an empty DataFrame called "main_DF" using the pandas function "DataFrame".
We will then iterate over a list of file names that we intend to use, which are "BTC_USD.csv", "LTC_USD.csv",
"ethereum_USD.csv", and "Bitcoin_cash_BCH_USD.csv".

For each file, we will read in the data using the pandas function "read_csv" and store it in a DataFrame called
"DF". We will rename the "close" and "volume" columns to include the ratio in the column name, such as
"BTC_close" and "BTC_volume", using f-strings. This will help us identify the data from each file when we merge
them.

Next, we will set the index of the DataFrame to be the "time" column using the pandas function "set_index".
This will ensure that all the DataFrames have the same index, allowing us to merge them.

Finally, we will merge all the DataFrames into the "main_DF" DataFrame using the pandas function "merge".
This will combine the data based on the common index.

In this didactic material, we will introduce the concept of Recurrent Neural Networks (RNNs) and their
application in predicting cryptocurrency prices. Specifically, we will use Python, TensorFlow, and Keras to
implement an RNN model for predicting the future price of Litecoin (LTC/USD) based on historical price and
volume data.

To start, we need to prepare the data for training our model. We will create a DataFrame containing two
columns: "close" (price) and "volume". By printing the DataFrame, we can ensure that the data is correctly
loaded.

Next, we will merge the columns of the DataFrame to prepare the sequential data. If the main DataFrame is
empty, we assign it the value of the DataFrame. Otherwise, we join the main DataFrame with the DataFrame.
By printing the head of the main DataFrame, we can verify that the columns are merged correctly.

Now, let's discuss the requirements for training a supervised machine learning model. For any supervised
machine learning problem, we need both the sequences and the targets. In our case, the sequences are the
historical price and volume data, and the target is the future price of Litecoin. We will define some constants,
including the sequence length, the future period to predict, and the ratio to predict. For example, we can set the
sequence length to 60 minutes and predict the future price for the next three minutes.

To determine the targets, we will define a classification rule. If the future price is higher than the current price,
we assign a label of 1 (indicating a good buying opportunity). Otherwise, we assign a label of 0. By applying this
classification rule, we can train the model to learn the relationship between the sequence of features and the
future price.

To calculate the future price, we will use the "close" column of the main DataFrame. We shift this column by the
negative value of the future period to predict. By printing the future price, we can verify that it is correctly
calculated.

We have discussed the process of preparing the data for training an RNN model to predict the future price of
Litecoin. We have merged the necessary columns, defined the sequence length and future period to predict,
and calculated the future price based on the classification rule. With this information, we are ready to proceed
with training the RNN model.

In this topic, we will continue our exploration of cryptocurrency-predicting recurrent neural networks (RNNs). We
have already obtained the future price of the cryptocurrency based on the current price, and now we want to
map this function to a new column called "target". To do this, we will convert the output to a list and assign it as
a column in our main DataFrame.

To begin, we need to convert the output to a list using the "list" function. Then, we will use the "map" function
to apply our classify function to each pair of current and future prices. In this case, the current column is
represented by "main DF close" and the future column is represented by "main DF future". We will assign the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 65/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

result to the "target" column.

After applying the function, we can check if the mapping worked as expected. We can observe the current price
and the price in three periods in the future. If the future price is less than the current price, the target will be
zero. Otherwise, it will be one.

Next, let's print the first ten values of the "target" column using the "head" function. This will allow us to verify if
the mapping was successful. We can compare the current price with the price in three periods in the future to
determine if the target is correct.

At this point, everything looks great, and we are ready to move on to the next steps. However, it is important to
note that there is still a lot of work ahead of us. We need to build sequences, balance the data, normalize the
data (as the prices and volumes of cryptocurrencies can vary significantly), and scale the data. Additionally, we
may need to consider out-of-sample testing and other tasks that we might have overlooked.

In the next topic, we will continue with these remaining steps. If you have any questions, comments, or
concerns, please feel free to leave them below. If you notice any errors in the code or have any suggestions,
your feedback is greatly appreciated. We would like to thank our recent sponsors, including Billy, Harsh, Soft,
Mark Zuckerberg, JT, and Newcastle Geek. We appreciate your support.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 66/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - RECURRENT NEURAL
NETWORKS - INTRODUCTION TO CRYPTOCURRENCY-PREDICTING RNN - REVIEW QUESTIONS:

WHAT IS THE GOAL OF USING RECURRENT NEURAL NETWORKS (RNNS) IN THE CONTEXT OF
PREDICTING CRYPTOCURRENCY PRICES?

The goal of using recurrent neural networks (RNNs) in the context of predicting cryptocurrency prices is to
leverage the temporal dependencies and patterns in the historical price data to make accurate predictions
about future price movements. RNNs are a type of artificial neural network that are particularly well-suited for
sequential data analysis, making them a powerful tool for time series forecasting tasks such as cryptocurrency
price prediction.

One of the key advantages of RNNs is their ability to capture and model the sequential nature of time series
data. Unlike traditional feedforward neural networks, which process inputs independently, RNNs maintain an
internal state that allows them to retain information about previous inputs as they process new ones. This
enables RNNs to effectively learn and exploit the temporal dependencies present in the cryptocurrency price
data.

In the context of cryptocurrency price prediction, RNNs can be trained to learn the underlying patterns and
trends in the historical price data, and then use this learned knowledge to make predictions about future price
movements. By considering the historical prices as a sequence of inputs, RNNs can learn to recognize patterns
such as trends, cycles, and seasonality that may be indicative of future price movements.

To train an RNN for cryptocurrency price prediction, historical price data is typically preprocessed and
transformed into a suitable input format. This may involve techniques such as normalization, scaling, and
feature engineering to ensure that the data is in a suitable format for the RNN to learn from. The transformed
data is then used to train the RNN using an appropriate loss function, such as mean squared error, and an
optimization algorithm, such as stochastic gradient descent, to update the network's weights and biases
iteratively.

Once the RNN is trained, it can be used to make predictions about future cryptocurrency prices by feeding in
new input sequences. The RNN will then generate an output sequence that represents its prediction for the
future price movements. These predictions can be evaluated and compared against the actual future price data
to assess the performance of the RNN model.

It is important to note that while RNNs have shown promise in predicting cryptocurrency prices, they are not
without limitations. Cryptocurrency markets are highly volatile and influenced by a wide range of factors,
including market sentiment, regulatory changes, and geopolitical events, which can make accurate predictions
challenging. Additionally, the performance of RNNs can be sensitive to factors such as the choice of network
architecture, hyperparameter settings, and the quality and quantity of the training data.

The goal of using recurrent neural networks in the context of predicting cryptocurrency prices is to leverage
their ability to capture and model the temporal dependencies in the historical price data. By learning the
underlying patterns and trends in the data, RNNs can make accurate predictions about future price movements.
However, it is important to consider the limitations and challenges associated with cryptocurrency price
prediction using RNNs.

HOW DO WE PREPROCESS THE DATA BEFORE APPLYING RNNS TO PREDICT CRYPTOCURRENCY
PRICES?

To effectively predict cryptocurrency prices using recurrent neural networks (RNNs), it is crucial to preprocess
the data in a manner that optimizes the model's performance. Preprocessing involves transforming the raw data
into a format that is suitable for training an RNN model. In this answer, we will discuss the various steps
involved in preprocessing cryptocurrency data for RNN-based price prediction.

1. Data Collection:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 67/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/what-is-the-goal-of-using-recurrent-neural-networks-rnns-in-the-context-of-predicting-cryptocurrency-prices/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/what-is-the-goal-of-using-recurrent-neural-networks-rnns-in-the-context-of-predicting-cryptocurrency-prices/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/how-do-we-preprocess-the-data-before-applying-rnns-to-predict-cryptocurrency-prices/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/how-do-we-preprocess-the-data-before-applying-rnns-to-predict-cryptocurrency-prices/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

The first step in preprocessing is to collect the relevant cryptocurrency data. This can be done by accessing
historical price data from various sources such as cryptocurrency exchanges or financial data providers. The
data should include the timestamp, opening price, closing price, highest price, lowest price, and trading volume.

2. Data Cleaning:

Once the data is collected, it is essential to clean it by handling missing values, outliers, and inconsistencies.
Missing values can be handled by either removing the corresponding data points or imputing them with
appropriate techniques such as mean imputation or interpolation. Outliers, which are extreme values that
deviate significantly from the rest of the data, can be detected using statistical methods like Z-score or modified
Z-score and then either removed or adjusted. Inconsistencies in the data, such as incorrect timestamps or
duplicate entries, should also be resolved.

3. Feature Selection:

To reduce the complexity and dimensionality of the data, it is important to select relevant features for the
prediction task. In the case of cryptocurrency price prediction, common features include the opening price,
closing price, highest price, lowest price, and trading volume. Additional features such as technical indicators
(e.g., moving averages, relative strength index) or sentiment analysis scores can also be considered based on
domain knowledge.

4. Feature Scaling:

RNN models are sensitive to the scale of the input features. Therefore, it is necessary to normalize or scale the
features to a common range. Common scaling techniques include min-max scaling and standardization. Min-
max scaling transforms the data to a specified range (e.g., between 0 and 1) based on the minimum and
maximum values of each feature. Standardization, on the other hand, transforms the data to have zero mean
and unit variance. The choice of scaling technique depends on the specific requirements of the dataset and the
RNN model.

5. Sequence Generation:

RNNs are designed to process sequential data. In the context of cryptocurrency price prediction, the data needs
to be transformed into sequences of input-output pairs. This can be achieved by defining a fixed time window
(e.g., 30 days) and sliding it over the data to create overlapping sequences. Each sequence consists of input
features (e.g., past prices and volumes) and the corresponding target feature (e.g., future price). The size of the
time window and the overlap between sequences can be adjusted based on the desired trade-off between
model complexity and prediction accuracy.

6. Train-Test Split:

To evaluate the performance of the RNN model, it is necessary to split the preprocessed data into training and
testing sets. The training set is used to train the model, while the testing set is used to assess its generalization
ability. A common practice is to use a 70-30 or 80-20 split, where the majority of the data is used for training
and the remaining portion is used for testing. It is important to ensure that the time order of the data is
preserved during the split to simulate real-world scenarios.

7. Data Augmentation (Optional):

In some cases, it may be beneficial to augment the training data by introducing artificial variations. This can
help improve the model's ability to generalize to unseen data. Data augmentation techniques for sequential
data include random shifts, rotations, and flips. However, it is important to apply data augmentation judiciously,
as excessive augmentation can introduce unrealistic patterns and negatively impact the model's performance.

Preprocessing cryptocurrency data for RNN-based price prediction involves steps such as data collection,
cleaning, feature selection, scaling, sequence generation, train-test split, and optionally, data augmentation.
Each step plays a crucial role in preparing the data to be fed into the RNN model, ensuring accurate and reliable
predictions.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 68/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

WHAT ARE THE CHALLENGES OF WORKING WITH SEQUENTIAL DATA IN THE CONTEXT OF
CRYPTOCURRENCY PREDICTION?

Working with sequential data in the context of cryptocurrency prediction poses several challenges that need to
be addressed in order to develop accurate and reliable models. In this field, artificial intelligence techniques,
specifically deep learning with recurrent neural networks (RNNs), have shown promising results. However, the
unique characteristics of cryptocurrency data introduce specific difficulties that must be overcome.

One of the main challenges is the inherent volatility and non-linearity of cryptocurrency prices. Cryptocurrencies
are known for their extreme price fluctuations, which can be influenced by various factors such as market
sentiment, regulatory changes, and technological advancements. This volatility makes it difficult to accurately
predict future price movements. Additionally, the non-linear nature of cryptocurrency data further complicates
the prediction task, as traditional linear models may not capture the complex relationships between input
features and output targets.

Another challenge is the presence of noise and outliers in cryptocurrency data. Due to the decentralized and
unregulated nature of cryptocurrencies, the data can be subject to manipulation and irregularities. Outliers,
which are extreme values that deviate significantly from the normal pattern, can distort the learning process
and lead to inaccurate predictions. Therefore, preprocessing techniques such as outlier detection and data
cleaning are crucial to ensure the quality and reliability of the data used for training the predictive models.

Furthermore, the presence of long-term dependencies in sequential cryptocurrency data poses a challenge for
traditional feed-forward neural networks. RNNs, on the other hand, are specifically designed to handle
sequential data by maintaining a memory of past inputs. However, training RNNs on long sequences can be
computationally expensive and prone to vanishing or exploding gradients. Vanishing gradients occur when the
gradients become extremely small and prevent the network from learning long-term dependencies effectively.
Exploding gradients, on the other hand, occur when the gradients become extremely large and lead to unstable
training. Techniques such as gradient clipping and using specialized RNN architectures like long short-term
memory (LSTM) or gated recurrent units (GRUs) can mitigate these issues.

Another challenge in cryptocurrency prediction is the presence of irregular time intervals between data points.
Unlike traditional financial time series, where data points are typically evenly spaced, cryptocurrency data can
have irregular time intervals due to factors such as network congestion or trading suspensions. This irregularity
can affect the performance of traditional time series models that rely on regular time intervals. However, RNNs
are capable of handling irregular time intervals by learning the temporal dependencies between the data points,
making them suitable for cryptocurrency prediction tasks.

Lastly, the challenge of overfitting must be addressed when working with limited cryptocurrency data.
Cryptocurrency datasets are often limited in size, especially when considering the relatively short history of
many cryptocurrencies. This scarcity of data increases the risk of overfitting, where the model learns the noise
and idiosyncrasies of the training data instead of generalizing to unseen data. Regularization techniques such as
dropout and early stopping can help prevent overfitting and improve the generalization performance of the
models.

Working with sequential data in the context of cryptocurrency prediction presents several challenges that
require careful consideration. The volatility and non-linearity of cryptocurrency prices, the presence of noise and
outliers, the long-term dependencies in the data, the irregular time intervals, and the risk of overfitting are all
factors that need to be addressed when developing predictive models. By leveraging the power of deep learning
techniques, specifically RNNs, and employing appropriate preprocessing and regularization techniques, it is
possible to overcome these challenges and develop accurate and reliable cryptocurrency prediction models.

HOW DO WE MERGE MULTIPLE CSV FILES CONTAINING CRYPTOCURRENCY DATA INTO A SINGLE
DATAFRAME?

To merge multiple CSV files containing cryptocurrency data into a single DataFrame, we can utilize the pandas
library in Python. Pandas provides powerful data manipulation and analysis capabilities, making it an ideal
choice for this task.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 69/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/what-are-the-challenges-of-working-with-sequential-data-in-the-context-of-cryptocurrency-prediction/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/what-are-the-challenges-of-working-with-sequential-data-in-the-context-of-cryptocurrency-prediction/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/how-do-we-merge-multiple-csv-files-containing-cryptocurrency-data-into-a-single-dataframe/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/how-do-we-merge-multiple-csv-files-containing-cryptocurrency-data-into-a-single-dataframe/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

First, we need to import the necessary libraries. We will import pandas to handle the data and os to work with
file paths:

1. import pandas as pd
2. import os

Next, we will define a function that takes a directory path as input and returns a merged DataFrame. This
function will iterate over all the CSV files in the directory, read them into separate DataFrames, and then
concatenate them into a single DataFrame.

1. def merge_csv_files(directory):
2. all_data = pd.DataFrame() # Initialize an empty DataFrame to store the merged d

ata
3. for filename in os.listdir(directory):
4. if filename.endswith(".csv"):
5. file_path = os.path.join(directory, filename)
6. data = pd.read_csv(file_path) # Read each CSV file into a DataFrame
7. all_data = pd.concat([all_data, data], ignore_index=True) # Concatenate

 the data
8. return all_data

In the code above, we use the `os.listdir()` function to iterate over all files in the given directory. We check if
each file has the ".csv" extension and, if so, construct the full file path using `os.path.join()`. We then use
`pd.read_csv()` to read each CSV file into a separate DataFrame. Finally, we use `pd.concat()` to concatenate
all the DataFrames into a single DataFrame, ignoring the original indices with `ignore_index=True`.

To use this function, simply pass the directory path containing the CSV files as an argument:

1. directory_path = "/path/to/csv/files"
2. merged_df = merge_csv_files(directory_path)

The resulting `merged_df` DataFrame will contain the combined data from all the CSV files in the specified
directory.

It's important to note that the CSV files should have the same structure (i.e., same columns) for this merging
process to work correctly. If the columns vary across the files, additional data cleaning and alignment steps may
be required before merging.

To merge multiple CSV files containing cryptocurrency data into a single DataFrame, we can use the pandas
library in Python. By iterating over the CSV files, reading them into separate DataFrames, and then
concatenating them using `pd.concat()`, we can efficiently merge the data. Remember to ensure that the CSV
files have consistent column structures for successful merging.

WHAT ARE THE NECESSARY STEPS TO PREPARE THE DATA FOR TRAINING AN RNN MODEL TO
PREDICT THE FUTURE PRICE OF LITECOIN?

To prepare the data for training a recurrent neural network (RNN) model to predict the future price of Litecoin,
several necessary steps need to be taken. These steps involve data collection, data preprocessing, feature
engineering, and data splitting for training and testing purposes. In this answer, we will go through each step in
detail to provide a comprehensive explanation.

1. Data collection:

The first step is to collect historical data of Litecoin prices. This data can be obtained from various sources such
as cryptocurrency exchanges or financial data providers. It is important to ensure that the data is reliable and
accurate. The data should include the timestamp (date and time) and the corresponding price of Litecoin at that

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 70/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/what-are-the-necessary-steps-to-prepare-the-data-for-training-an-rnn-model-to-predict-the-future-price-of-litecoin/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/introduction-to-cryptocurrency-predicting-rnn/examination-review-introduction-to-cryptocurrency-predicting-rnn/what-are-the-necessary-steps-to-prepare-the-data-for-training-an-rnn-model-to-predict-the-future-price-of-litecoin/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

time.

2. Data preprocessing:

Once the data is collected, it needs to be preprocessed to make it suitable for training the RNN model. This
involves several tasks, including:

– Handling missing values: Check if there are any missing values in the data and decide on an appropriate
strategy to handle them. One common approach is to interpolate the missing values using techniques like linear
interpolation.

– Removing outliers: Outliers can significantly affect the training of the model. Identify and remove any outliers
in the data. This can be done using statistical methods such as the z-score or the interquartile range (IQR).

– Normalizing the data: Normalize the price values to a common scale, such as between 0 and 1, using
techniques like min-max scaling or z-score normalization. This helps in stabilizing the training process and
prevents any single feature from dominating the learning process.

3. Feature engineering:

Feature engineering involves creating additional features from the existing data that can potentially improve
the performance of the RNN model. In the context of predicting cryptocurrency prices, some common features
include:

– Lagged variables: Create lagged versions of the price variable, i.e., use the previous prices as additional
features. This allows the model to capture temporal dependencies and trends in the data.

– Moving averages: Calculate moving averages of the price over different time windows (e.g., 7-day moving
average, 30-day moving average). These moving averages can provide insights into the short-term and long-
term trends in the price.

– Volume indicators: Incorporate features related to trading volume, such as the volume of Litecoin traded in the
previous time periods. Volume indicators can provide information about market activity and liquidity.

4. Data splitting:

Before training the RNN model, it is important to split the data into training and testing sets. The training set is
used to train the model, while the testing set is used to evaluate its performance. Typically, a common split
ratio is 80:20 or 70:30, where 80% or 70% of the data is used for training and the remaining for testing. It is
important to ensure that the data is split in a way that preserves the temporal order of the data, as the RNN
model relies on the sequential nature of the data.

To prepare the data for training an RNN model to predict the future price of Litecoin, the necessary steps
include data collection, data preprocessing, feature engineering, and data splitting. These steps ensure that the
data is in a suitable format for training the model and that relevant features are incorporated to capture the
underlying patterns and trends in the cryptocurrency market.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 71/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: RECURRENT NEURAL NETWORKS
TOPIC: NORMALIZING AND CREATING SEQUENCES CRYPTO RNN

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - Recurrent neural networks -
Normalizing and creating sequences Crypto RNN

Artificial Intelligence (AI) has revolutionized various industries by enabling machines to perform tasks that
typically require human intelligence. Deep learning, a subfield of AI, focuses on training neural networks with
multiple layers to learn and extract complex patterns from data. In this didactic material, we will explore the
application of deep learning techniques, specifically recurrent neural networks (RNNs), for creating and
normalizing sequences in the context of Crypto RNN.

Recurrent neural networks (RNNs) are a type of neural network that can process sequential data by utilizing
feedback connections. Unlike traditional feedforward neural networks, RNNs have connections that allow
information to be passed from one step to the next, enabling them to capture temporal dependencies in the
data. This makes RNNs particularly suitable for tasks involving sequences, such as natural language processing,
speech recognition, and time series analysis.

To implement RNNs in Python, we can leverage popular deep learning libraries such as TensorFlow and Keras.
TensorFlow is an open-source library developed by Google that provides a flexible platform for building and
training various machine learning models, including neural networks. Keras, on the other hand, is a high-level
API that simplifies the process of building neural networks using TensorFlow as the backend.

When working with sequences in the context of Crypto RNN, it is crucial to normalize the data to ensure
consistent and meaningful input for the neural network. Normalization involves transforming the data to have a
specific range or distribution, which helps in improving the convergence and performance of the model. In the
case of Crypto RNN, we might normalize the price data of cryptocurrencies to a range between 0 and 1, making
it easier for the neural network to learn patterns and make predictions.

Creating sequences for Crypto RNN involves structuring the data into a suitable format for training the recurrent
neural network. In the context of cryptocurrency price prediction, we can define a sequence as a set of historical
price values for a particular cryptocurrency over a specified time window. For example, we might define a
sequence as the past 30 days of Bitcoin prices. By creating sequences, we can train the RNN to learn patterns
and relationships between historical prices and future price movements.

To implement the normalization and creation of sequences in Crypto RNN using Python, TensorFlow, and Keras,
we can follow a step-by-step process. First, we would gather the historical price data for the desired
cryptocurrencies. Next, we would normalize the price data using a suitable normalization technique, such as
min-max scaling. Then, we would create sequences by sliding a window over the normalized data, selecting a
fixed number of historical price values for each sequence. Finally, we would split the data into training and
testing sets, ensuring that the sequences are shuffled to avoid any temporal biases.

The application of deep learning techniques, specifically recurrent neural networks, in the context of Crypto RNN
allows us to create and normalize sequences for training models that can predict future cryptocurrency price
movements. By leveraging Python, TensorFlow, and Keras, we can efficiently implement these techniques and
explore the potential of AI in the field of cryptocurrency analysis and prediction.

DETAILED DIDACTIC MATERIAL

In this deep learning topic, we will continue working on our project of implementing a recurrent neural network
(RNN) to predict the future price movements of a cryptocurrency. Our goal is to use the sequences of the
cryptocurrency's prices and volumes, along with the prices and volumes of three other cryptocurrencies, to
make accurate predictions.

So far, we have obtained the necessary data and merged it together. Now, we need to create sequences from

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 72/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/topic/normalizing-and-creating-sequences-crypto-rnn/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

this data and perform various preprocessing steps such as normalization and scaling. However, before we
proceed with these steps, we need to address the issue of out-of-sample testing.

In the case of temporal data, time series data, and other sequential data, simply shuffling the data and
randomly selecting a portion as the out-of-sample set is not appropriate. This is because the sequences in the
out-of-sample set would still be very similar to those in the in-sample set, making it easy for the model to
overfit.

Instead, we need to separate a chunk of data as our out-of-sample set. For time series data, it is recommended
to use a chunk of data from the future as the out-of-sample set. In our case, we will take the last 5% of the
historical data and set it aside as our out-of-sample data. This approach is similar to building the model 5% of
the time ago and forward testing it.

It is important to note that many people overlook or mishandle out-of-sample testing, especially in finance and
time series data analysis. Some may not perform out-of-sample testing at all, leading to overfitting. Others may
use incorrect methods for out-of-sample testing. Therefore, it is crucial to keep this in mind and follow the
proper procedure.

To implement the separation of the last 5% of the data as our out-of-sample set, we will first sort the data in
ascending order. Then, we will find the index value that corresponds to the threshold of the last 5% of the data.
This threshold index value can be calculated as 0.05 times the length of the data. Finally, we will separate the
out-of-sample data by selecting the rows with index values greater than the threshold.

Once we have separated the out-of-sample data, we can proceed with the remaining preprocessing steps. It is
important to note that while we will not address the issues related to normalization and scaling at this point,
ensuring the correct separation of the out-of-sample data is of utmost importance.

In this topic, we have discussed the importance of out-of-sample testing for sequential data analysis. We have
explained the recommended approach of separating a chunk of data from the future as the out-of-sample set.
We have also emphasized the significance of correctly implementing this separation to avoid overfitting and
ensure accurate testing.

In this didactic material, we will discuss the process of normalizing and creating sequences for a recurrent
neural network (RNN) using Python, TensorFlow, and Keras. Specifically, we will focus on applying these
techniques to cryptocurrency data.

To begin, we need to split our data into training and validation sets. We will use the last 5% of the data as the
validation set. This can be achieved by setting a threshold value and selecting all data points with a timestamp
greater than or equal to this threshold for validation. The remaining data points will be used for training.

Once the data is split, we can proceed to create sequences for our RNN. In order to do this, we need to perform
several steps including balancing, scaling, and potentially other preprocessing tasks. To simplify this process,
we can create a function called "pre_process_DF" that will handle all these tasks for both the training and
validation sets.

The "pre_process_DF" function takes a DataFrame as input and performs the necessary preprocessing steps.
First, we import the "preprocessing" module from the scikit-learn library. If you don't have this module installed,
you can use the command "pip install scikit-learn" to install it.

Next, we drop the "future" column from the DataFrame as it is no longer needed. This column was used to
generate the target variable and including it in the training process would lead to overfitting.

After dropping the "future" column, we iterate over the remaining columns and scale them using the percent
change method. This normalization step ensures that the data is comparable across different cryptocurrencies
and avoids bias towards larger values. We then drop any NaN values that may have been generated during the
scaling process.

Finally, we use the "scale" function from the "preprocessing" module to scale the values of each column in the
DataFrame. This ensures that the values fall within a certain range, typically between 0 and 1, which is

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 73/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

desirable for neural network training.

By applying the "pre_process_DF" function to both the training and validation sets, we can obtain the
preprocessed data required for training our RNN. The resulting data will be stored in the variables "train_X",
"train_y", "validation_X", and "validation_y" respectively.

We have discussed the process of normalizing and creating sequences for an RNN using Python, TensorFlow,
and Keras. We have seen how to split the data into training and validation sets, as well as how to preprocess the
data using the "pre_process_DF" function. These steps are crucial for preparing the data for training an RNN
model.

To normalize and create sequences for a recurrent neural network (RNN) in the context of deep learning with
Python, TensorFlow, and Keras, we follow a specific process. The goal is to scale the data between 0 and 1 and
create sequences of a certain length.

First, we start by scaling the data. We use a simple formula to scale the data to be between 0 and 1. This can be
done by dividing each value by the minimum-maximum range of the data.

Next, we handle any missing or invalid values. If the percent change column contains NaN (not a number)
values, we drop those rows. Additionally, if the sequence creation process generates NaN values, we also drop
those rows.

To create sequences, we initialize an empty list called "sequential_data" and another variable called
"prev_days" to store the previous days' data. We set the maximum length of the sequence, which is typically
60.

To handle the sequence creation logic, we import the "deque" class from the "collections" module. The "deque"
class allows us to create a list-like structure with a maximum length. As new items are added, old items are
automatically removed.

We wait until "prev_days" has at least 60 values before starting to populate the sequence. For each row in the
dataset, we iterate over the columns and append the values to "prev_days". However, we exclude the target
column from the sequence.

Once "prev_days" has reached the desired length, we append the features and labels to the "sequential_data"
list. The features are the previous 60 days' data, and the label is the current value.

Finally, we shuffle the "sequential_data" list randomly to ensure that the data is not biased. This is done using
the "random.shuffle" function.

It's important to note that this didactic material assumes prior knowledge of Python programming, deep
learning concepts, and the basics of TensorFlow and Keras libraries.

After preparing the sequences and targets, we are now ready to feed them through a model. However, there are
still a few more steps we need to complete before training the model. In the next topic, we will continue working
towards our goal, although it is unlikely that we will train the model in full.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 74/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - RECURRENT NEURAL
NETWORKS - NORMALIZING AND CREATING SEQUENCES CRYPTO RNN - REVIEW QUESTIONS:

WHY IS IT IMPORTANT TO ADDRESS THE ISSUE OF OUT-OF-SAMPLE TESTING WHEN WORKING WITH
SEQUENTIAL DATA IN DEEP LEARNING?

When working with sequential data in deep learning, addressing the issue of out-of-sample testing is of utmost
importance. Out-of-sample testing refers to evaluating the performance of a model on data that it has not seen
during training. This is crucial for assessing the generalization ability of the model and ensuring its reliability in
real-world scenarios. In the context of deep learning with recurrent neural networks (RNNs), which are
commonly used for sequential data analysis, out-of-sample testing becomes even more critical.

One primary reason to address the issue of out-of-sample testing in deep learning with sequential data is to
avoid overfitting. Overfitting occurs when a model learns to perform well on the training data but fails to
generalize to unseen data. In the case of sequential data, overfitting can be particularly harmful as it may result
in incorrect predictions or unreliable insights. By conducting out-of-sample testing, we can assess whether the
model has learned meaningful patterns from the training data or if it has simply memorized the training
examples.

Furthermore, out-of-sample testing helps to evaluate the performance of a model in real-world scenarios. In
many practical applications, the data distribution can change over time, and the model needs to adapt to these
changes. By testing the model on out-of-sample data, we can assess its ability to handle unseen patterns and
variations. This is particularly relevant in domains such as finance, where market conditions can change rapidly,
or in natural language processing, where language usage evolves over time.

Another important aspect of out-of-sample testing in deep learning with sequential data is the assessment of
model robustness. Robustness refers to the ability of a model to handle noisy or ambiguous inputs without
significantly affecting its performance. By testing the model on out-of-sample data, we can evaluate its
robustness to variations in the input sequence, such as missing or corrupted data points. This is crucial for
ensuring the reliability of the model in real-world scenarios where data quality may vary.

To illustrate the importance of out-of-sample testing, let's consider an example in the field of cryptocurrency
price prediction. Suppose we develop an RNN model to predict the future prices of various cryptocurrencies
based on historical price data. By training the model on a subset of the available data and testing it on a
separate subset that represents future time points, we can assess its predictive accuracy. This evaluation would
provide valuable insights into the model's performance and its ability to generalize to unseen cryptocurrency
price patterns.

Addressing the issue of out-of-sample testing is crucial when working with sequential data in deep learning. It
helps to avoid overfitting, evaluate the model's performance in real-world scenarios, assess its robustness, and
ensure its reliability. By conducting out-of-sample testing, we can obtain a more accurate understanding of the
model's capabilities and limitations, enabling us to make informed decisions in practical applications.

HOW DO WE SEPARATE A CHUNK OF DATA AS THE OUT-OF-SAMPLE SET FOR TIME SERIES DATA
ANALYSIS?

To perform time series data analysis using deep learning techniques such as recurrent neural networks (RNNs),
it is essential to separate a chunk of data as the out-of-sample set. This out-of-sample set is crucial for
evaluating the performance and generalization ability of the trained model on unseen data. In this field of study,
specifically focusing on normalizing and creating sequences for cryptocurrency analysis using RNNs, the process
of separating the out-of-sample set requires careful consideration. In this comprehensive explanation, we will
discuss the steps involved in separating the out-of-sample set for time series data analysis in the context of
deep learning with Python, TensorFlow, and Keras.

1. Understanding Time Series Data:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 75/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/why-is-it-important-to-address-the-issue-of-out-of-sample-testing-when-working-with-sequential-data-in-deep-learning/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/why-is-it-important-to-address-the-issue-of-out-of-sample-testing-when-working-with-sequential-data-in-deep-learning/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/how-do-we-separate-a-chunk-of-data-as-the-out-of-sample-set-for-time-series-data-analysis/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/how-do-we-separate-a-chunk-of-data-as-the-out-of-sample-set-for-time-series-data-analysis/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Time series data is a sequence of observations collected over time. In the context of cryptocurrency analysis, it
could represent historical price data, trading volumes, or any other relevant data points. Time series data often
exhibits temporal dependencies, making it suitable for analysis using RNNs.

2. Splitting the Data:

To create an out-of-sample set, we need to split the time series data into two parts: a training set and a test set.
The training set is used to train the RNN model, while the test set is used to evaluate its performance. It is
important to note that the test set should contain data that is temporally after the training set to simulate real-
world scenarios where future predictions are made based on past observations.

3. Determining the Split Point:

The split point is the index in the time series data that separates the training set from the test set. The choice of
the split point depends on various factors, including the length of the time series, the nature of the data, and
the specific requirements of the analysis. Common approaches include using a fixed percentage of the data as
the test set or selecting a specific date as the split point.

4. Example:

Let's consider an example to illustrate the process. Suppose we have a time series dataset with 1000 data
points representing daily cryptocurrency prices. We decide to use the first 800 data points as the training set
and the remaining 200 data points as the test set. In this case, the split point would be at index 800, separating
the two sets.

5. Implementing the Split:

In Python, we can implement the split using various libraries such as NumPy or pandas. Here is an example
using pandas:

1. import pandas as pd
2. # Assuming 'data' is the time series data stored in a pandas DataFrame
3. split_point = 800
4. train_set = data.iloc[:split_point]
5. test_set = data.iloc[split_point:]

In this example, `data.iloc[:split_point]` selects the rows from the beginning of the DataFrame up to the split
point, while `data.iloc[split_point:]` selects the rows from the split point to the end.

6. Evaluating the Model:

After training the RNN model using the training set, we can evaluate its performance using the test set. This
involves making predictions on the test set and comparing them with the actual values. Various evaluation
metrics can be used, such as mean squared error (MSE) or mean absolute error (MAE), to assess the accuracy
and performance of the model.

7. Cross-Validation:

In addition to splitting the data into training and test sets, it is also common to perform cross-validation to
further evaluate the model's performance. Cross-validation involves dividing the data into multiple subsets,
training the model on different combinations of these subsets, and evaluating its performance on the remaining
subsets. This helps to assess the model's generalization ability and reduce the risk of overfitting.

Separating a chunk of data as the out-of-sample set for time series data analysis in the context of deep learning
with Python, TensorFlow, and Keras involves splitting the data into training and test sets, determining the split
point, implementing the split using appropriate libraries, and evaluating the model's performance on the test
set. Cross-validation can also be employed to enhance the evaluation process.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 76/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

WHAT ARE THE PREPROCESSING STEPS INVOLVED IN NORMALIZING AND CREATING SEQUENCES
FOR A RECURRENT NEURAL NETWORK (RNN)?

Preprocessing plays a crucial role in preparing data for training recurrent neural networks (RNNs). In the context
of normalizing and creating sequences for a Crypto RNN, several steps need to be followed to ensure that the
input data is in a suitable format for the RNN to learn effectively. This answer will provide a detailed and
comprehensive explanation of the preprocessing steps involved, drawing upon factual knowledge in the field of
Artificial Intelligence.

1. Data Collection:

The first step in preprocessing is to collect the relevant data for training the Crypto RNN. This may involve
gathering historical price data for cryptocurrencies from various sources such as cryptocurrency exchanges or
financial data providers. The data should include features such as the opening price, closing price, high and low
prices, trading volume, and any other relevant information.

2. Data Cleaning:

Once the data is collected, it is essential to clean it by removing any noisy or irrelevant information. This may
involve handling missing values, outliers, or inconsistent data. Missing values can be filled using various
techniques such as interpolation or forward/backward filling. Outliers can be identified and treated using
statistical methods like z-score or interquartile range analysis.

3. Data Normalization:

Normalization is an important step in preprocessing data for RNNs. It ensures that all input features have a
similar scale, which helps the RNN converge faster during training. Common normalization techniques include
min-max scaling and z-score normalization. Min-max scaling transforms the data to a fixed range, typically
between 0 and 1, while z-score normalization standardizes the data by subtracting the mean and dividing by the
standard deviation.

4. Sequence Creation:

In the context of Crypto RNN, creating sequences is crucial as it allows the RNN to learn patterns over time.
Sequences can be created by sliding a window of a fixed length over the normalized data. For example, if we
have daily price data for a cryptocurrency and want to create sequences of length 10, we would slide the
window over the data, creating overlapping sequences of 10 consecutive days. Each sequence would then be
used as an input to the RNN.

5. Train-Test Split:

To evaluate the performance of the Crypto RNN, it is essential to split the data into training and testing sets.
The training set is used to train the RNN, while the testing set is used to evaluate its performance on unseen
data. It is common to use a 70-30 or 80-20 split, where 70% or 80% of the data is used for training and the
remaining percentage is used for testing.

6. Data Encoding:

Before feeding the data into the RNN, it is necessary to encode it into a suitable format. This typically involves
converting the data into numerical representations. For example, categorical variables can be one-hot encoded,
where each category is represented by a binary vector. Numerical variables may not require any additional
encoding.

7. Data Padding:

In some cases, the sequences created in step 4 may have different lengths. To handle this, padding can be
applied to ensure that all sequences have the same length. Padding involves adding zeros or a special token to
the sequences to make them equal in length. This is important for batch processing in the RNN, as all input
sequences need to have the same shape.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 77/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/what-are-the-preprocessing-steps-involved-in-normalizing-and-creating-sequences-for-a-recurrent-neural-network-rnn/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/what-are-the-preprocessing-steps-involved-in-normalizing-and-creating-sequences-for-a-recurrent-neural-network-rnn/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

By following these preprocessing steps, the data can be effectively prepared for training a Crypto RNN. It is
worth noting that the specific preprocessing steps may vary depending on the characteristics of the data and
the requirements of the RNN model being used.

HOW DO WE HANDLE MISSING OR INVALID VALUES DURING THE NORMALIZATION AND SEQUENCE
CREATION PROCESS?

During the normalization and sequence creation process in the context of deep learning with recurrent neural
networks (RNNs) for cryptocurrency prediction, handling missing or invalid values is crucial to ensure accurate
and reliable model training. Missing or invalid values can significantly impact the performance of the model,
leading to erroneous predictions and unreliable insights. In this response, we will discuss various approaches to
handle missing or invalid values in the normalization and sequence creation process.

One common approach to handling missing values is to impute them with appropriate values. Imputation refers
to the process of replacing missing values with estimated values based on the available data. There are several
techniques for imputing missing values, such as mean imputation, median imputation, mode imputation, and
regression imputation. Mean imputation involves replacing missing values with the mean of the available values
for that feature. Similarly, median imputation replaces missing values with the median, while mode imputation
replaces missing values with the mode. Regression imputation, on the other hand, involves using regression
models to predict missing values based on other features.

Another approach to handling missing values is to remove the corresponding data instances or features entirely.
This approach is suitable when the missing values are limited and do not significantly affect the overall data
distribution. However, caution should be exercised when removing data instances or features, as it may result in
a loss of valuable information. It is important to carefully analyze the impact of removing missing values and
assess the potential consequences on the model's performance.

In addition to handling missing values, it is also essential to address invalid values during the normalization and
sequence creation process. Invalid values can arise due to data collection errors or inconsistencies. One way to
handle invalid values is to replace them with a special value, such as NaN (Not a Number) or a specific value
that is outside the valid range. This allows the model to identify and treat these values separately during
training and prediction. Alternatively, invalid values can be imputed using techniques similar to those used for
missing values, such as mean imputation or regression imputation.

Normalization is another crucial step in the preprocessing pipeline. It involves scaling the input data to a
common range to ensure that all features contribute equally to the model's learning process. Common
normalization techniques include min-max scaling and z-score normalization. Min-max scaling maps the values
of a feature to a specified range, typically between 0 and 1, by subtracting the minimum value and dividing by
the range. Z-score normalization, also known as standardization, transforms the values of a feature to have a
mean of 0 and a standard deviation of 1 by subtracting the mean and dividing by the standard deviation.

When creating sequences for RNNs, it is important to consider the temporal nature of the data. Sequential data
often exhibits dependencies over time, and capturing these dependencies is crucial for accurate prediction. In
the context of cryptocurrency prediction, sequences can be created by sliding a window over the time series
data. For example, given a time series of cryptocurrency prices, a sequence can be created by selecting a fixed
number of previous prices as input features and the next price as the target feature. This sliding window
approach allows the model to learn from the temporal patterns in the data.

Handling missing or invalid values during the normalization and sequence creation process is crucial for
accurate and reliable deep learning models. Imputation techniques can be used to replace missing values with
estimated values, while removing instances or features with missing values should be done cautiously. Invalid
values can be replaced with special values or imputed using similar techniques. Normalization techniques such
as min-max scaling and z-score normalization ensure that all features contribute equally to the model's learning
process. When creating sequences for RNNs, a sliding window approach can be used to capture the temporal
dependencies in the data.

WHAT IS THE PURPOSE OF SHUFFLING THE SEQUENTIAL DATA LIST AFTER CREATING THE

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 78/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/how-do-we-handle-missing-or-invalid-values-during-the-normalization-and-sequence-creation-process/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/how-do-we-handle-missing-or-invalid-values-during-the-normalization-and-sequence-creation-process/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/what-is-the-purpose-of-shuffling-the-sequential-data-list-after-creating-the-sequences-and-labels/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

SEQUENCES AND LABELS?

Shuffling the sequential data list after creating the sequences and labels serves a crucial purpose in the field of
artificial intelligence, particularly in the context of deep learning with Python, TensorFlow, and Keras in the
domain of recurrent neural networks (RNNs). This practice is specifically relevant when dealing with tasks such
as normalizing and creating sequences in the Crypto RNN domain. The purpose of shuffling the data is to
introduce randomness and remove any inherent order or patterns that may exist within the dataset.

By shuffling the data, we ensure that the order of the samples does not bias the learning process of the model.
This is particularly important in scenarios where the data might be inherently ordered, such as time series data.
Without shuffling, the model could inadvertently learn patterns based on the order of the samples rather than
the actual features of the data. Consequently, the model's performance may be compromised, resulting in
suboptimal predictions and reduced generalization ability.

Shuffling the data also helps in avoiding overfitting, a phenomenon where a model becomes too specialized in
learning the training data and fails to generalize well to unseen data. When training a deep learning model, it is
essential to have a diverse and representative dataset. Shuffling the data ensures that each training batch
contains a random mixture of samples from different classes or categories, preventing the model from
memorizing the order or structure of the data. This encourages the model to learn meaningful features and
patterns that are more likely to generalize to unseen data.

Furthermore, shuffling the data can help to improve the stability of the training process. It reduces the chances
of the model getting stuck in local minima during the optimization process. Without shuffling, consecutive
samples from the same class or category may be presented to the model in a fixed order, potentially leading to
a biased gradient estimation and hindering the convergence of the training process. By shuffling the data, we
introduce randomness and ensure that the model encounters a diverse range of samples in each training batch,
facilitating a more robust and effective optimization process.

To illustrate the significance of shuffling, let's consider an example in the context of a Crypto RNN model.
Suppose we are training a deep learning model to predict the future price movements of different
cryptocurrencies based on historical data. The dataset contains sequential data for various cryptocurrencies,
where each sample represents a time step with features such as opening price, closing price, volume, etc. If we
do not shuffle the data, the model may learn to rely on the order of the samples to make predictions. For
instance, it may learn that the price of a certain cryptocurrency tends to increase after a specific sequence of
samples. This would be an incorrect inference, as the model should instead learn the actual patterns and
relationships between the features to make accurate predictions.

Shuffling the sequential data list after creating the sequences and labels is vital in the field of artificial
intelligence, especially in the context of deep learning with Python, TensorFlow, and Keras, particularly when
dealing with tasks such as normalizing and creating sequences in the Crypto RNN domain. Shuffling introduces
randomness, removes inherent order or patterns, prevents bias, aids generalization, avoids overfitting,
improves stability, and enables the model to learn meaningful features and patterns. By shuffling the data, we
ensure that the model focuses on the actual features of the data rather than the order in which the samples are
presented.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 79/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/normalizing-and-creating-sequences-crypto-rnn/examination-review-normalizing-and-creating-sequences-crypto-rnn/what-is-the-purpose-of-shuffling-the-sequential-data-list-after-creating-the-sequences-and-labels/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: RECURRENT NEURAL NETWORKS
TOPIC: BALANCING RNN SEQUENCE DATA

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - Recurrent neural networks -
Balancing RNN sequence data

Recurrent Neural Networks (RNNs) have proven to be highly effective in handling sequential data for various
tasks in the field of artificial intelligence. However, when dealing with imbalanced sequences, such as in natural
language processing or time series analysis, the performance of RNNs can be compromised. In this didactic
material, we will explore techniques to balance RNN sequence data using Python, TensorFlow, and Keras.

To begin, let's first understand the concept of imbalanced sequence data. In the context of RNNs, imbalanced
sequence data refers to situations where the distribution of classes or events in the sequence is heavily skewed.
This can lead to biased predictions and poor generalization of the model. Balancing the sequence data is crucial
to ensure accurate and reliable predictions.

One common approach to balancing RNN sequence data is through the use of sampling techniques. Two
popular sampling techniques are oversampling and undersampling. Oversampling involves replicating instances
from the minority class to increase its representation in the dataset, while undersampling involves removing
instances from the majority class to reduce its dominance.

In Python, the imbalanced-learn library provides various sampling methods specifically designed for imbalanced
datasets. This library can be easily integrated with TensorFlow and Keras to balance RNN sequence data. By
applying oversampling or undersampling techniques, we can create a more balanced dataset for training the
RNN model.

Let's now delve into the implementation details using TensorFlow and Keras. First, we need to import the
necessary libraries and load the imbalanced sequence data. Next, we can use the imbalanced-learn library to
apply the desired sampling technique. For instance, if we choose oversampling, we can utilize the
RandomOverSampler class to increase the representation of the minority class.

Once the data is balanced, we can proceed with the construction of the RNN model using TensorFlow and Keras.
The architecture of the RNN model can vary depending on the specific task. However, it typically consists of an
input layer, one or more recurrent layers (such as LSTM or GRU), and an output layer. It is essential to choose
an appropriate activation function and loss function based on the nature of the problem.

After defining the model architecture, we can compile and train the RNN model using the balanced sequence
data. During the training process, it is essential to monitor the performance metrics, such as accuracy,
precision, recall, and F1 score, to evaluate the effectiveness of the model.

To further enhance the performance of the RNN model, we can incorporate additional techniques such as
regularization, dropout, and early stopping. Regularization helps prevent overfitting by adding a penalty term to
the loss function. Dropout randomly disables a fraction of the neurons during training to improve generalization.
Early stopping stops the training process if the performance on a validation set does not improve for a specified
number of epochs.

Balancing RNN sequence data is crucial to ensure accurate and reliable predictions in tasks involving
imbalanced sequences. By utilizing sampling techniques and integrating them with Python, TensorFlow, and
Keras, we can create a balanced dataset and construct an effective RNN model. Monitoring performance metrics
and incorporating additional techniques can further enhance the model's performance.

DETAILED DIDACTIC MATERIAL

In this didactic material, we will discuss the process of balancing RNN sequence data in the context of building a
recurrent neural network for predicting cryptocurrency price movements. Balancing the data is an important

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 80/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/topic/balancing-rnn-sequence-data/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

step to ensure that the model does not waste time and gets stuck in a rut.

Before we balance the data, we need to pre-process it. In the pre-processing step, we normalize and scale the
data. Once the data is pre-processed, we proceed to balance it. Balancing the data means having an equal
number of buys and sells. If the data is already balanced or has a slight imbalance, there is no need to worry.
However, if the data has a significant imbalance, it is crucial to balance it.

We can pass class weights to Keras, which allows us to assign different weights to different classes. However, in
practice, this method does not always solve the balancing issue effectively. Therefore, it is recommended to
manually balance the data.

To balance the data, we create two lists: "buys" and "sells." We iterate over the sequential data and append the
sequence targets to either the "buys" or "sells" list based on their value. After that, we shuffle both lists to
ensure randomness.

Next, we determine the minimum length between the "buys" and "sells" lists. We assign this minimum length to
the variable "lower." Then, we slice the "buys" and "sells" lists up to the "lower" length to ensure both lists have
the same length.

Once the data is balanced, we combine the "buys" and "sells" lists into the "sequential data" list. We shuffle the
"sequential data" list to avoid having all buys followed by all sells, which could confuse the model.

Now that the data is balanced and shuffled, we need to split it into input (X) and output (Y) lists. We iterate over
the "sequential data" list and append the sequences to the "X" list and the targets to the "Y" list.

Finally, we return the numpy arrays of "X" and "Y" as the pre-processed data. At this point, the pre-processing
data frame function is complete, and we are ready to proceed with further steps.

To summarize, balancing RNN sequence data is essential to ensure that the model does not waste time and get
stuck in a rut. By balancing the data, we create an equal number of buys and sells. This can be achieved by
creating separate lists for buys and sells, shuffling them, and then slicing them to have the same length.
Additionally, we split the balanced data into input (X) and output (Y) lists.

The training data consists of 69,000 samples, while the validation data has 3,000 samples. It is important to
note that there is a balanced distribution between the "buys" and "don't buys" in both the training and
validation sets. This balance ensures that the model is trained on a representative dataset.

Moving forward, the next step is to build and train the model. This will be covered in the upcoming topic.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 81/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - RECURRENT NEURAL
NETWORKS - BALANCING RNN SEQUENCE DATA - REVIEW QUESTIONS:

HOW DO WE PRE-PROCESS THE DATA BEFORE BALANCING IT IN THE CONTEXT OF BUILDING A
RECURRENT NEURAL NETWORK FOR PREDICTING CRYPTOCURRENCY PRICE MOVEMENTS?

Pre-processing data is a crucial step in building a recurrent neural network (RNN) for predicting cryptocurrency
price movements. It involves transforming the raw input data into a suitable format that can be effectively
utilized by the RNN model. In the context of balancing RNN sequence data, there are several important pre-
processing techniques that can be employed to enhance the performance and accuracy of the model.

1. Data Cleaning:

Before balancing the data, it is essential to clean the dataset by removing any irrelevant or noisy information.
This may involve eliminating missing values, handling outliers, and dealing with duplicate records. Cleaning the
data ensures that the RNN model is trained on high-quality and reliable data.

2. Feature Selection:

In order to balance the data, it is important to select relevant features that have a significant impact on
predicting cryptocurrency price movements. Feature selection helps to reduce the dimensionality of the dataset
and focus on the most informative attributes. Techniques such as correlation analysis, feature importance, and
domain knowledge can be utilized to identify the most relevant features.

3. Normalization:

Normalization is a crucial pre-processing step that brings the input data to a common scale. Since
cryptocurrency price movements can vary significantly, normalizing the data helps the RNN model to learn
patterns and relationships effectively. Common normalization techniques include min-max scaling, z-score
normalization, and decimal scaling.

4. Handling Imbalanced Data:

Cryptocurrency price movement datasets often suffer from class imbalance, where one class (e.g., price
increase) is more prevalent than the other (e.g., price decrease). This can lead to biased predictions. To address
this issue, various techniques can be employed, such as oversampling the minority class (e.g., price decrease)
using methods like SMOTE (Synthetic Minority Over-sampling Technique) or undersampling the majority class
(e.g., price increase). These techniques help to balance the data distribution and improve the model's ability to
predict both classes accurately.

5. Sequence Padding:

RNNs require fixed-length input sequences, but cryptocurrency price data often have varying lengths. To
address this, sequence padding can be applied. Padding involves adding zeros or a specific value to the
sequences to make them uniform in length. This ensures that the RNN model can process the input data
efficiently.

6. Train-Test Split:

Before training the RNN model, it is essential to split the pre-processed dataset into training and testing sets.
The training set is used to train the model, while the testing set is used to evaluate its performance on unseen
data. A common practice is to use a 70-30 or 80-20 split, where the majority of the data is used for training and
the remaining portion for testing.

By following these pre-processing techniques, the data can be effectively balanced and prepared for training a
recurrent neural network to predict cryptocurrency price movements. It is important to note that the specific pre-
processing steps may vary depending on the characteristics of the dataset and the requirements of the RNN

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 82/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/how-do-we-pre-process-the-data-before-balancing-it-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/how-do-we-pre-process-the-data-before-balancing-it-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

model.

WHY IS IT IMPORTANT TO BALANCE THE DATA IN THE CONTEXT OF BUILDING A RECURRENT NEURAL
NETWORK FOR PREDICTING CRYPTOCURRENCY PRICE MOVEMENTS?

In the context of building a recurrent neural network (RNN) for predicting cryptocurrency price movements, it is
important to balance the data to ensure optimal performance and accurate predictions. Balancing the data
refers to addressing any class imbalance within the dataset, where the number of instances for each class is not
evenly distributed. This is crucial because an imbalanced dataset can lead to biased predictions and negatively
impact the overall performance of the RNN model.

There are several reasons why balancing the data is important in this context. Firstly, an imbalanced dataset
can introduce a bias towards the majority class, meaning that the model may become more inclined to predict
the majority class more frequently. This can be problematic when dealing with cryptocurrency price
movements, as the dataset may contain instances where the price remains relatively stable for a prolonged
period, while instances of significant price movements are relatively rare. Without balancing the data, the model
may struggle to accurately predict these rare but important instances of price movements.

Secondly, an imbalanced dataset can lead to poor generalization of the model. During the training process, the
model learns from the available data and tries to generalize patterns to make predictions on unseen instances.
However, if the data is imbalanced, the model may not be exposed to enough instances from the minority class
to effectively learn the patterns associated with it. As a result, the model may not perform well when predicting
instances from the minority class, which could be crucial for accurately predicting cryptocurrency price
movements.

Balancing the data can help address these issues and improve the performance of the RNN model. There are
different techniques that can be employed to balance the data, depending on the specific characteristics of the
dataset. One common technique is undersampling, where instances from the majority class are randomly
removed to match the number of instances in the minority class. Another technique is oversampling, where
instances from the minority class are duplicated or synthesized to match the number of instances in the
majority class. Additionally, more advanced techniques such as SMOTE (Synthetic Minority Over-sampling
Technique) can be used to generate synthetic instances for the minority class based on the existing instances.

By balancing the data, the RNN model can learn from a more representative and unbiased dataset, leading to
improved predictions. It ensures that the model is exposed to enough instances from both the majority and
minority classes, allowing it to learn the patterns associated with different price movements. This can result in a
more accurate and reliable prediction of cryptocurrency price movements, which is crucial for making informed
investment decisions in the volatile cryptocurrency market.

Balancing the data in the context of building a recurrent neural network for predicting cryptocurrency price
movements is essential to ensure optimal model performance and accurate predictions. It helps address class
imbalance issues, prevents bias towards the majority class, improves generalization, and allows the model to
learn patterns from both the majority and minority classes. By employing techniques such as undersampling,
oversampling, or SMOTE, the RNN model can make more accurate predictions and assist investors in navigating
the complex and dynamic world of cryptocurrency trading.

WHAT ARE THE STEPS INVOLVED IN MANUALLY BALANCING THE DATA IN THE CONTEXT OF
BUILDING A RECURRENT NEURAL NETWORK FOR PREDICTING CRYPTOCURRENCY PRICE
MOVEMENTS?

In the context of building a recurrent neural network (RNN) for predicting cryptocurrency price movements,
manually balancing the data is a crucial step to ensure the model's performance and accuracy. Balancing the
data involves addressing the issue of class imbalance, which occurs when the dataset contains a significant
difference in the number of instances between different classes or categories. This imbalance can lead to biased
predictions and hinder the model's ability to learn effectively.

To manually balance the data for training an RNN, several steps can be followed:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 83/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/why-is-it-important-to-balance-the-data-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/why-is-it-important-to-balance-the-data-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/what-are-the-steps-involved-in-manually-balancing-the-data-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/what-are-the-steps-involved-in-manually-balancing-the-data-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/what-are-the-steps-involved-in-manually-balancing-the-data-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

1. Data Collection: Collect a diverse dataset containing historical cryptocurrency price movements along with
relevant features. This dataset should cover a significant time period and include both positive and negative
price movements.

2. Data Preprocessing: Clean the collected data by removing any missing values, outliers, or irrelevant features.
Ensure that the dataset is in a suitable format for training the RNN.

3. Class Distribution Analysis: Analyze the distribution of the target variable (i.e., the price movement classes) in
the dataset. Identify the classes that are underrepresented or overrepresented. This analysis helps to
understand the severity of the class imbalance.

4. Data Augmentation: To address class imbalance, data augmentation techniques can be applied. These
techniques involve creating additional synthetic samples for the underrepresented classes. For example, if the
dataset has fewer instances of negative price movements, new instances can be generated by applying
transformations to the existing negative instances, such as adding noise or altering the time series data. This
process helps to balance the classes in the dataset.

5. Undersampling: Another approach to balancing the data is undersampling, which involves reducing the
number of instances from the overrepresented class to match the number of instances in the underrepresented
class. This technique can be applied when the dataset is large and removing some instances does not
significantly affect the overall representation of the data.

6. Oversampling: Oversampling is a technique where instances from the underrepresented class are replicated
or synthesized to match the number of instances in the overrepresented class. This technique can be applied
when the dataset is small, and generating new instances through data augmentation is not feasible.

7. Stratified Sampling: Stratified sampling is a technique that ensures the representation of all classes in both
the training and validation datasets. It involves randomly splitting the dataset while maintaining the class
distribution in each subset. This technique is particularly useful when the dataset is imbalanced.

8. Model Training: Once the data is balanced, the RNN model can be trained using the balanced dataset. The
model should be designed to handle sequential data and incorporate appropriate architecture, such as Long
Short-Term Memory (LSTM) or Gated Recurrent Units (GRU), to capture temporal dependencies.

9. Model Evaluation: After training the model, evaluate its performance using appropriate evaluation metrics
such as accuracy, precision, recall, and F1-score. These metrics will provide insights into the model's ability to
predict cryptocurrency price movements accurately.

By following these steps, the data used for training an RNN model to predict cryptocurrency price movements
can be manually balanced, addressing the issue of class imbalance and improving the model's performance.

WHY DO WE SHUFFLE THE "BUYS" AND "SELLS" LISTS AFTER BALANCING THEM IN THE CONTEXT OF
BUILDING A RECURRENT NEURAL NETWORK FOR PREDICTING CRYPTOCURRENCY PRICE
MOVEMENTS?

Shuffling the "buys" and "sells" lists after balancing them is a crucial step in building a recurrent neural network
(RNN) for predicting cryptocurrency price movements. This process helps to ensure that the network learns to
make accurate predictions by avoiding any biases or patterns that may exist in the sequential data.

When training an RNN, it is common to balance the dataset to prevent the model from being biased towards
predicting one class over the other. In the context of cryptocurrency price movements, the "buys" and "sells"
represent two different classes or labels. By balancing the dataset, we aim to have an equal representation of
both classes, which helps the model learn to make predictions without favoring one class over the other.

However, if we were to balance the dataset and feed it directly into the RNN without shuffling, the model might
still learn some unwanted patterns or biases. For example, if the "buys" were always listed before the "sells" in
the original dataset, the model might learn to associate certain patterns or features with the "buys" class and
others with the "sells" class. This could lead to inaccurate predictions when faced with real-world data where the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 84/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/why-do-we-shuffle-the-buys-and-sells-lists-after-balancing-them-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/why-do-we-shuffle-the-buys-and-sells-lists-after-balancing-them-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/why-do-we-shuffle-the-buys-and-sells-lists-after-balancing-them-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

order of "buys" and "sells" may vary.

Shuffling the balanced dataset helps to eliminate any potential biases or patterns that may exist due to the
original order of the data. By randomly reordering the "buys" and "sells" lists, we ensure that the model learns
to focus on the relevant features and patterns rather than relying on the order of the data. This enhances the
generalization capability of the model and allows it to make accurate predictions on unseen data.

To illustrate this point, let's consider a simplified example. Suppose we have a dataset with 100 "buys" and 100
"sells" samples. If we balance the dataset by randomly selecting 100 samples from each class, we would end up
with a balanced dataset of 200 samples. Now, if we shuffle this dataset, the order of the "buys" and "sells"
samples will be randomized. This randomness ensures that the model cannot rely on the order of the data and
must learn the underlying patterns and features instead.

Shuffling the "buys" and "sells" lists after balancing them is a crucial step in building an accurate RNN for
predicting cryptocurrency price movements. It helps to eliminate biases and patterns that may exist due to the
original order of the data, allowing the model to focus on the relevant features and make accurate predictions
on unseen data.

WHAT IS THE PURPOSE OF SPLITTING THE BALANCED DATA INTO INPUT (X) AND OUTPUT (Y) LISTS
IN THE CONTEXT OF BUILDING A RECURRENT NEURAL NETWORK FOR PREDICTING
CRYPTOCURRENCY PRICE MOVEMENTS?

In the context of building a recurrent neural network (RNN) for predicting cryptocurrency price movements, the
purpose of splitting the balanced data into input (X) and output (Y) lists is to properly structure the data for
training and evaluating the RNN model. This process is crucial for the effective utilization of RNNs in the
prediction of time series data, such as cryptocurrency prices.

The input (X) list contains the sequences of data that will be used as the basis for predicting the output (Y). In
the case of cryptocurrency price movements, the input list typically includes historical price data, along with
other relevant features such as trading volume, market sentiment, and technical indicators. These features are
organized into a sequential format, where each element in the list represents a specific point in time. For
example, the input list may consist of a sequence of daily closing prices for a given cryptocurrency over a
certain period.

The output (Y) list, on the other hand, represents the target variable that the RNN aims to predict. In the context
of cryptocurrency price movements, the output list usually contains binary labels indicating whether the price
will increase or decrease in the subsequent time step. This binary classification task allows the RNN to learn
patterns and relationships in the input data that can be used to make predictions about future price
movements.

By splitting the data into input (X) and output (Y) lists, we enable the RNN model to learn the temporal
dependencies and patterns present in the cryptocurrency price data. The RNN architecture is designed to
capture and utilize the sequential nature of the input data, allowing it to effectively model the dynamics and
trends in the time series. The input (X) sequences serve as the context for the RNN to learn from, while the
output (Y) labels provide the target for the model to predict.

Splitting the data into input (X) and output (Y) lists also facilitates the evaluation of the RNN model's
performance. During the training process, a portion of the data is typically held out as a validation set, which is
used to monitor the model's performance and prevent overfitting. By comparing the predicted output (Y) with
the actual labels in the validation set, we can assess the accuracy and generalization capability of the RNN
model.

Splitting the balanced data into input (X) and output (Y) lists is essential in the context of building a recurrent
neural network for predicting cryptocurrency price movements. It allows the model to learn from the sequential
nature of the data and make accurate predictions about future price movements. Furthermore, this data
splitting enables the evaluation of the model's performance and helps prevent overfitting.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 85/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/what-is-the-purpose-of-splitting-the-balanced-data-into-input-x-and-output-y-lists-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/what-is-the-purpose-of-splitting-the-balanced-data-into-input-x-and-output-y-lists-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/balancing-rnn-sequence-data/examination-review-balancing-rnn-sequence-data/what-is-the-purpose-of-splitting-the-balanced-data-into-input-x-and-output-y-lists-in-the-context-of-building-a-recurrent-neural-network-for-predicting-cryptocurrency-price-movements/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS DIDACTIC MATERIALS
LESSON: RECURRENT NEURAL NETWORKS
TOPIC: CRYPTOCURRENCY-PREDICTING RNN MODEL

INTRODUCTION

Artificial Intelligence - Deep Learning with Python, TensorFlow and Keras - Recurrent neural networks -
Cryptocurrency-predicting RNN Model

Artificial Intelligence (AI) has revolutionized various industries, and one area where it has made a significant
impact is in the field of finance. With the rise of cryptocurrencies, predicting their market trends and making
informed decisions has become crucial. In this didactic material, we will explore how to build a cryptocurrency-
predicting Recurrent Neural Network (RNN) model using Python, TensorFlow, and Keras.

Recurrent Neural Networks (RNNs) are a type of deep learning model that is well-suited for sequential data
analysis. Unlike traditional feedforward neural networks, RNNs have connections that allow information to flow
in a loop, enabling them to capture temporal dependencies in the data. This makes RNNs particularly useful for
time series analysis, such as predicting cryptocurrency prices.

To get started, we need to set up our development environment. We will be using Python, an open-source
programming language, along with TensorFlow, a popular deep learning framework, and Keras, a high-level
neural networks API. Make sure you have these installed on your machine before proceeding.

Once our environment is set up, we can start building our RNN model. The first step is to gather historical
cryptocurrency data, which will serve as our training dataset. This data should include relevant features such as
the opening and closing prices, trading volume, and any other variables that might impact the cryptocurrency's
value.

Next, we preprocess the data to prepare it for training. This involves normalizing the values, splitting the
dataset into training and testing sets, and possibly applying other techniques such as feature scaling or
dimensionality reduction. It is essential to ensure that our data is properly formatted and representative of the
real-world scenarios we want to predict.

With the preprocessed data in hand, we can now define our RNN architecture. In this case, we will use a Long
Short-Term Memory (LSTM) network, a type of RNN that can effectively capture long-term dependencies. LSTMs
have internal memory cells that allow them to remember information over extended periods, making them
suitable for analyzing time series data.

The architecture of our LSTM-based RNN model consists of an input layer, one or more LSTM layers, and an
output layer. The input layer takes in the historical data, and the LSTM layers process this information, capturing
patterns and trends. Finally, the output layer produces the predicted cryptocurrency prices.

Training our RNN model involves feeding the training dataset through the network and adjusting the model's
parameters to minimize the difference between the predicted and actual cryptocurrency prices. This process is
known as backpropagation, where the model learns from its mistakes and updates its weights accordingly. We
repeat this process for multiple epochs until the model converges and achieves satisfactory performance.

Once our RNN model is trained, we can evaluate its performance using the testing dataset. We calculate various
metrics such as Mean Absolute Error (MAE) or Root Mean Squared Error (RMSE) to assess how well our model
predicts cryptocurrency prices. It is essential to note that the accuracy of our predictions depends on the quality
of the training data and the complexity of the underlying market dynamics.

To make predictions on new, unseen data, we can feed it into our trained RNN model and obtain the predicted
cryptocurrency prices. This enables us to make informed decisions based on the model's output, such as buying
or selling cryptocurrencies at specific price points.

Building a cryptocurrency-predicting RNN model using Python, TensorFlow, and Keras allows us to leverage the
power of deep learning to analyze time series data and make predictions about cryptocurrency prices. By

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 86/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/
https://eitca.org/programmes/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/lessons/recurrent-neural-networks/topic/cryptocurrency-predicting-rnn-model/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

understanding the fundamentals of RNNs, preprocessing data, defining the model architecture, training, and
evaluating the model, we can develop accurate and reliable cryptocurrency prediction models.

DETAILED DIDACTIC MATERIAL

In this topic, we will continue our exploration of deep learning with Python, TensorFlow, and Keras by building a
recurrent neural network (RNN) to predict future price movements of a cryptocurrency. This RNN will be trained
using historical price and volume data of the cryptocurrency, as well as data from other major cryptocurrencies.

To begin, we need to import the necessary libraries. We will import TensorFlow as TF and Keras' Sequential
model from tensorflow.keras.models. Additionally, we will import various layers and callbacks from
tensorflow.keras.layers and tensorflow.keras.callbacks, respectively. These include Dense, Dropout, LSTM, and
BatchNormalization.

Next, we define some constants. The first constant is "epochs," which determines the number of training epochs
for our model. We will start with a value of 64, but this can be adjusted later. The second constant is
"batch_size," which determines the number of samples per gradient update. We will start with a value of 64 as
well. Lastly, we define a name for our model using an F-string. This name should be descriptive and unique,
allowing for easy comparison of different models.

With the necessary libraries imported and constants defined, we can now proceed to build our model. We create
a Sequential model using "model = tf.keras.models.Sequential()". We then add layers to our model using
"model.add()". The first layer we add is an LSTM layer with 128 nodes. We set "return_sequences=True" to
indicate that the next layer will also be an LSTM layer. This ensures that the output of each LSTM layer is fed as
input to the next LSTM layer.

After the LSTM layer, we add a Dropout layer with a dropout rate of 0.2 to prevent overfitting. We then add a
BatchNormalization layer to normalize the data between layers. Batch normalization is useful for ensuring that
the input data to each layer is normalized, improving the overall performance of the model.

Once we have added all the layers to our model, we can proceed to train it. We will use the "fit()" function to
train our model using the training data. We will also use the "evaluate()" function to evaluate the model's
performance on the validation data. Additionally, we can use callbacks such as TensorBoard and
ModelCheckpoint to save checkpoints of the model during training.

By following these steps, we can build a recurrent neural network model using Python, TensorFlow, and Keras to
predict future price movements of a cryptocurrency based on historical data.

Batch normalization is a technique used in deep learning to normalize the inputs of each layer, which helps in
improving the performance and stability of the model. In the given code snippet, batch normalization is applied
before the dense layer. This technique does not have any parameters.

The code snippet also includes the addition of a dense layer with 128 units. The return sequences parameter is
removed, indicating that this layer is not a recurrent layer. Then, another dense layer with 128 units is added,
followed by a final dense layer with 128 units. The dropout parameter is set to 0.1, although 0.2 might also work
well.

A dense layer with 32 units and a rectified linear activation function is added to the model. Either tanh or
rectified linear activation functions can be used, as they are commonly used with the CuDNNLSTM layer.

The next step is to specify the optimizer. In this case, the Adam optimizer from the TensorFlow Keras library is
used. The learning rate is set to 0.001, the decay rate to 1e-6, and the DK (decay step) to 1e-3.

The model is then compiled, with the loss function set to sparse categorical cross-entropy. The binary cross-
entropy can also be used. The metric chosen for evaluation is accuracy.

Callbacks are defined next. The first callback is for TensorBoard, which is used for visualizing the training
process. The log directory is specified as 'logs'.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 87/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

The second callback is for model checkpointing. The file path is defined as
'checkpoint/epoch-{epoch:02d}-{val_accuracy:.2f}'. This callback saves the model weights at the end of each
epoch.

Finally, the model is trained using the fit function. The training data (train_X and train_Y) and validation data
(validation_X and validation_Y) are passed as arguments. The batch size and number of epochs are set
according to the variables defined earlier. The callbacks for TensorBoard and model checkpointing are also
passed.

After training, the model is saved using the save function.

This code snippet demonstrates the process of building a recurrent neural network model for predicting
cryptocurrency prices. It includes the use of batch normalization, dense layers, activation functions, optimizers,
loss functions, and callbacks for monitoring the training process.

In this didactic material, we discuss the application of recurrent neural networks (RNNs) in predicting
cryptocurrency prices. Specifically, we will focus on the implementation of a cryptocurrency-predicting RNN
model using Python, TensorFlow, and Keras.

Before we dive into the details of the RNN model, let's first address the importance of properly naming and
organizing our model files. It is crucial to include a timestamp or some form of unique identifier in the file name
to avoid overwriting previous models. This will help us keep track of different versions of our model and avoid
potential data loss.

Now, let's move on to the implementation of the RNN model. We start by defining the log directory for our
model, which will store the training logs. It is important to note that the log directory should be consistent
throughout the code. In this case, we encounter a discrepancy in the variable name, which can be confusing.
We should ensure that the variable name is consistent to avoid any confusion during the implementation.

To monitor the progress of our model, we can use a browser-based tool such as TensorBoard. By accessing the
provided URL, we can visualize various metrics such as validation loss and accuracy. It is worth noting that
validation accuracy is calculated at the end of each epoch, while accuracy is calculated for the entire epoch.
This can sometimes result in slightly higher validation accuracy due to the model's learning progress during the
epoch.

Moving on to the results, we observe that the validation loss and accuracy for different cryptocurrencies vary.
For example, when predicting Ethereum (ETH) prices, we see a consistent trend in validation accuracy and loss.
The same applies to other cryptocurrencies like Litecoin (LTC) and Bitcoin Cash (BCH). However, Bitcoin (BTC)
exhibits a more fluctuating pattern, indicating potential challenges in accurately predicting its prices.

It is important to mention that the results presented here are specific to the dataset used and the
implementation of the RNN model. Different datasets or variations in the model architecture may yield different
results. Therefore, it is crucial to experiment with different approaches and datasets to obtain the most accurate
predictions.

This didactic material has provided an overview of the implementation of a cryptocurrency-predicting RNN
model using Python, TensorFlow, and Keras. We have discussed the importance of proper file naming and
organization, monitoring the model's progress using TensorBoard, and analyzing the results obtained for
different cryptocurrencies. Remember that further experimentation and exploration are necessary to improve
the accuracy of cryptocurrency price predictions.

It is important to note that while the initial results of this model seem promising, caution must be exercised.
Projects like these are prone to mistakes, and there may be bugs or limitations in the model. Therefore, it is
recommended to use this model for educational purposes only and at your own risk.

To improve the accuracy of the model, additional features beyond pricing and volume can be incorporated. This
may include factors such as market sentiment, news sentiment, or social media trends. By expanding the
feature set, the model can capture more nuanced patterns and potentially improve its predictive capabilities.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 88/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

Once the model is trained, it can be used to make predictions on new, unseen data. The model takes in the
relevant features and outputs a prediction of the cryptocurrency movement. These predictions can be further
analyzed and used to inform trading decisions.

The use of deep learning techniques, specifically recurrent neural networks, in predicting cryptocurrency
movements shows promising results. By leveraging Python, TensorFlow, and Keras, we can develop a
cryptocurrency-predicting RNN model that can potentially assist in making informed trading decisions. However,
it is crucial to exercise caution and understand the limitations and potential risks associated with such models.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 89/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS - RECURRENT NEURAL
NETWORKS - CRYPTOCURRENCY-PREDICTING RNN MODEL - REVIEW QUESTIONS:

WHAT ARE THE NECESSARY LIBRARIES THAT NEED TO BE IMPORTED FOR BUILDING A RECURRENT
NEURAL NETWORK (RNN) MODEL IN PYTHON, TENSORFLOW, AND KERAS?

To build a recurrent neural network (RNN) model in Python using TensorFlow and Keras for the purpose of
predicting cryptocurrency prices, we need to import several libraries that provide the necessary functionalities.
These libraries enable us to work with RNNs, handle data processing and manipulation, perform mathematical
operations, and visualize the results. In this answer, we will discuss the key libraries required for building the
RNN model.

1. TensorFlow: TensorFlow is an open-source deep learning library widely used for building and training neural
networks. It provides a flexible architecture to create and deploy machine learning models efficiently. To import
TensorFlow in Python, you can use the following code:

1. import tensorflow as tf

2. Keras: Keras is a high-level neural networks API that runs on top of TensorFlow. It simplifies the process of
building and training deep learning models by providing a user-friendly interface. Keras also supports RNNs,
making it a suitable choice for our cryptocurrency-predicting RNN model. To import Keras, you can use the
following code:

1. from tensorflow import keras

3. NumPy: NumPy is a fundamental library for scientific computing in Python. It provides support for large, multi-
dimensional arrays and a collection of functions to operate on these arrays efficiently. NumPy is widely used in
deep learning applications for data manipulation and numerical computations. To import NumPy, you can use
the following code:

1. import numpy as np

4. Pandas: Pandas is a powerful library for data manipulation and analysis. It provides data structures and
functions to efficiently handle structured data, such as time series data. In our cryptocurrency-predicting RNN
model, Pandas can be used to load and preprocess the data before feeding it into the RNN. To import Pandas,
you can use the following code:

1. import pandas as pd

5. Matplotlib: Matplotlib is a plotting library that allows us to create various types of visualizations, such as line
plots, scatter plots, and histograms. It is useful for visualizing the cryptocurrency price data and the predictions
made by our RNN model. To import Matplotlib, you can use the following code:

1. import matplotlib.pyplot as plt

6. Scikit-learn: Scikit-learn is a machine learning library that provides a wide range of tools for data
preprocessing, model selection, and evaluation. In our RNN model, Scikit-learn can be used for splitting the data
into training and testing sets and evaluating the performance of the model. To import Scikit-learn, you can use

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 90/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/what-are-the-necessary-libraries-that-need-to-be-imported-for-building-a-recurrent-neural-network-rnn-model-in-python-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/what-are-the-necessary-libraries-that-need-to-be-imported-for-building-a-recurrent-neural-network-rnn-model-in-python-tensorflow-and-keras/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

the following code:

1. import sklearn

These are the key libraries that need to be imported for building a cryptocurrency-predicting RNN model in
Python using TensorFlow and Keras. By utilizing the functionalities provided by these libraries, we can
effectively construct, train, and evaluate our RNN model for cryptocurrency price prediction.

WHAT IS THE PURPOSE OF BATCH NORMALIZATION IN DEEP LEARNING MODELS AND WHERE IS IT
APPLIED IN THE GIVEN CODE SNIPPET?

Batch normalization is a technique commonly used in deep learning models to improve the training process and
overall performance of the model. It is particularly effective in deep neural networks, such as recurrent neural
networks (RNNs), which are commonly used for sequence data analysis, including cryptocurrency prediction
tasks. In this code snippet, batch normalization is applied to the input layer of the RNN model.

The purpose of batch normalization is to address the internal covariate shift problem, which refers to the
change in the distribution of the input data to each layer during the training process. This shift can make it
difficult for the model to converge and slows down the training process. Batch normalization helps to overcome
this problem by normalizing the inputs to each layer, making the optimization process more stable and efficient.

In the given code snippet, batch normalization is applied to the input layer of the RNN model using the
`BatchNormalization()` function from the Keras library. This function is added as a layer in the model
architecture, immediately after the input layer. The `BatchNormalization()` function takes the input tensor and
normalizes it by subtracting the mean and dividing by the standard deviation of the batch. This normalization
process ensures that the input data has zero mean and unit variance, which helps in stabilizing the training
process.

Here is an example of how batch normalization is applied in the code snippet:

1. from keras.models import Sequential
2. from keras.layers import LSTM, Dense, BatchNormalization
3. # Define the model architecture
4. model = Sequential()
5. model.add(BatchNormalization(input_shape=(timesteps, input_dim)))
6. model.add(LSTM(units=64, return_sequences=True))
7. model.add(Dense(units=1, activation='sigmoid'))
8. # Compile and train the model
9. model.compile(optimizer='adam', loss='binary_crossentropy')
10. model.fit(X_train, y_train, epochs=10, batch_size=32)

In this example, the `BatchNormalization()` layer is added to the model immediately after the input layer. The
`input_shape` parameter specifies the shape of the input data, which includes the number of timesteps and the
dimensionality of each timestep. The batch normalization layer normalizes the input data before passing it to
the subsequent layers.

By applying batch normalization to the input layer, the model can benefit from improved training stability and
faster convergence. It helps in reducing the internal covariate shift, allowing the subsequent layers to learn
more efficiently. This can lead to better generalization and improved performance of the model.

Batch normalization is a technique used in deep learning models to address the internal covariate shift problem.
It is applied to normalize the inputs to each layer, making the training process more stable and efficient. In the
given code snippet, batch normalization is applied to the input layer of the RNN model to improve its training
process and overall performance.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 91/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/what-is-the-purpose-of-batch-normalization-in-deep-learning-models-and-where-is-it-applied-in-the-given-code-snippet/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/what-is-the-purpose-of-batch-normalization-in-deep-learning-models-and-where-is-it-applied-in-the-given-code-snippet/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

HOW MANY DENSE LAYERS ARE ADDED TO THE MODEL IN THE GIVEN CODE SNIPPET, AND WHAT IS
THE PURPOSE OF EACH LAYER?

In the given code snippet, there are three dense layers added to the model. Each layer serves a specific
purpose in enhancing the performance and predictive capabilities of the cryptocurrency-predicting RNN model.

The first dense layer is added after the recurrent layer in order to introduce non-linearity and capture complex
patterns in the data. This layer helps in transforming the output of the recurrent layer into a more meaningful
representation for further processing. By applying a set of weights and biases, the dense layer performs a linear
transformation of the input data and applies an activation function to introduce non-linearity. This allows the
model to learn more intricate relationships between the input features and the target variable. The number of
neurons in this dense layer determines the dimensionality of the output space.

The second dense layer in the code snippet is added to further refine the learned representations from the
previous layer. It helps in extracting higher-level features and patterns by applying another linear
transformation and activation function. This additional layer of non-linearity enables the model to capture more
abstract and complex dependencies in the cryptocurrency data. The number of neurons in this layer can be
adjusted based on the complexity of the problem and the amount of available training data.

The third and final dense layer is added as the output layer of the model. This layer is responsible for producing
the final predictions for the cryptocurrency values. The number of neurons in this layer corresponds to the
number of output classes or the dimensionality of the target variable. In this case, since the goal is to predict
cryptocurrency values, the output layer would typically have a single neuron. The activation function used in the
output layer depends on the nature of the problem. For regression tasks, a linear activation function can be
used, while for classification tasks, a suitable activation function such as sigmoid or softmax is employed.

By adding these dense layers, the model becomes capable of learning complex representations and making
predictions based on the learned features. The non-linear transformations introduced by the dense layers allow
the model to capture intricate patterns and relationships in the cryptocurrency data, leading to improved
predictive performance.

To summarize, the given code snippet includes three dense layers in the cryptocurrency-predicting RNN model.
The first dense layer captures non-linear relationships, the second layer extracts higher-level features, and the
third layer serves as the output layer for making predictions. Each layer plays a crucial role in enhancing the
model's predictive capabilities.

WHAT OPTIMIZER IS USED IN THE MODEL, AND WHAT ARE THE VALUES SET FOR THE LEARNING
RATE, DECAY RATE, AND DECAY STEP?

The optimizer used in the Cryptocurrency-predicting RNN Model is the Adam optimizer. The Adam optimizer is a
popular choice for training deep neural networks due to its adaptive learning rate and momentum-based
approach. It combines the benefits of two other optimization algorithms, namely AdaGrad and RMSProp, to
provide efficient and effective optimization.

The learning rate is a hyperparameter that determines the step size at which the optimizer updates the model's
parameters during training. In the Cryptocurrency-predicting RNN Model, the learning rate is set to 0.001. This
value was chosen based on empirical experimentation and fine-tuning to achieve good convergence and
performance.

The decay rate and decay step refer to the parameters used for learning rate decay. Learning rate decay is a
technique used to gradually reduce the learning rate during training to improve convergence and prevent
overshooting. In the Cryptocurrency-predicting RNN Model, a decay rate of 0.5 and a decay step of 10000 are
used.

The decay rate of 0.5 means that the learning rate will be multiplied by 0.5 at each decay step. This gradual
reduction allows the optimizer to make larger updates initially and smaller updates as training progresses,
which can help the model converge to a better solution.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 92/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/how-many-dense-layers-are-added-to-the-model-in-the-given-code-snippet-and-what-is-the-purpose-of-each-layer/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/how-many-dense-layers-are-added-to-the-model-in-the-given-code-snippet-and-what-is-the-purpose-of-each-layer/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/what-optimizer-is-used-in-the-model-and-what-are-the-values-set-for-the-learning-rate-decay-rate-and-decay-step/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/what-optimizer-is-used-in-the-model-and-what-are-the-values-set-for-the-learning-rate-decay-rate-and-decay-step/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

The decay step of 10000 indicates that the learning rate will be decayed every 10000 training steps. This value
was chosen based on the characteristics of the dataset and the desired training behavior. By decaying the
learning rate at regular intervals, the model can adapt to changing dynamics in the data and potentially avoid
getting stuck in local minima.

To illustrate the effect of learning rate decay, consider the following example. Suppose the initial learning rate is
0.001 and the decay rate is 0.5 with a decay step of 10000. After 10000 training steps, the learning rate will be
reduced to 0.001 * 0.5 = 0.0005. After another 10000 steps, it will be further reduced to 0.0005 * 0.5 =
0.00025, and so on.

The Cryptocurrency-predicting RNN Model uses the Adam optimizer with a learning rate of 0.001, a decay rate
of 0.5, and a decay step of 10000. These values were chosen based on experimentation and fine-tuning to
achieve optimal convergence and performance.

WHAT ARE THE TWO CALLBACKS USED IN THE CODE SNIPPET, AND WHAT IS THE PURPOSE OF EACH
CALLBACK?

In the given code snippet, there are two callbacks used: "ModelCheckpoint" and "EarlyStopping". Each callback
serves a specific purpose in the context of training a recurrent neural network (RNN) model for cryptocurrency
prediction.

The "ModelCheckpoint" callback is used to save the best model during the training process. It allows us to
monitor a specific metric, such as validation loss or accuracy, and save the model weights whenever the
monitored metric improves. This callback is particularly useful when training deep learning models, as it allows
us to preserve the best performing model and avoid losing progress in case of interruptions or overfitting. By
saving the best model, we can later load it and make predictions or continue training from that point.

Here is an example of how the "ModelCheckpoint" callback can be used in the given code snippet:

1. from tensorflow.keras.callbacks import ModelCheckpoint
2. # Define the callback
3. checkpoint_callback = ModelCheckpoint(filepath='best_model.h5',
4. monitor='val_loss',
5. save_best_only=True)
6. # During model training, include the callback in the callbacks list
7. model.fit(X_train, y_train,
8. validation_data=(X_val, y_val),
9. callbacks=[checkpoint_callback])

In this example, the callback is created with the specified file path to save the best model, and the metric to
monitor is validation loss. The `save_best_only` parameter ensures that only the best model is saved,
overwriting any previous models that may have been saved.

The second callback used in the code snippet is "EarlyStopping". This callback is employed to stop the training
process early if a certain condition is met. It helps prevent overfitting by monitoring a specified metric, such as
validation loss, and stopping the training if the monitored metric does not improve for a certain number of
epochs. Early stopping can save computational resources and prevent the model from learning patterns that are
specific to the training data but do not generalize well to unseen data.

Here is an example of how the "EarlyStopping" callback can be used in the given code snippet:

1. from tensorflow.keras.callbacks import EarlyStopping
2. # Define the callback
3. early_stopping_callback = EarlyStopping(monitor='val_loss',
4. patience=3)
5. # During model training, include the callback in the callbacks list
6. model.fit(X_train, y_train,
7. validation_data=(X_val, y_val),
8. callbacks=[early_stopping_callback])

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 93/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/what-are-the-two-callbacks-used-in-the-code-snippet-and-what-is-the-purpose-of-each-callback/
https://eitca.org/artificial-intelligence/eitc-ai-dlptfk-deep-learning-with-python-tensorflow-and-keras/recurrent-neural-networks/cryptocurrency-predicting-rnn-model/examination-review-cryptocurrency-predicting-rnn-model/what-are-the-two-callbacks-used-in-the-code-snippet-and-what-is-the-purpose-of-each-callback/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/AI/DLPTFK DEEP LEARNING WITH PYTHON, TENSORFLOW AND KERAS

In this example, the callback is created with the specified metric to monitor (validation loss) and the patience
parameter set to 3. The patience parameter determines the number of epochs to wait before stopping the
training if the monitored metric does not improve.

To summarize, the "ModelCheckpoint" callback is used to save the best model during training, while the
"EarlyStopping" callback is employed to stop the training early if the monitored metric does not improve. Both
callbacks play crucial roles in improving the performance and efficiency of the RNN model for cryptocurrency
prediction.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 94/94

https://eitca.org
https://eitca.org/certification/eitc-ai-dlptfk-deep-learning-with-python,-tensorflow-and-keras/
https://eitci.org

	Table Of Contents
	Introduction
	Deep learning with Python, TensorFlow and Keras

	Data
	Loading in your own data

	Convolutional neural networks (CNN)
	Introduction to convolutional neural networks (CNN)

	TensorBoard
	Analyzing models with TensorBoard
	Optimizing with TensorBoard
	Using trained model

	Recurrent neural networks
	Introduction to Recurrent Neural Networks (RNN)
	Introduction to Cryptocurrency-predicting RNN
	Normalizing and creating sequences Crypto RNN
	Balancing RNN sequence data
	Cryptocurrency-predicting RNN Model

