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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: INTRODUCTION
TOPIC: THEORETICAL INTRODUCTION

Welcome to this didactic material on the fundamentals of computational complexity theory in the field of
cybersecurity. In this material, we will provide a theoretical introduction to the topic.

Before we consider the content, it is important to have some background knowledge. In this series of materials,
we will be discussing sets extensively. Therefore, it is important to understand the notation we will be using. If
you encounter any unfamiliar concepts in this material, it is recommended to review the relevant material from
any relevant source before proceeding, for example from Wikipedia:
https://en.wikipedia.org/wiki/Set_(mathematics).

Let us begin by discussing sets. We will represent the set of natural numbers, which includes positive integers
starting from 1, using the symbol N. This set is infinite. Additionally, we may also encounter negative numbers,
which can be represented by the symbol Z, denoting the set of all integers. The symbol @ with a slash through it
represents the empty set, which has no elements. We may also use a pair of braces {} to indicate a set with
zero elements.

In the realm of sets, we have various operations at our disposal. We can perform union and intersection
operations on sets. Furthermore, we can also inquire about the elements not present in a set. However, it is
important to note that these operations assume the existence of a universe of elements from which we can
identify the elements that may or may not be part of a set.

To illustrate the concept of cross products, we use a symbol that resembles an X. The cross product of two sets,
denoted as set S and set T, forms a pair of elements, with one element drawn from set S and the other from set
T. For example, if we take the cross product of the set N with itself (N x N), we are referring to pairs of natural
numbers, i.e., pairs of positive integers (i, j) where both i and j are greater than or equal to one.

In our discussions, we will often encounter tuples represented in the following format: {element | constraints}.
Here, the braces {} indicate a set, an L represents an element, and the vertical bar | separates the element
from the additional constraints. For instance, a tuple with two elements will be included in the set if the first
element is greater than or equal to one and the second element is also greater than or equal to one.

Sequences of symbols are another concept we will explore. If we have a set, we can inquire about the set of all
its subsets, known as the power set. The power set of set S is denoted as P(S) and encompasses all possible
subsets of S.

To aid our understanding of sets, we can utilize Venn diagrams, which visually represent the intersection of two
sets.

Functional notation is essential in our discussions. Functions, denoted as f, take elements from one set, known
as the domain set, and map them to another set, called the range set. For example, if we have a function f that
takes a value X from the domain and yields a value Y in the range, we can express it as f(X) = Y. Functions can
be unary, taking a single argument, or they can be binary or higher arity, taking two or more arguments.

In terms of notation, functions can be represented using either prefix or infix notation. Prefix notation places the
function symbol before its arguments, while infix notation places the function symbol between its arguments.
For instance, the negation operation (-a) uses prefix notation, while the addition operator (a + b) uses infix
notation.

When dealing with binary or higher arity functions, the domain becomes a set of tuples. For example, a binary
relation G may take two natural numbers as arguments, and its domain can be represented as N x N, indicating
that it takes two arguments and yields a single natural number as a result. In some cases, the range can be the
boolean set, consisting of true or false values. Functions that map elements from the domain to true or false are
called predicates. Predicates that take a single argument are referred to as properties, while those that take
multiple arguments are known as relations.
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An example of a property is the "is odd" property, which can be applied to any integer. When applied to the
number 4, the property yields false, while when applied to the number 5, it yields true. This demonstrates that
the property "is odd" is a predicate that takes one argument.

This concludes our theoretical introduction to computational complexity theory in the field of cybersecurity. Stay
tuned for more materials that will delve deeper into the topic.

A binary relation is a type of relation that takes two arguments and returns either true or false. It is commonly
represented using functional notation or infix notation. For example, the less than relation can be represented
as X is less than Y.

Binary relations can have certain properties. A reflexive relation is one where every element is related to itself.
An example of a reflexive relation is the equal relation, where X is always equal to itself. On the other hand, an
irreflexive relation is one where no element is related to itself.

Symmetric properties in binary relations imply that if one element is related to another, then the reverse is also
true. For example, the equal relation is symmetric because if X equals Y, then Y also equals X. However, the less
than relation is not symmetric because if X is less than Y, it does not imply that Y is less than X.

Transitive relations are those where if X is related to Y and Y is related to Z, then X is related to Z. The less than
relation is transitive because if X is less than Y and Y is less than Z, then X is less than Z.

In the context of computational complexity theory, graphs play a important role. A graph consists of vertices
(also called nodes) and edges that connect them. The edges can be directed or undirected, and the nodes and
edges can be labeled or unlabeled.

Subgraphs refer to a subset of nodes and the edges that connect them, ignoring the remaining nodes and edges
of the larger graph. Connected components are subgraphs where all nodes are connected to each other, while
unconnected components have nodes that are not connected to each other.

Paths in a graph refer to a sequence of nodes connected by edges. In a directed graph, the path must follow the
direction of the edges. Cycles occur when a path forms a closed loop, returning to the starting node.

In directed graphs, the in-degree of a node refers to the number of edges that come into that node, while the
out-degree refers to the number of edges that go out of that node.

There is a strong connection between binary relations and directed graphs. Each node in the graph corresponds
to an element in the domain of the binary relation. If the relation holds between two elements, there will be a
directed edge from one node to another in the graph. Therefore, there is a one-to-one correspondence between
directed graphs and binary relations.

Understanding these fundamental concepts of computational complexity theory is essential for studying
cybersecurity and analyzing the efficiency and complexity of algorithms.

In the field of cybersecurity, it is important to understand the fundamentals of computational complexity theory.
One key concept in this theory is the study of graphs, specifically trees. A tree is a special type of graph with
directed edges. These edges indicate a definite direction, with the arrowhead pointing from the parent node to
the child node. In a tree, there are no cycles, meaning that it is not possible to go back up from a child node to a
parent node. Additionally, a tree has a distinguished root node and leaves, which have an out degree of 0,
meaning they have no edges going out. The interior nodes of a tree can have a degree greater than 1.

Another type of directed graph is known as a directed acyclic graph (DAG). Similar to a tree, a DAG has directed
edges and no cycles. However, a DAG can have multiple root nodes and nodes with multiple parents. This allows
for more flexibility in the structure of the graph.

In the context of computational complexity theory, strings play a significant role. Before defining a string, it is
important to establish an alphabet, which is a finite set of symbols. For example, an alphabet could consist of
the letters A, B, C, and D. A string is then defined as a sequence of symbols, with a first symbol and a last
symbol. Importantly, a string is finite, meaning it has a definite length and a finite humber of symbols. The
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length of a string can be determined by counting the number of symbols it contains. It is also possible to have
an empty string, denoted by the lowercase epsilon symbol (€), which has a length of zero.

Concatenation is another operation that can be performed on strings. It involves combining two strings together
by placing them next to each other.

Understanding these fundamental concepts of computational complexity theory, such as trees, DAGs, and
strings, is important in the field of cybersecurity. These concepts provide a foundation for analyzing and solving
complex problems related to computational systems and algorithms.

A language is a set of strings over some alphabet. For example, if we have the alphabet Sigma, we can define a
language L1 consisting of four strings, each with a length of two. Another example is the language L2, which
contains an infinite number of strings with varying lengths. L2 includes the empty string, denoted as Epsilon.
The lengths of the strings in L2 are 0, 2, 4, 6, and so on.

It is important to distinguish between the empty string and the empty language. The empty string has a length
of 0, while the empty language has a size of 0. The empty language is denoted as an empty set symbol or with
braces.

There are multiple ways to describe a language. One way is to enumerate the strings in the set. This method is
suitable for finite sets or when using the dot dot dot notation to represent an imprecise number of strings.
Regular expressions are another way to describe a set of strings. They use symbols and operators to define
patterns in the strings. However, not all languages can be described using regular expressions.

Context-free grammars are another method for specifying a language. These grammars consist of rules that
define the structure and formation of strings in the language. They are powerful but cannot describe all
languages. Set notation is also commonly used to describe languages, where conditions are specified for the
elements in the set.

In the context of boolean logic, the boolean operators "and" and "or" are denoted by the symbols upside-down V
and V, respectively. These operators are used to combine boolean values or expressions.

In the field of cybersecurity, understanding computational complexity theory is important. This theory focuses
on the study of the resources required to solve computational problems. In this didactic material, we will provide
a theoretical introduction to computational complexity theory.

Boolean logic is a fundamental concept in computational complexity theory. It deals with binary variables and
logical operations such as conjunction, disjunction, negation, exclusive or, equality, and implication.
Conjunction, represented by the symbol "and", returns true only if both operands are true. Disjunction,
represented by the symbol "or", returns true if at least one operand is true. Negation, represented by a
horizontal bar or the symbol "not", reverses the truth value of an operand. Exclusive or, represented by the
symbol "xor", returns true if exactly one operand is true. Equality, represented by a double-headed arrow or an
equal sign, indicates that two expressions have the same boolean value. Implication, represented by a single or
double arrow, returns false only if the antecedent is true and the consequent is false.

There are several laws in boolean logic that are important to understand. The distribution laws state that
conjunction distributes over disjunction, and disjunction distributes over conjunction. De Morgan's laws are also
significant. They state that the negation of a disjunction is equivalent to the conjunction of the negations of its
operands, and the negation of a conjunction is equivalent to the disjunction of the negations of its operands.
These laws can be represented using boolean operators, set operators, or Venn diagrams.

Moving on to first-order logic, also known as first-order predicate logic or predicate calculus, it extends boolean
logic by introducing variables, quantifiers, and predicates. The universal quantifier, represented by an upside-
down "A", indicates that a statement holds true for all values of a variable in a given universe. The existential
quantifier, represented by a backwards "E", indicates that a statement holds true for at least one value of a
variable in the universe.

An example from first-order logic demonstrates the use of quantifiers. Suppose we have the statement "For all
X, if X is a man, then X is mortal." This statement expresses a general rule that applies to all men. If we also
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know the fact "Socrates is a man", we can conclude that "Socrates is mortal" using logical implication. This
logical deduction can be performed mechanically with computers.

Understanding these fundamental concepts in computational complexity theory, such as boolean logic and first-
order logic, is essential for analyzing the complexity of algorithms and designing secure systems.

In the field of cybersecurity, one of the fundamental concepts is the study of computational complexity theory.
This theory focuses on understanding the complexity of algorithms and problems in terms of their time and
space requirements.

To begin our exploration of computational complexity theory, it is important to understand the basic elements
of logic that underpin this field. We deal with universal objects, which can be either people or things, and their
relations. Statements in this context can be classified as either true or false. Additionally, we have well-formed
formulas that follow a specific syntax. For example, we may encounter statements like "for all X, if P is true,
then there exists a Y such that both R and P are true for X and Y." In this statement, we observe logical
operations such as conjunction, disjunction, and implication. We may also encounter negations, predicates (such
as P and R), and functions (such as F and G). These examples belong to the realm of first-order predicate logic,
which allows us to express a wide range of concepts.

As with any mathematical discipline, computational complexity theory relies on definitions, proofs, and
theorems. Definitions are important to understanding the terminology and symbols used in this field. It is
essential to grasp these definitions before delving deeper into the subject matter. Once we have a solid
foundation of definitions, we can explore the theorems, which are statements of fact that have been proven to
be true. Unlike theories, theorems are established truths with supporting evidence. A proof is a mathematical
argument that justifies the truth of a theorem. It can range from a concise and rigorous formal argument to a
more informal explanation. Regardless of the form, a proof is necessary to establish the validity of a theorem. In
some cases, proofs can be complex and require significant effort to comprehend and accept.

In addition to theorems, we encounter lemmas in computational complexity theory. A lemma is a true statement
that serves as a building block for larger proofs. It is not typically useful on its own but contributes to the overall
proof of a more significant theorem. Often, complex proofs are broken down into smaller lemmas that are
proven independently before being integrated into the larger proof.

Corollaries are another type of statement we encounter in computational complexity theory. These are derived
statements that follow logically from a theorem. Corollaries are often obvious consequences of the main
theorem and may not require a separate proof. They provide additional insights and implications of the main
result.

In the realm of computational complexity theory, we also come across conjectures. A conjecture is an unproven
statement that may or may not be true. These conjectures present interesting challenges as researchers strive
to find proofs or counterexamples to support or refute them. Throughout our exploration, we will encounter
some conjectures that have yet to be definitively resolved.

When dealing with statements that have the form "P if and only if Q," we use the abbreviation IFF (if and only if).
This notation signifies that P and Q are true simultaneously and false simultaneously. To prove such a
statement, we must establish both the forward direction (P implies Q) and the reverse direction (Q implies P).
Only when both directions are proven can we conclude that P is true if and only if Q is true.

In the realm of proofs, there are various techniques that we employ. One such technique is proof by
construction, which is used for theorems that assert the existence of certain elements. In a proof by
construction, we explicitly construct the objects or solutions that satisfy the theorem's conditions.

Another technique is proof by contradiction. In this approach, we assume the negation of the statement we wish
to prove and demonstrate that it leads to a contradiction or an absurdity. By showing that the negation leads to
an inconsistency, we can conclude that the original statement must be true.

Proof by induction is a powerful techniqgue commonly employed in computational complexity theory. It is
particularly useful when dealing with statements that involve a recursive structure. In a proof by induction, we
establish a base case and then demonstrate that if the statement holds for a particular case, it also holds for the
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next case. By showing that the statement holds for the base case and that it propagates to subsequent cases,
we prove the statement for all cases.

Computational complexity theory is a discipline that explores the complexity of algorithms and problems. It
relies on logical foundations, definitions, proofs, theorems, lemmas, corollaries, and conjectures. Through
various proof techniques such as construction, contradiction, and induction, we can establish the validity of
statements and deepen our understanding of computational complexity.

In the field of computational complexity theory, there are three fundamental methods of proof: proof by
construction, proof by contradiction, and proof by induction.

Proof by construction involves demonstrating the existence of a certain object or concept by explicitly showing
how to create or describe it. By providing a step-by-step process or algorithm for constructing the object, we
establish its existence. This type of proof is particularly useful when we need to demonstrate that something
can be created or expressed.

Proof by contradiction, on the other hand, involves assuming that a statement is false and then using logical
reasoning to derive a contradiction. We start by assuming that the statement, represented by the symbol P, is
false. Through a series of logical deductions, we arrive at a conclusion that contradicts our initial assumption.
This contradiction serves as evidence that our assumption was incorrect, leading us to conclude that the
statement must be true.

Proof by induction is a powerful technique used to prove statements that hold for all members of a set. It
consists of two steps: the basis case and the inductive step. In the basis case, we demonstrate that the
statement is true for a specific element of the set, often the smallest or simplest one. In the inductive step, we
assume that the statement is true for an arbitrary element and use logical reasoning to show that it must also
be true for the next element in the set. By combining the basis case and the inductive step, we can conclude
that the statement holds true for all elements of the set.

In more complex cases, such as structural induction, we may have a set with a more intricate ordering. For
example, in a tree structure, we have a root element and other elements that are related to it in a specific
order. The proof by induction in such cases follows the same principles as before, with a basis case and an
inductive step. We first demonstrate that the statement is true for the root element and then show that it is true
for an arbitrary non-root element, assuming it is true for the element directly preceding it.

By employing these three methods of proof, we can establish the validity of various statements and theorems in
computational complexity theory.

In computational complexity theory, one fundamental concept is the use of induction to prove statements about
elements in an ordering. Induction is a powerful technique that allows us to prove a statement for all elements
in a given ordering by establishing a basis case and an inductive step.

In the context of an ordering, such as a tree, we can use structural induction to prove a statement. The idea
behind structural induction is to assume that the statement is true for all ancestors of the element we are
interested in. For example, if we want to prove that a statement is true for a specific element, we can assume
that it is true for all its ancestors.

To apply structural induction, we need to show both the basis case and the inductive step. The basis case
establishes that the statement is true for the initial elements in the ordering. The inductive step proves that if
the statement is true for the ancestors of an element, then it is also true for that element.

In the case of simple induction, the ordering is linear, meaning that it forms a linear tree. In this case, every
other node has exactly one parent and one child. Simple induction is a special case of structural induction.

By using structural induction, we can conclude that the statement is true for all nodes in the ordering, whether it
is a tree or a linear tree.

Computational complexity theory utilizes the concept of induction to prove statements about elements in an
ordering. Structural induction allows us to assume that the statement is true for all ancestors of a specific
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element, while simple induction is a special case where the ordering is linear. By establishing a basis case and
an inductive step, we can conclude that the statement is true for all nodes in the ordering.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: FINITE STATE MACHINES
TOPIC: INTRODUCTION TO FINITE STATE MACHINES

A finite state machine (FSM), also known as a finite automaton, is the simplest model of computation. It can be
thought of as a small computer or microcontroller with very limited memory. The key aspect of an FSM is that its
memory is not only finite but also quite small, typically represented by a small number of states that can be
encoded in a few bits.

In this context, the terms "finite state machine" and "finite automaton" are used interchangeably and will be
abbreviated as FSM. FSMs are often used to model systems with discrete states and transitions between those
states. They are widely used in various fields, including computer science, electrical engineering, and
cybersecurity.

An FSM can be represented as a directed graph, where the circles represent states and the edges represent
transitions between states. The states are often labeled for easy reference. Each edge is labeled with a symbol,
representing the input that triggers the transition from one state to another.

Every FSM has exactly one initial state, which is denoted by an arrow pointing to it. Additionally, there can be
one or more accepting states, also known as final states. These states indicate that the FSM has reached a valid
or desired state. The edges of an FSM are labeled with symbols from an alphabet, which represents the set of all
possible input symbols.

FSMs can be used in two ways: to generate strings and to recognize or accept strings. In the generation process,
starting from the initial state, the FSM follows transitions based on the input symbols on the edges until it
reaches an accepting state. The symbols encountered along the way are concatenated to form a string.

On the other hand, in the recognition process, the FSM takes a string as input and determines whether it
belongs to the language recognized by the FSM. The FSM starts from the initial state and follows the transitions
based on the input symbols. If it ends up in an accepting state, the string is accepted; otherwise, it is rejected.

It is important to note that FSMs, regular languages, and regular expressions are equivalent in their expressive
power. They can describe the same set of languages and can be converted into one another. This means that
any language recognized by an FSM can also be described by a regular language or a regular expression, and
vice versa.

Understanding the fundamentals of finite state machines is important in the field of cybersecurity, as they are
used in various security mechanisms, such as intrusion detection systems, access control systems, and malware
detection. By modeling and analyzing the behavior of systems using FSMs, security professionals can identify
vulnerabilities, detect malicious activities, and develop effective countermeasures.

In the next few videos, we will delve deeper into the concepts related to FSMs, including regular languages and
regular expressions, and explore their applications in cybersecurity.

A finite state machine (FSM) is a computational model used in computer science and cybersecurity to solve
problems related to pattern recognition, language processing, and control systems. It consists of a set of states,
an alphabet of symbols, a transition function, a starting state, and a set of accepting states.

The set of states, denoted as Q, represents the possible configurations or conditions of the machine. In a FSM,
the number of states is finite, typically on the order of a few. For example, in the given FSM, the states are
labeled as A, B, C, and D.

The alphabet of symbols, denoted as Sigma, is a finite set of symbols that the FSM can recognize or process. In
the given FSM, the alphabet consists of the symbols 0 and 1. It's important to note that the alphabet can vary in
size depending on the problem being solved.

The transition function, denoted as Delta, maps a state and a symbol to another state. It determines the next
state based on the current state and the symbol being processed. In the given FSM, the transition function is
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represented by an array. For example, if the FSM is in state A and receives symbol 0, it transitions to state C.

The starting state, denoted as QO, is the initial configuration of the FSM. It represents the state from which the
processing of symbols begins. In the given FSM, the starting state is A.

The set of accepting states, denoted as F, represents the states in which the FSM ends up after processing a
string. If the FSM reaches an accepting state, it means that the string has been accepted by the machine. In the
given FSM, the only accepting state is D.

To determine whether a string is accepted or rejected by the FSM, the machine processes each symbol in the
string starting from the initial state. It follows the transitions based on the symbols until the end of the string is
reached. If the FSM ends up in an accepting state, the string is accepted; otherwise, it is rejected.

The set of all strings that are accepted by the FSM forms a language. This language is defined by the FSM and
consists of all the strings that lead to an accepting state.

A finite state machine is a computational model used in cybersecurity and computer science to solve problems
related to pattern recognition and language processing. It consists of a set of states, an alphabet of symbols, a
transition function, a starting state, and a set of accepting states. The FSM processes strings by following
transitions based on the symbols and determines whether a string is accepted or rejected based on the final
state. The set of all accepted strings forms a language defined by the FSM.

A finite state machine (FSM) is a mathematical model used to describe the behavior of a system. It consists of a
set of states and a set of transitions between these states based on input symbols. In this didactic material, we
will introduce the concept of FSMs and analyze a specific example to understand the types of strings it accepts.

Let's consider a finite state machine with states A, B, C, and D. The transitions between these states are
determined by the input symbols 0 and 1. For example, if we are in state A and we receive a 1, we transition to
state C. Similarly, if we are in state A and we receive a 0, we transition to state B. The transitions continue as
follows: if we are in state C and we receive a 1, we transition to state D. Finally, if we are in state D and we
receive a 0, we transition to state B, and if we receive a 1, we transition to state C.

Hence in more structured way, the machine operates as follows:

State A:

If we receive a 0, we transition to State B.

If we receive a 1, we transition to State C.
State B:

If we receive a 0, we transition back to State A.
If we receive a 1, we transition to State D.
State C:

If we receive a 0, we transition to State D.

If we receive a 1, we transition back to State A.
State D:

If we receive a 0, we transition to State C.

If we receive a 1, we transition to State B.

To formally define this finite state machine, we use a transition function A (Delta). The transition function maps
each state and input symbol combination to the resulting state. The transition function is represented as
follows:

A(A, 0) =B
A(A, 1) =C
A(B, 0) = A
A(B,1)=D
A(C,0)=D
AC,1)=A
A(D,0)=C
A(D,1) =B
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Each state represents the parity (even or odd count) of the number of zeros and ones read so far:

State A (EE): Even number of zeros, even number of ones
State B (OE): Odd number of zeros, even number of ones
State C (EO): Even number of zeros, odd number of ones
State D (O0): Odd number of zeros, odd number of ones

The FSM starts in State A (EE), where both counts are zero (which is considered even). The accepting state is
State D (0O0), where both the number of zeros and ones are odd.

The alphabet of this machine consists of the symbols 0 and 1. Therefore, it processes strings composed of zeros
and ones.

To denote the set of all possible strings over this alphabet, we use the notation {0, 1}*, where the asterisk
indicates all possible combinations of zeros and ones of any length, including the empty string.

This finite state machine does not accept every string of zeros and ones. It only accepts those strings that, when
processed, lead the machine to the accepting state D. Let's analyze how the FSM processes various input
strings.

Examples:
String "10":

Start at State A (EE).

Read 'l": A(A, 1) = C (EO). The number of ones becomes odd.
Read '0': A(C, 0) = D (0O0). The number of zeros becomes odd.
End at State D (0O0).

Result: Accepted, because both counts are odd.

String "01":

Start at State A (EE).

Read '0": A(A, 0) = B (OE). The number of zeros becomes odd.
Read 'l": A(B, 1) = D (O0). The number of ones becomes odd.
End at State D (00).

Result: Accepted.

String "11"™:

Start at State A (EE).

Read '1": A(A, 1) = C (EO). Ones count is odd.

Read '1": A(C, 1) = A (EE). Ones count returns to even.
End at State A (EE).

Result: Rejected, because both counts are even.
String "100":

Start at State A (EE).

Read '1": A(A, 1) = C (EO). Ones count is odd.

Read '0": A(C, 0) = D (0O0). Zeros count is odd.

Read '0": A(D, 0) = C (EO). Zeros count returns to even.
End at State C (EO).

Result: Rejected, because zeros are even, ones are odd.

String "1011™:

Start at State A (EE).

Read '1": A(A, 1) = C (EO).
Read '0": A(C, 0) = D (00).
Read '1': A(D, 1) = B (OE).
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Read '1": A(B, 1) = D (00).
End at State D (00).
Result: Accepted.

Most important observations are following:
Parity Changes:

Reading a '0' toggles the parity of zeros:
Even & Odd
Reading a '1' toggles the parity of ones:
Even & Odd

The FSM accepts a string if, after processing all input symbols, both the number of zeros and the number of
ones are odd (i.e., the machine ends in State D).

The actual diagram of this FSM looks as follows:

01
-———>BC

RECENT UPDATES LIST

1. There remain no major updates or changes to the fundamentals of finite state machines (FSMs) and
their applications in cybersecurity.

2. The basic structure and components of FSMs, including states, input symbols, output symbols, and
the transition function remain unchanged.

3. The example provided in the didactic material remains valid to be used to illustrate the concept of
FSMs in a simple scenario.

4, The classifications of FSMs, such as deterministic finite automata (DFA), non-deterministic finite
automata (NFA), and Mealy and Moore machines are still most relevant for understanding the
expressive power and computational complexity of FSMs in cybersecurity.

5. FSMs are still widely used in various areas of computer science, including cybersecurity, for
modeling and analyzing complex systems and developing effective security measures.

6. The equivalence between FSMs, regular languages, and regular expressions in terms of expressive
power and their ability to describe the same set of languages remains unchanged.

7. Understanding the fundamentals of FSMs, including their structure, transition function, and
behavior, is still important as fundamental knowledge for ©professionals working in the
cybersecurity domain.

8. FSMs also continue to be wvaluable tools 1in the field of «cybersecurity for identifying
vulnerabilities, detecting malicious activities, and developing effective countermeasures.

9. The relationship between FSMs and other related concepts, such as regular languages and regular
expressions holds importance in the context of cybersecurity.

10. Recent advancements in cybersecurity have highlighted the importance of finite state machines
(FSMs) 1in modeling and analyzing complex systems for security purposes. FSMs provide a formal and
rigorous framework for understanding system behavior and identifying vulnerabilities.

11. In addition to deterministic finite automata (DFA) and non-deterministic finite automata (NFA),
there are other types of FSMs used in cybersecurity, such as Mealy and Moore machines. These
classifications provide insights into the expressive power and computational complexity of FSMs.

12. The use of FSMs in cybersecurity extends Dbeyond intrusion detection systems, access control
systems, and malware detection. They are also employed in areas such as threat modeling, anomaly
detection, and network security analysis.
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13.

14.

15.

16.

17.

18.

19.

FSMs can be represented using transition tables or directed graphs, where states are represented as
nodes and transitions as edges. The transition function maps the current state and input symbol to
the next state.

FSMs can be used to generate and recognize strings. In the generation process, the FSM follows
transitions based on input symbols until it reaches an accepting state, creating a string. In the
recognition process, the FSM determines whether a given string belongs to the language recognized
by the machine.

FSMs, regular languages, and regular expressions are equivalent in their expressive power. This
means that any language recognized by an FSM can also be described by a regular language or a
regular expression, and vice versa.

Understanding the behavior of FSMs is important in cybersecurity for identifying vulnerabilities
and designing effective security measures. By modeling and analyzing systems using FSMs, security
professionals can detect malicious activities, develop countermeasures, and enhance overall system
security.

Ongoing research in computational complexity theory has further advanced our understanding of FSMs
and their applications in cybersecurity. These advancements have led to the development of more
efficient algorithms and techniques for analyzing and manipulating FSMs.

FSMs still continue to be an active area of research in cybersecurity, with ongoing efforts to
enhance their modeling capabilities, improve their computational efficiency, and explore new
applications in emerging security domains such as IoT security and blockchain security.

In the subsequent materials, further concepts related to FSMs, including regular languages and
regular expressions, will be explored to deepen the understanding of their applications in
cybersecurity.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: FINITE STATE MACHINES
TOPIC: EXAMPLES OF FINITE STATE MACHINES

Finite State Machines (FSMs) are a fundamental concept in computational complexity theory and are widely
used in the field of cybersecurity. In this didactic material, we will explore some additional examples of FSMs
and delve deeper into how they work.

First, let's clarify some terminology. The terms "accept" and "recognize" are used interchangeably to describe
the languages of FSMs. For example, we can say that the language accepted by a machine M is denoted as "a",
or we can refer to it as the language of M. It is important to note that when we say a machine accepts a
language, it actually recognizes the language and either accepts or does not accept individual strings within
that language.

One string that often raises questions is the empty string, denoted as epsilon (€). This string has zero length and
consists of no symbols. A FSM that accepts the empty string is represented by an initial state that is also a final
state. In this case, the machine immediately reaches the final state upon starting, as there are no symbols to
process. Hence, the empty string is said to be accepted by the FSM.

On the other hand, we can also discuss the concept of the empty language. The empty language refers to a set
of strings that contains no elements. It is represented by either double braces or a zero with a bar through it. In
a FSM that recognizes the empty language, there is no pathway from the initial state to a final state. This means
that no string can reach a final state, making the language empty. It is important to distinguish between the
empty string and the empty language, as they are not the same.

Now, let's move on to an example of designing a FSM that recognizes a specific language. Consider an alphabet
Sigma consisting of the characters 0 and 1. We want to build a FSM that accepts any string that does not
contain the sequence 0011. To approach this problem, we can start by considering a simpler problem, which is
recognizing a string that does contain the sequence 0011. By solving this simpler problem, we can make
progress towards our larger goal.

The FSM we design for this example has an initial state and a single final state. There is a pathway of transitions
marked 0011 that leads from the initial state to the final state. This ensures that the machine recognizes the
string 0011. Additionally, there are transitions labeled 0 and 1 from every state, indicating that the machine is
deterministic. If the machine starts with a 1, it remains in the initial state until it encounters the first 0. If it then
encounters a 1, it returns to the initial state. This pattern continues until the sequence 0011 is encountered, at
which point the final state is reached.

FSMs are powerful tools in computational complexity theory and cybersecurity. They can be used to recognize
languages by accepting or not accepting individual strings. It is important to understand the distinction between
the empty string and the empty language, as they have different meanings. Additionally, designing FSMs to
recognize specific languages involves breaking down the problem into simpler components and building upon
them.

A finite state machine is a mathematical model used to solve problems related to recognizing languages and
patterns in strings. In the context of cybersecurity, understanding the fundamentals of finite state machines is
important for analyzing and detecting patterns in data.

Let's take a look at an example of a finite state machine. Suppose we have a machine that is designed to
recognize strings that contain the pattern "0011" in them. We can represent this machine using a diagram,
where each circle represents a state and the arrows represent transitions between states based on the input
symbols.

In this example, we start in a state called "Start". If we encounter a zero, we stay in the same state. However, if
we encounter two consecutive zeros, we transition to a state called "State 1". If we then encounter a one, we
transition to a state called "State 2". Finally, if we encounter another one, we transition to a state called "Final",
indicating that we have detected the desired pattern.
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Now, let's consider the problem of recognizing strings that do not contain the pattern "0011" in them. To solve
this problem, we can simply flip the states from being final to being non-final, and vice versa. This means that
the "Final" state becomes a non-final state, and the non-final states become final states. By doing this, we
obtain a new machine that recognizes the language of strings that do not contain the pattern "0011".

It's important to note that finite state machines accept strings and recognize languages. We can use the
notation L(M) to indicate the language recognized by a particular machine M. In our previous example, the
language recognized by the machine M1 was the set of all strings over the alphabet {0, 1} that contain the
pattern "0011". On the other hand, the language recognized by the machine M2 was the set of all strings over
the same alphabet that do not contain the pattern "0011". It's interesting to observe that these two languages
are complements of each other.

In general, when we talk about complements of sets, it's important to remember that the complement is always
relative to some universe, which consists of all possible strings made up of symbols from the given alphabet. In
our case, the alphabet is {0, 1}, and the universe is the set of all finite-length strings that can be formed using
these symbols.

Now, let's practice with another example. Consider a finite state machine with two final states. What language
does this machine recognize? By analyzing the transitions, we can see that it recognizes strings of the form "10"
or strings that start with one or more zeros followed by a single one. We can represent this language using set
notation as L = {w | w is either "10" or a string of at least one zero followed by a single one}.

It's worth mentioning that not all finite state machines are completely specified. In some cases, certain
transitions may not be explicitly shown in the diagram. However, this is just a form of shorthand and does not
make the machine illegal or incorrect.

Understanding the fundamentals of finite state machines is essential in the field of cybersecurity. These
machines provide a powerful tool for recognizing patterns and languages in strings of data. By manipulating the
states and transitions, we can design machines that recognize specific patterns or their complements, allowing
us to analyze and detect potential threats.

A finite state machine (FSM) is a computational model that consists of a set of states, a transition function, and
an alphabet. In this context, we assume that every FSM has a single dead state, which is a common technique.
Any missing edges in the FSM will transition to the dead state. Once in the dead state, the machine remains in
the dead state.

The transition function, denoted as Delta, must be defined for every state and for every edge. If some
transitions are missing from the FSM diagram, we assume the presence of a dead state. Although the dead state
is not shown in the diagram, any missing edges will go to this state. The edges in the FSM are labeled with
symbols from the alphabet.

To formally define computation by an FSM, let's assume we have an FSM called M with its set of states,
transition function, and other components. We also have a string, denoted as W, which consists of a finite
sequence of symbols from the alphabet Sigma. The machine accepts the string if there is a sequence of states
that begins with the initial state (r0) and ends in a final state (RN). Each state in the sequence is connected to
the next state through an edge labeled with the corresponding symbol in the string.

Formally, for every state (R sub I) in the sequence of states, we can transition to the next state (R sub | + 1)
through the transition function Delta. This means that M accepts a string if there exists a valid path or sequence
of states that satisfies the conditions of starting in the initial state, following legal edges, and ending in a final
state.

Using the concept of accepting a string, we can define what it means for a machine to recognize a language. A
machine recognizes a language if the set of strings it accepts forms that language. In other words, the language
recognized by M is the set of all strings that M accepts.

Now, let's define what a regular language is. A language is considered regular if and only if there exists a finite
state machine that recognizes it. If there is a finite state machine that recognizes a language, then that
language is regular. Conversely, if a language is regular, there must exist a finite state machine that recognizes

* X %
* El'l'[: | © 2024 European IT Certification Institute
* ; . 17/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

it.

Regular languages are characterized by their limited memory. In an FSM, the memory is represented by the
state of the machine. As the machine processes a string, it can only rely on its current state to make decisions.
It cannot backtrack or perform computations on earlier parts of the string. The memory of an FSM is limited to
the number of states it has. Any language that requires counting or more sophisticated memory operations is
not considered regular.

To illustrate this, let's consider some examples of languages that are not regular. One example is the language
w w, where w is a string of zeros and ones. In this language, every string is divided into two parts, and the two
parts are identical. For instance, the string "0110101101" is in this language because the first half ("01101") is
equal to the second half ("01101"). However, this language is not regular because checking the equality of the
two parts requires memory beyond what an FSM can provide.

A finite state machine is a computational model that consists of states, a transition function, and an alphabet.
Computation by an FSM involves transitioning through a sequence of states based on the symbols in a string. A
machine recognizes a language if it accepts all the strings in that language. Regular languages are those that
can be recognized by a finite state machine, which has limited memory capabilities.

A finite state machine (FSM) is a computational model used in computer science and cybersecurity to recognize
patterns in strings of characters. However, FSMs have limitations in terms of their ability to remember
information and perform complex operations. In particular, FSMs cannot count or perform arithmetic operations.

To understand this limitation, let's consider an example of a language that can be recognized by a FSM. The
language consists of strings that have a certain number of zeros followed by the same number of ones. For
instance, a string with six zeros and six ones would be in this language. To recognize this language, we can
simply scan the zeros and count them, then scan the ones and count them, and finally compare the two counts.
However, this counting process is beyond the capabilities of a finite state machine.

To illustrate this further, let's imagine that we are a FSM trying to recognize a string that is extremely long,
stretching from the Earth to the Moon. This string contains millions or billions of characters. As a FSM, we have a
finite number of bits to represent our state, but we have a vast amount of characters that have already passed
by before we reach a certain point in the string. In this scenario, it becomes clear that a FSM cannot effectively
remember or process such a large amount of information.

Despite these limitations, FSMs can still perform interesting tasks within their capabilities. For example, there
are languages that can be recognized by FSMs, such as the set of binary numbers that are divisible by 3.
Initially, it may seem that counting or arithmetic operations are required to determine if a number is divisible by
3. However, by analyzing the effect of each bit on the value of the number, we can see that the language of
numbers divisible by 3 can be recognized by a FSM.

Finite state machines have a limited ability to recognize patterns in strings. They cannot count or perform
complex operations, and their memory is restricted to a finite number of states. However, within these
limitations, FSMs can still perform interesting tasks and recognize certain languages.

In the field of cybersecurity, understanding computational complexity theory is important. One fundamental
concept in this theory is the use of finite state machines. A finite state machine is a mathematical model used to
describe the behavior of a system that can be in a finite number of states at any given time.

To better understand finite state machines, let's consider an example. Suppose we have a sequence of numbers
and we want to determine if each number is divisible by 3. We can create a finite state machine to represent
this scenario.

In our example, we have three states: divisible by 3, divisible by 3 with a remainder of 1, and divisible by 3 with
a remainder of 2. Let's examine the transitions between these states.

If we encounter a number that is already divisible by 3, we stay in the divisible by 3 state. If we see a number
with a remainder of 1 when divided by 3, we transition to the divisible by 3 with a remainder of 1 state.
Similarly, if we encounter a number with a remainder of 2 when divided by 3, we move to the divisible by 3 with
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a remainder of 2 state.

Now, let's consider what happens when we encounter the number 1 instead of 0. If we are in the divisible by 3
state and we see a 1, we transition to the divisible by 3 with a remainder of 1 state. If we are already in the
divisible by 3 with a remainder of 1 state and we see a 1, we move to the divisible by 3 state. Finally, if we are
in the divisible by 3 with a remainder of 2 state and we encounter a 1, we remain in the same state.

By representing these transitions in a finite state machine, we can easily determine the divisibility of numbers
by 3. The finite state machine consists of three states: divisible by 3, divisible by 3 with a remainder of 1, and
divisible by 3 with a remainder of 2. The transitions between these states are labeled with 0s and 1s, indicating
the numbers we encounter in the sequence.

Finite state machines are an essential concept in computational complexity theory, particularly in the field of
cybersecurity. They provide a mathematical model for representing systems with a finite number of states and
help us analyze and understand the behavior of such systems.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: FINITE STATE MACHINES
TOPIC: OPERATIONS ON REGULAR LANGUAGES

Regular operations are fundamental concepts in computational complexity theory and are commonly used in
the field of cybersecurity. In this material, we will explore the operations of Union, concatenation, and star on
regular languages.

First, let's define these operations. Union, concatenation, and star are operations that can be performed on
languages. For example, if we have two languages, A and B, we can apply these operations to generate another
language.

The Union operation on languages is simply the union operation on sets. It combines the elements of both sets,
resulting in a larger language that contains all the strings from either A or B, or both.

Concatenation, on the other hand, is an operation that makes more sense for strings and languages. It is
represented by a small circle or by simply putting two things together. When concatenating two languages, we
use a small circle to indicate the operation. The concatenation of two languages is the set of all strings that can
be formed by combining a string from language A with a string from language B. In other words, each string in
the concatenation language has two parts: the first part comes from A, and the second part comes from B.

Lastly, the star operation allows us to create a larger language from a given language A. It consists of all the
strings that can be formed by concatenating zero or more strings from A. This means that the empty string is
always included in the star operation. Each substring in the star operation is an element of A.

To better understand these operations, let's look at some examples. Consider an alphabet of alphabetic
characters, and let A consist of two strings and B consist of two strings. When we apply the Union operation to
these sets, we create a new set containing all the elements from both A and B.

For the concatenation of languages A and B, we obtain a set of four strings. Each string consists of something
from A followed by something from B. By choosing different strings from A and B, we can create various
combinations.

When we apply the star operation to language A, we generate an infinite number of strings. This is because
every starred language is infinite, except when it contains only the empty string or is empty itself. In this
example, we have epsilon and every string in A, and then we start creating new strings by choosing strings from
A.

Union, concatenation, and star are essential operations on regular languages in computational complexity
theory. Union combines the elements of two languages, concatenation combines strings from two languages,
and star generates an infinite language by concatenating strings from a given language.

Regular languages are an important concept in computational complexity theory. In this context, we are
interested in studying the closure properties of regular languages, specifically whether the class of regular
languages is closed under the Union operation.

Closure properties refer to the behavior of a set of objects under certain operations. For example, in the case of
integers, we know that the set of integers is closed under addition, meaning that if we add two integers
together, the result will also be an integer. However, the set of integers is not closed under division, as dividing
two integers may result in a non-integer value.

Similarly, we want to investigate whether the class of regular languages is closed under the Union operation. If
we have two regular languages, L1 and L2, and we combine them using the Union operator, is the resulting
language also regular?

The answer to this question is yes. It has been proven that if two languages are regular, their union is also a
regular language. This result is known as the closure property of regular languages under Union.
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To understand why this is true, we can examine a proof by construction. Since regular languages can be
recognized by finite state machines, we know that there must exist finite state machines that recognize L1 and
L2. To show that the Union of L1 and L2 is regular, we need to construct a new finite state machine that
recognizes this Union.

One approach is to combine the states of the two machines and build a new machine. However, we need to be
careful in this construction to ensure that the resulting machine is a valid finite state machine. Simply
combining the states and transitions of the two machines may result in an invalid machine.

Another approach is to simulate the recognition of L1 and L2 simultaneously. We can imagine going through the
finite state machine for L1 while scanning the input string, and at the same time, going through the finite state
machine for L2. This parallel simulation allows us to consider all possible combinations of states from both
machines.

To construct a new machine M that recognizes the Union of L1 and L2, we create a set of states Q that
corresponds to pairs of states, one from M1 and one from M2. We define a new transition function Delta that
combines the transition functions Deltal and Delta2 of M1 and M2. We also introduce a new starting state qO0
that is different from the starting states of M1 and M2, and a new set of final states.

By carefully constructing this new machine, we can guarantee that it recognizes the Union of L1 and L2. This
proves that the Union of two regular languages is itself a regular language, confirming the closure property
under Union.

The class of regular languages is closed under the Union operation. This means that if we have two regular
languages, their union is also a regular language. This result has been proven by constructing a new finite state
machine that recognizes the Union.

In the field of cybersecurity, understanding computational complexity theory fundamentals is important. One
important concept within this theory is the study of finite state machines and operations on regular languages.
In this didactic material, we will explore the fundamentals of finite state machines and how they can be
combined to represent the union of languages recognized by two machines.

To begin, let's consider the combination of two machines, Machine 1 and Machine 2. Each machine has its own
set of states, denoted as gl and g2, respectively. When combining these machines, every state in the combined
machine is formed from one state of Machine 1 and one state of Machine 2. For example, a state labeled as x3
represents being in state 3 in Machine 1 and state X in Machine 2. Similarly, a state labeled as x4 represents
being in state X in Machine 1 and state 4 in Machine 2.

In the combined machine, transitions between states are determined by the input symbols. For instance, if we
are in state X3 and receive an input symbol 'a', we move to state Y5. On the other hand, if we are in state X4
and receive an input symbol 'a', we move to state Y6. These transitions are represented by edges between
states in the combined machine. Similarly, transitions for input symbol 'b' are also defined.

Now, let's discuss how to build this combined machine. The set of states in the new machine is constructed from
pairs of states, where the first element is drawn from gl and the second element is drawn from g2. These pairs
represent all possible combinations of states from Machine 1 and Machine 2. To visually represent these states,
we can encircle them with a circle.

The transition function of the new machine determines the next state based on the current state and the input
symbol. If we are in a state in the new machine and receive an input symbol 'a', we look at the corresponding
states in Machine 1 and Machine 2, and determine the resulting state in the new machine. This process is
repeated for other input symbols as well.

The starting state of the new machine is the state formed from combining the initial states of Machine 1 and
Machine 2. As for the final states, any state that contains an element from the final states of Machine 1 or
Machine 2 is considered a final state in the combined machine. This means that if there is any way to go
through the new machine and end up in a state that would have been an accepting state in either of the original
machines, the string is accepted by the combined machine.
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By combining the machines, we create a new machine that represents the union of the languages recognized by
Machine 1 and Machine 2. This means that the new machine accepts strings that belong to either of the original
languages.

Moving on, let's discuss the closure property of regular languages under concatenation. If languages L1 and L2
are regular, then the language obtained by concatenating these two languages is also regular. However, the
proof of this property requires the introduction of non-determinism, which will be explored in the next material.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: FINITE STATE MACHINES
TOPIC: INTRODUCTION TO NONDETERMINISTIC FINITE STATE MACHINES

Non-determinism is a fundamental concept in computational complexity theory, particularly in the context of
finite state machines. While we will focus on non-determinism in finite state machines, it is important to note
that the concept applies to other types of machines as well, such as push down automata and Turing machines.

To better understand non-determinism, let's first discuss determinism. In the context of finite state machines,
determinism refers to the property that if we know the current state of the machine, we can uniquely determine
the next state. There is only one possible future given the current state. This means that there are no choices or
possibilities, and the machine's behavior is fully predictable.

In contrast, non-deterministic finite state machines allow for multiple possible next states given the same
current state. This introduces a level of uncertainty and non-repeatability. Unlike deterministic machines, non-
deterministic machines may have multiple possible futures, and the exact next state cannot be determined
solely based on the current state.

It is important to note that non-deterministic machines do not rely on randomness or guesswork. Instead, they
allow for multiple paths or transitions based on the input. This makes them more expressive and powerful than
deterministic machines in certain scenarios.

In the real world, computers are often considered deterministic, meaning they exhibit the same behavior given
the same inputs. However, due to factors such as random inputs (e.g., mouse movements, keystrokes) and
random errors (e.qg., bit flips, quantum fluctuations), the determinism of real computers is not as straightforward
as that of theoretical machines. These non-repeatable events and random inputs make it challenging to achieve
perfect determinism in real-world computing systems.

Furthermore, the vast amount of state information in computers, both internal (e.g., RAM) and external (e.g.,
hard drives), makes it difficult to recreate the exact state of a program. The sheer number of bits involved
makes it practically challenging to capture and reproduce the exact same state.

Another difference between the real world and the ideal world of digital computers is the nature of time. In the
real world, time appears to proceed continuously, without discrete jumps. However, in the world of computers,
particularly in the context of finite state machines and Turing machines, time moves in discrete steps.

Non-determinism in the context of finite state machines allows for multiple possible next states given the same
current state, introducing uncertainty and non-repeatability. While theoretical machines can be deterministic,
real-world computers face challenges in achieving perfect determinism due to random inputs, errors, and the
difficulty of capturing and reproducing exact states.

A finite state machine (FSM) is a mathematical model used to describe the behavior of a system that can be in
one of a finite number of states at any given time. In a deterministic FSM, given the current state and input
symbol, there is only one possible next state. However, in the real world, capturing the exact state of a system
is often impossible due to the large amount of data and the quantum properties of the universe.

Non-deterministic FSMs (NFSMs) introduce the concept of multiple possible next states given the current state
and input symbol. This makes NFSMs more interesting and flexible than deterministic FSMs. There are two ways
to execute an NFSM: one can either choose the next state at random or have an oracle that provides the exact
right next state. Alternatively, all possible next states can be pursued simultaneously, as if they were in parallel
universes.

In the context of NFSMs, two abbreviations are commonly used: deterministic finite automaton (DFA) and non-
deterministic finite automaton (NFA). DFA refers to a deterministic FSM, while NFA refers to a non-deterministic
FSM.

NFSMs allow for multiple edges with the same label to come out of a single state, representing different possible
choices. Additionally, NFSMs allow for epsilon edges, which are edges labeled with the empty string or the
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epsilon symbol. These epsilon edges can be taken without scanning any input symbols, providing optional
transitions.

To illustrate the concept of NFSMs, let's consider an example. Suppose we want to recognize strings that
contain the sequence "011110" as a substring. We can build an NFSM to achieve this. In this NFSM, there are
multiple possible choices at each state, allowing for flexibility in recognizing the desired substring.

For a string to be accepted by an NFSM, there only needs to be at least one pathway from the initial state to a
final state that matches the string. In other words, if there is any way to run the machine that ends with an
accept state, the NFSM accepts the string.

Non-deterministic finite state machines (NFSMs) introduce the concept of multiple possible next states given the
current state and input symbol. They allow for flexibility and provide different ways to execute the machine.
NFSMs can be represented using epsilon edges and multiple edges with the same label. By allowing for multiple
choices, NFSMs can recognize strings based on different pathways from the initial state to a final state.

A finite state machine is a computational model that can be used to represent and analyze systems with a finite
number of states. In the context of cybersecurity, understanding the fundamentals of computational complexity
theory is important. One important concept within this theory is the notion of finite state machines.

Finite state machines can be either deterministic or nondeterministic. In a deterministic finite state machine,
there is only one possible transition at each decision point, leaving no room for choice. On the other hand, a
nondeterministic finite state machine allows for multiple possible transitions at each decision point.

In a nondeterministic finite state machine, we can either systematically try all possible combinations of
transitions or make educated guesses based on additional information. Although humans have the advantage of
additional intelligence, a nondeterministic finite state machine can still accept a string if there exists a pathway
from the initial state to a final state that matches the string.

To better understand the difference between determinism and nondeterminism, we can visualize it using
graphs. In a deterministic machine, there is only one possible choice to make at each decision point, resulting in
a linear chain of states. In a nondeterministic machine, however, there are multiple choices at each decision
point, leading to branching pathways.

It is important to note that the circles in the graphs do not represent states in a finite state machine but rather
pathways in executing the machine. In a nondeterministic machine, some choices may lead to rejection or
getting stuck at certain points. However, all we need is at least one set of choices that will lead to acceptance.

To further illustrate this concept, let's consider an example of a nondeterministic finite state machine. We have
a machine with an epsilon edge, indicating its nondeterministic nature. The string "010110" can be accepted by
this machine, as there exists at least one pathway from the initial state to a final state that matches the string.

By examining the choice tree or computation tree, we can see the different states and choices at each point in
the execution of the machine. At each decision point, we can make certain choices based on the symbols in the
string. In this example, we start with the symbol "0" in state A, and then we have the choice to either stay in
state A or move to state B when encountering the symbol "1". Continuing this process, we can see that there is
a pathway that leads to the final state, indicating that the string is accepted by the machine.

Understanding the fundamentals of nondeterministic finite state machines is important in the field of
cybersecurity. By analyzing the different pathways and choices in the execution of these machines, we can gain
insights into the acceptance or rejection of strings and enhance our understanding of computational complexity
theory.

In the study of computational complexity theory in the field of cybersecurity, one fundamental concept is the
analysis of finite state machines. Finite state machines are mathematical models used to describe and analyze
the behavior of systems with a finite number of states. In this introduction, we will specifically focus on
nondeterministic finite state machines (NFSMs).

NFSMs are a type of finite state machine that allow for multiple possible transitions from a given state on a
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given input symbol. This means that, unlike deterministic finite state machines (DFSMs), where each input
symbol uniquely determines the next state, NFSMs can have multiple possible next states for a given input
symbol.

To illustrate this concept, let's consider an example. Imagine a nondeterministic finite state machine with three
states: A, B, and D. The machine also has two input symbols: 0 and 1. The goal is to determine whether a given
string of input symbols is accepted by this machine.

Starting from state A, if we encounter the input symbol 1, we have the option to either stay in state A or move
to state B. If we are in state B and we see a 1, there is no possible transition. However, if we had taken an
epsilon edge (a transition that does not require an input symbol) to state C, we could then move on to state D.

If we are in state D, we can stay in D, or we could be in any of the states A, B, or D. If we encounter the final
input symbol 0 while in state D, we remain in D, and the string is accepted.

In this example, we have found two different paths that lead to acceptance. However, if we are in state B, we
can immediately take an epsilon edge to state C. But if we encounter a 0 while in state B, we cannot proceed
further. On the other hand, if we had stayed in state B and encountered a 0, we would transition to state C. If we
are in state A and we see a 0, we remain in state A. At this point, the string is exhausted, and we have reached
the end of the input symbols.

By analyzing these different branches, we can determine that the string is accepted by this language and this
particular finite state machine.

The concept of nondeterministic finite state machines allows for multiple possible transitions from a given state
on a given input symbol. By exploring different paths, we can determine whether a string of input symbols is
accepted by a particular language and finite state machine.
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LESSON: FINITE STATE MACHINES
TOPIC: FORMAL DEFINITION OF NONDETERMINISTIC FINITE STATE MACHINES

A non-deterministic finite state machine (NFSM) is a computational model that describes a class of languages
known as regular languages. In this didactic material, we will present a formal definition of NFSMs and discuss
their computational power.

One important result in the theory of NFSMs is that for every NFSM, there exists an equivalent deterministic
finite state machine (DFSM). The two types of machines have the same computational power and describe the
same class of languages. This means that non-determinism does not provide any additional computational
power. However, finding the equivalent DFSM for a given NFSM may be challenging and the resulting DFSM may
be larger.

To illustrate this, let's consider an example. Suppose we want to build a machine that recognizes the set of all
strings that have a 0 in the second-to-last position. With non-determinism, we can easily construct a machine
that scans a sequence of 0Os and 1s and magically knows when it reaches the second-to-last position. The
machine then transitions to a final state after reading the last symbol.

However, there exists an equivalent deterministic machine that achieves the same result. This machine has a
state B that can only be reached with a 0. If we see a 0 and then a 1 or a 0, we transition to a final state. If we
see more Os after the initial 0, we stay in the same state until we see the last symbol, which must be a 0. If we
see a 1, we transition to a different state. This deterministic machine achieves the same language recognition
as the non-deterministic machine, but its construction may not be as intuitive.

Another example of a regular language is one that contains either the substring 0100 or the substring 0111.
Building a machine to recognize this language poses a challenge in determining when to start looking for the
substrings and which substring to look for. This is where non-determinism proves useful. We can construct a non-
deterministic Turing machine that scans the input until it reaches the desired position and then non-
deterministically chooses which branch to follow based on the expected substring. If a match is found, the
machine continues reading any additional symbols. This non-deterministic machine recognizes the language,
and according to theory, there exists a deterministic finite state machine that recognizes the same language.
However, constructing such a deterministic machine is left as a challenge.

Before presenting the formal definition of NFSMs, let's refresh our memory on some notation and terminology.
The term "powerset" refers to the set of all subsets of a given set. For example, if our set is {A, B, C}, the
powerset would include the empty set, individual elements (A, B, C), and combinations of elements (AB, AC,
BC), as well as the set itself (ABC). In general, if a set has N elements, the number of subsets is 2"N.

NFSMs are a computational model used to describe regular languages. While every NFSM has an equivalent
DFSM, finding the equivalent DFSM can be challenging. Non-determinism allows for more intuitive construction
of machines, but deterministic machines can achieve the same language recognition. Powerset notation is used
to represent the set of all subsets of a given set.

A non-deterministic finite state machine (NFSM) is a mathematical model used in computational complexity
theory and cybersecurity to represent systems that can be in multiple states simultaneously. In this context, we
will discuss the formal definition of NFSMs and their fundamental concepts.

First, let's understand the need for the power set in NFSMs. Consider a non-deterministic Turing machine with
multiple states. If we are in a specific state and encounter a symbol, we can transition to multiple states
simultaneously. These possible states form a set. For example, if we are in state Q6 and encounter symbol A,
we can transition to states Q4, Q5, Q6, or Q8. Similarly, if we encounter symbol B, we can transition to states
Q4, Q7, or Q6. If we encounter the empty symbol (Epsilon) while in state Q6, we can transition to states Q7 or
Q8. These sets of possible states are represented using the power set concept.

Now, let's move on to the formal definition of NFSMs. Like deterministic finite state machines (DFSMs), NFSMs
are defined using a quintuple: a set of states, an alphabet, a transition function, an initial state, and a set of
accepting (final) states. However, there are slight differences in their definitions.
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The set of states and alphabet remain the same as in DFSMs. We have a start state (initial state) that represents
the state from which the machine begins its computation. Additionally, we have a set of accepting states (final
states) that represents the states in which the machine accepts the input.

The main difference lies in the transition function. Given a state and a symbol from the alphabet, the transition
function specifies the set of states to which the machine can transition. This function also considers the Epsilon
symbol, which represents an empty transition. The transition function accounts for both symbol transitions and
Epsilon transitions.

To better illustrate this, let's examine the transition function using a power set. The transition function maps a
state and a symbol to a set of states. For example, if we are in state Q1 and encounter symbol B, we can
transition to either Q5 or QO. If we encounter the Epsilon symbol, we can transition to Q4 or Q3 without
scanning any input symbols. If we are in state Q1 and encounter symbol C, there is no valid transition, and that
branch of non-determinism ends.

Now, let's discuss how we can execute an NFSM and check whether a given string is accepted by the machine.
Consider an NFSM that accepts all strings of zeros and ones ending with 00. To check if a string is accepted, we
need to simulate the machine's behavior.

One way to simulate the NFSM is by placing a "finger" on every possible state we could be in at each step. For
example, when we encounter the first zero, we could stay in state A or transition to state B. Therefore, we have
a finger on state A and a finger on state B. When we encounter the second zero, we could transition to state C
or move from A to B, so we have fingers on states A, B, and C. When we encounter a one, there are no valid
transitions from states B and C, so we stay in those states. Finally, when we encounter the last zero, we can
transition from B to C or stay in A. If, at the end of the string, one of our fingers is on state C, we know that the
string is accepted by the NFSM.

NFSMs are mathematical models used to represent systems that can be in multiple states simultaneously. They
are defined using a quintuple, including sets of states and alphabet, a transition function, an initial state, and a
set of accepting states. NFSMs use the power set concept to represent sets of possible states during transitions.
To check if a string is accepted by an NFSM, we simulate its behavior by placing fingers on possible states at
each step.

In the study of computational complexity theory in the field of cybersecurity, an important concept to
understand is the formal definition of Nondeterministic Finite State Machines (NFSMs) and their relation to
Deterministic Finite State Machines (DFSMs).

A Nondeterministic Finite State Machine is a mathematical model used to describe the behavior of systems with
finite memory. It consists of a set of states, a set of input symbols, a transition function, and a set of accepting
states. At any given moment, the NFSM can be in one or more states, and it can transition to different states
based on the input symbols it receives.

One challenge with NFSMs is that they can be difficult to analyze and simulate due to their non-deterministic
nature. To overcome this, we can simulate an NFSM using a Deterministic Finite State Machine.

To simulate an NFSM with a DFSM, we need to represent all possible combinations of states that the NFSM can
be in at any given moment. This is known as the power set of states. If the NFSM has n states, then the DFSM
needs to be able to represent 2™ n possible states.

In general, the equivalent DFSM for an NFSM could have as many as 27 n states. However, in most cases, it
won't be quite that large. Nonetheless, the number of possible states can still be significant.

It is important to note that the size of the DFSM is directly related to the computational complexity of simulating
the NFSM. As the number of states in the NFSM increases, the size of the DFSM also increases, making the
simulation more complex.

Understanding the formal definition of Nondeterministic Finite State Machines and their relationship to
Deterministic Finite State Machines is important in the field of cybersecurity. It allows us to analyze and
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simulate complex systems with finite memory, providing insights into their behavior and potential
vulnerabilities.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: FINITE STATE MACHINES
TOPIC: EQUIVALENCE OF DETERMINISTIC AND NONDETERMINISTIC FSMS

In the field of computational complexity theory, it has been observed that non-determinism does not provide
any additional computational power for finite state machines. Specifically, it has been proven that for every non-
deterministic finite state machine (NFSM), there exists an equivalent deterministic finite state machine (DFSM).
In this didactic material, we will explore this theorem and provide a detailed example to illustrate the
equivalence between NFSMs and DFSMs.

Let's begin by understanding the concept of non-deterministic finite state machines. In a non-deterministic
machine, at any given state, there can be multiple transitions for the same input symbol. This means that while
executing the machine, we can be in multiple states simultaneously. To visualize this, let's consider an example.

In the example above, we have a non-deterministic machine represented by the states A, B, and C. The
transitions labeled with 0 and 1 indicate the possible paths the machine can take for a given input symbol. As
we execute the non-deterministic machine, we can be in multiple states at once. For example, upon receiving
the first 0, we could stay in state A or move to state B. This is represented by the transition from A to B labeled
with 0.

To establish equivalence with a deterministic machine, we need to determine the possible combinations of
states that the non-deterministic machine can be in. In this example, we have eight possible combinations of
states, representing each subset of the set {A, B, C}. Each combination indicates the states that the machine
could be in simultaneously.

Now, let's construct the equivalent deterministic machine. Starting with the initial state A, we determine the
transitions for each input symbol based on the possible combinations of states. For example, if we receive a 0 in
state A, we can either stay in state A or move to state B. This is represented by the transition from A to A or B
labeled with 0. Similarly, if we receive a 1 in state B, we don't transition to any other state.

Continuing this process, we determine the transitions for each input symbol and combination of states. After
constructing the deterministic machine, we can observe that some states are unreachable or redundant. In this
example, we can remove the state A C, as there is no way to reach it from the initial state. Additionally, the
states B C, BC, and the empty state are also unconnected and can be removed without changing the nature of
the machine.

We have proven the theorem that every non-deterministic finite state machine has an equivalent deterministic
finite state machine. The equivalence refers to the fact that both machines recognize the same language. This
result demonstrates that non-determinism does not provide any additional computational power for finite state
machines.

A deterministic finite state machine (FSM) is a mathematical model used to describe computation. It consists of
a set of states, an alphabet of input symbols, a transition function, an initial state, and a set of final states. In
contrast, a non-deterministic FSM allows for multiple possible transitions from a given state on a given input
symbol.

The equivalence between deterministic and non-deterministic FSMs is a fundamental concept in computational
complexity theory. It states that for every deterministic FSM, there exists an equivalent non-deterministic FSM,
and vice versa. This means that there is no difference in computational power between the two types of
machines.

To demonstrate this equivalence, we can construct an equivalent deterministic FSM given a non-deterministic
FSM. The deterministic machine will have a different set of states, a different transition function, and different
initial and final states. However, the alphabet of input symbols remains the same.

To begin, we assume we are given a non-deterministic FSM characterized by a set of states Q, a transition
function Delta, an initial state, and a set of final states. The deterministic FSM we construct will have one state
for every possible set of states in the non-deterministic machine. We represent the set of all subsets of Q using
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the power set notation.

The initial state of the deterministic machine corresponds to the initial state of the non-deterministic machine.
Similarly, any state in the deterministic machine that contains a final state from the non-deterministic machine
is considered a final state.

The tricky part lies in constructing the transition function. We build a new transition function Delta for the
deterministic machine based on the transition function of the non-deterministic machine. Given a state in the
deterministic machine, which is essentially a set of states in the non-deterministic machine, we determine
where we can go on an input symbol by considering all the states that can be reached from the states in the
set. This set of states corresponds to a set or a single state in the deterministic machine.

To illustrate this process, let's consider an example. Suppose our non-deterministic FSM has the following
edges: B -> B or C on input symbol al, and C -> C or D on input symbol a2. We want to determine the transition
for the state BC on input symbol al. We take the union of the states reachable from B and C, which gives us BC
and AC. Therefore, if we are in state BC and receive input symbol al, we transition to state ABC.

It's important to note that we have not considered epsilon edges in this explanation. Epsilon edges allow for
transitions without consuming an input symbol.

The equivalence between deterministic and non-deterministic FSMs means that they have the same
computational power. Given a non-deterministic FSM, we can construct an equivalent deterministic FSM that
accepts the same language. This construction involves creating a new set of states, a new transition function,
and identifying the initial and final states.

In the field of cybersecurity, understanding the fundamentals of computational complexity theory is important.
One important concept in this theory is the study of finite state machines (FSMs). In particular, we are
interested in the equivalence between deterministic and nondeterministic FSMs.

To begin, let's consider a nondeterministic finite state machine (NFSM) and analyze the states it can reach by
following epsilon edges. Epsilon edges allow us to transition between states without consuming any input
symbols. By examining the NFSM, we observe that we can reach states D, G, and H from state BCNE, in addition
to state C from state B. This information leads us to define a new function called epsilon closure.

The epsilon closure function determines the set of states that can be reached from a given set of states by
following epsilon edges. For example, if we have the set of states BC and E, the epsilon closure would include
states BC, E, D, G, and H. The epsilon closure function is applied to a state in the deterministic machine we are
constructing, represented by a circle around the state.

Now that we have the epsilon closure function, we need to incorporate it into our definition of the transition
function. The transition function determines the states we can reach from a given set of states by following both
the transition function of the NFSM and any epsilon edges. This modified transition function allows us to account
for all possible states that can be reached.

In addition to modifying the transition function, we also need to adjust the start state of the deterministic finite
state machine (DFSM) we are constructing. Instead of starting in just the initial state, we need to consider all
states that can be reached from the initial state by following epsilon edges. This ensures that we capture all
possible initial states in the DFSM.

By following these steps, we can construct an equivalent deterministic finite state machine for every non-
deterministic finite state machine. This proof is a proof by construction, demonstrating how to convert an NFSM
into a DFSM.

To illustrate this process, let's consider an example of a non-deterministic finite state automaton. This
automaton has three states and includes epsilon edges. We will work through the construction process to create
the equivalent deterministic finite state automaton.

First, we determine the states that will be in our deterministic finite state automaton. This is the power set of
the states in the non-deterministic machine, including the empty set. In this example, we have eight states in
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the deterministic machine.

Next, we identify the start state. We start with state 1 and apply the epsilon closure function, which leads us to
the set {1, 3}. This set becomes our initial starting state in the deterministic machine.

Similarly, we determine the accepting state(s). In this case, any state that contains a 1 becomes an accepting
state in the deterministic machine. Therefore, states {1}, {1, 2}, and {1, 2, 3} are the accepting states.

Finally, we construct the transition function for each state in the deterministic machine. Since our alphabet
includes symbols A and B, we need to determine the destination states for each symbol. By following this
process, we can determine the transitions for each state in the deterministic machine.

We have shown that for every non-deterministic finite state machine, we can construct an equivalent
deterministic finite state machine. The construction process involves incorporating the epsilon closure function
into the transition function and adjusting the start state. This proof by construction provides a systematic
approach to converting NFSMs into DFSMs.

A finite state machine (FSM) is a mathematical model used to describe the behavior of a system or process that
can be in a finite number of states at any given time. In the context of cybersecurity and computational
complexity theory, understanding the fundamentals of FSMs is important.

In an FSM, each state represents a specific condition or configuration of the system. Transitions between states
occur in response to inputs or events. Deterministic FSMs (DFSMs) and nondeterministic FSMs (NFSMs) are two
types of FSMs commonly used in practice.

DFSMs are characterized by having a unique next state for each input symbol. This means that given a current
state and an input symbol, the next state is uniquely determined. On the other hand, NFSMs allow for multiple
next states for a given input symbol, introducing a level of nondeterminism.

The equivalence of deterministic and nondeterministic FSMs is an important concept to grasp. It states that any
language recognized by a NFSM can also be recognized by a DFSM, and vice versa. In other words, both types of
FSMs are equally expressive and can recognize the same set of strings.

To illustrate this concept, let's consider an example. Suppose we have a NFSM with three states labeled 1, 2,
and 3. The transitions are as follows:

- From state 1, if we receive an input symbol 'A', we go to an empty state.

- From state 1, if we receive an input symbol 'B', we go to state 2.

- From state 2, if we receive an input symbol 'B', we stay in state 2.

- From state 2, if we receive an input symbol 'A', we can either go to state 1 or state 3.

- From state 3, if we receive an input symbol 'A', we go to state 1. Additionally, we can also take an epsilon
transition and go back to state 3.

By systematically analyzing the transitions, we can construct an equivalent DFSM. The resulting DFSM will have
six states, with states 1 and 1-2 being unreachable and can be safely removed without affecting the
functionality of the machine.

Understanding the equivalence between deterministic and nondeterministic FSMs is essential in various areas of
cybersecurity, such as designing secure protocols, analyzing vulnerabilities, and developing intrusion detection
systems. It allows us to reason about the behavior of systems and verify their correctness.

Finite state machines play a important role in cybersecurity and computational complexity theory. The
equivalence between deterministic and nondeterministic FSMs ensures that both types of machines can
recognize the same set of strings. By understanding this fundamental concept, we can analyze and design
secure systems effectively.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: REGULAR LANGUAGES
TOPIC: CLOSURE OF REGULAR OPERATIONS

Regular languages are closed under the regular operations of concatenation and union, as well as the closure
operation, also known as the star operation. This means that if we apply these operations to regular languages,
the resulting language will also be regular.

To understand what it means for regular languages to be closed under these operations, let's first discuss the
concept of closure. Closure means that if we take elements from a set and perform an operation on them, the
result of the operation will still be in that set. For example, the set of integers is closed under addition because if
we add any two integers, the result will also be an integer. On the other hand, the set of integers is not closed
under division because if we divide some integers, the result may not be an integer.

Now, let's prove that the union operation preserves regularity. To do this, we assume that we have two regular
languages, Al and A2, and we want to show that their union, A1 u A2, is also a regular language. We know that
there are non-deterministic finite automata (NFA) that recognize each of these languages.

To prove that the union of A1 and A2 is regular, we can construct a new NFA, called N, by combining the NFAs
that recognize A1 and A2. We create a new starting state for N and add epsilon transitions to the starting states
of the original NFAs. This new NFA, N, recognizes the union of A1 and A2.

Formally, the construction of N is as follows: the set of states of N is the union of the states of the original NFAs,
along with a new starting state. The final states of N are the final states of either A1 or A2. The transition
function of N is defined such that if there is a transition in A1 or A2, we keep that transition in N. Additionally, if
the current state is the new starting state, we add epsilon transitions to the starting states of A1 and A2.

Next, let's discuss the closure under concatenation. If we take two regular languages, A1 and A2, and
concatenate them, the resulting language will also be regular. The concatenation operation produces a new set
of strings, or a new language, where each string has a first part from Al and a second part from A2.

To prove that the concatenation of A1 and A2 is regular, we can use a similar approach as before. We assume
that we have NFAs that recognize Al and A2, and we want to construct an NFA that recognizes the
concatenation of A1 and A2.

The construction of this new NFA is done by combining the NFAs of A1 and A2. We create a new starting state
and add epsilon transitions to the starting state of Al. The final states of the new NFA are the final states of A2.
The transition function is defined such that if there is a transition in A1 or A2, we keep that transition.

Regular languages are closed under the regular operations of union and concatenation, as well as the closure
operation. This means that if we apply these operations to regular languages, the resulting language will also be
regular. We have shown this by constructing new NFAs that recognize the resulting languages.

In the field of computational complexity theory, one fundamental concept is regular languages and their closure
under regular operations. Regular languages are a subset of formal languages that can be recognized by finite
automata. In this didactic material, we will explore the closure of regular operations, specifically focusing on
concatenation and the star operation.

To understand the closure of regular operations, let's first discuss the concept of concatenation. Concatenation
is an operation that combines two regular languages, resulting in a new language that consists of all possible
concatenations of strings from the two original languages.

To illustrate this concept, consider two machines, Machine 1 and Machine 2, each with their own set of states,
transition functions, starting states, and sets of final states. We can represent these machines schematically
with two initial states, Q1 and Q2. To build a machine that recognizes the concatenation of these languages, we
create a new machine, Machine n. The initial state for Machine n will be the initial state for Machine 1. We add
epsilon edges from each of the final states in Machine 1 to the initial state of Machine 2. These epsilon edges
represent the concatenation of the languages. The final states for Machine n will be the final states from
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Machine 2. The final states from Machine 1 will no longer be final in Machine n.

Formally, for two machines, Machine 1 and Machine 2, the set of states for Machine n is the union of the states
from Machine 1 and Machine 2. The initial state for Machine n is the same as the initial state for Machine 1. The
final states for Machine n are the final states from Machine 2. The transition function for Machine n is specified
as follows: if a state, Q, is an element of Machine 1, we follow the transitions as we would have in Machine 1. If
Q is an element of Machine 2, we use the transitions from Machine 2. Additionally, we add epsilon edges from
the final states of Machine 1 to the initial state of Machine n.

Moving on to the star operation, applying the star operation to a regular language results in a new regular
language that includes zero or more occurrences of strings from the original language. To illustrate this concept,
let's consider a machine that recognizes the language of Machine 1. Applying the star operation to this machine,
we construct a new machine. The initial state and final states remain the same. However, we add edges from
the final states to the initial state, allowing for zero or more occurrences of strings in the language. We also
introduce a new state as the new initial state, connected to the previous initial state with epsilon edges. This
new state represents the acceptance of the empty string.

Regular languages are closed under regular operations such as concatenation, union, and star. Concatenation
combines two regular languages, resulting in a new language that consists of all possible concatenations of
strings from the original languages. The star operation allows for zero or more occurrences of strings from a
regular language. This closure property is essential in the study of computational complexity theory.
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LESSON: REGULAR LANGUAGES
TOPIC: REGULAR EXPRESSIONS

Regular expressions are an important concept in computational complexity theory and cybersecurity. They are
used to describe patterns in strings and are widely used in various applications such as text processing,
searching, and pattern matching. In this material, we will define regular expressions and provide examples to
help you understand their syntax and usage.

A regular expression is a syntactic form that describes a language. It consists of symbols from an alphabet,
which is a given set of symbols. The simplest regular expressions are single symbols from the alphabet. For
example, if our alphabet is {a, b, c}, then 'a' is a regular expression.

Regular expressions can also be combined using operators. The first operator is the union operator, denoted by
the symbol '|'. If we have two regular expressions, rl and r2, we can use the union operator to create a new
regular expression that represents the language described by either rl or r2.

Another operator is the concatenation operator, denoted by simply placing two regular expressions next to each
other. If we have two regular expressions, rl and r2, we can concatenate them to create a new regular
expression that represents the language described by rl followed by r2.

Additionally, regular expressions can be modified using the star operator, denoted by placing a *' after a
regular expression. This operator represents zero or more repetitions of the preceding regular expression. For
example, if we have a regular expression 'a', then 'a*' represents any number (including zero) of 'a' symbols.

Furthermore, regular expressions can include parentheses to group subexpressions and define the order of
operations. This allows us to create more complex regular expressions by combining multiple operators.

It is important to note that regular expressions can also include the epsilon symbol (¢) and the empty set
symbol (@), which represent the language containing no symbols and the empty language, respectively.

To interpret regular expressions with multiple operators, we follow a set of rules for operator precedence. The
star operator has the highest precedence, followed by concatenation, and then union. This means that
expressions involving the star operator are evaluated first, followed by concatenation, and finally union. If
parentheses are present, they override the default precedence.

Regular expressions are a powerful tool for describing patterns in strings. They consist of symbols from an
alphabet and can be combined using operators such as union, concatenation, and star. Parentheses can be used
to group subexpressions and define the order of operations. Understanding regular expressions is important in
the field of cybersecurity and computational complexity theory.

Regular expressions are a fundamental concept in computational complexity theory and are widely used in the
field of cybersecurity. They are a concise and powerful way to describe patterns in strings. In this didactic
material, we will explore the basics of regular expressions and their notations.

Regular expressions consist of a combination of symbols and operators. The most common symbols used in
regular expressions are letters, digits, and special characters. The operators used in regular expressions include
concatenation, union, closure, optional, and one or more occurrences.

Concatenation is denoted by simply placing two symbols or expressions next to each other. For example, the
regular expression "AB" represents any string that starts with an "A" followed by a "B".

Union is denoted by either the vertical bar "|" or the word "or". For example, the regular expression "A|B"
represents any string that is either an "A" or a "B".

Closure is denoted by an asterisk "*" or by braces "{}" followed by an asterisk. It represents zero or more
occurrences of the preceding symbol or expression. For example, the regular expression "A*" represents any
string that contains zero or more occurrences of "A".
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Optional is denoted by brackets "[]" or by the union symbol with epsilon "€". It represents either the preceding
symbol or expression or nothing at all. For example, the regular expression "A[B]" represents any string that is
either an "A" followed by a "B" or just an "A".

One or more occurrences is denoted by a plus sign "+". It represents one or more occurrences of the preceding
symbol or expression. For example, the regular expression "A+" represents any string that contains one or more
occurrences of "A".

It is important to note that the order of operations matters in regular expressions. Concatenation binds most
tightly, followed by closure, union, optional, and one or more occurrences. To make the grouping of symbols
explicit, parentheses can be used.

Regular expressions can be written using different notations, but the meaning remains the same. For example,
the vertical bar "|" can be used instead of the word "or", and braces "{}" can be used instead of an asterisk "*"
for closure.

Regular expressions are a powerful tool in computational complexity theory and cybersecurity. They allow us to
describe patterns in strings using symbols and operators such as concatenation, union, closure, optional, and
one or more occurrences. Understanding the notation and order of operations is important in correctly
interpreting regular expressions.

Regular expressions are an essential tool in computational complexity theory, particularly in the study of regular
languages. In this didactic material, we will explore the fundamentals of regular expressions and their
corresponding languages.

Regular expressions involve different operators, such as the union operator (represented by the vertical bar "|"),
the concatenation operator (represented by adjacency), the star operator (represented by "*"), epsilon
(representing the empty string), the empty set symbol, and parentheses. Each of these operators plays a
important role in defining the languages denoted by regular expressions.

Let's start by understanding the language denoted by a regular expression consisting of a single symbol from
the alphabet. In this case, the regular expression represents the set that contains only that single string. For
example, if the regular expression is "a," the language denoted by it is the set containing the string "a."

The union operator in regular expressions is represented by the vertical bar "|." When a regular expression
involves the union operator, it has two sub-expressions that are themselves smaller regular expressions. To
determine the language denoted by this larger regular expression, we look at the languages denoted by the sub-
expressions and union them together. For example, if we have the regular expression "rl | r2," it denotes the
union of the languages denoted by "r1" and "r2."

The concatenation operator in regular expressions is represented by adjacency. When two regular expressions
are next to each other, say "rlr2," it means that the language denoted by this larger expression is obtained by
concatenating the languages denoted by "rl1" and "r2." For example, if "r1" denotes the language {a} and "r2"
denotes the language {b}, then "rlr2" denotes the language {ab}.

The star operator in regular expressions is represented by "*." When a regular expression includes this operator,
it means taking the closure of the language. In other words, if we have a regular expression followed by "*", it
denotes the language that contains all possible strings obtained by concatenating zero or more strings from the
original language. For example, if "r" denotes the language {a}, then "r*" denotes the language {¢, a, aa, aaa,

.}

The symbol "€" represents the empty string, which is a string of zero length. When a regular expression is just
"e" by itself, it means the language containing only the empty string.

The symbol for the empty set represents the empty language, which contains no strings at all.

Parentheses are used in regular expressions to group operators and indicate the order of evaluation. They do
not have any inherent meaning by themselves.
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To summarize, regular languages are closed under the operations of union, concatenation, and star. This means
that if we have two regular languages and we union or concatenate them, we obtain a regular language.
Similarly, if we apply the closure operation (star) to a regular language, we obtain another regular language.
Since regular expressions involve only union, concatenation, and star operations, we can conclude that regular
expressions describe regular languages.

Now, let's look at some examples of regular expressions and the languages they denote. In these examples, we
will consider an alphabet containing four symbols: a, b, ¢, and d.

Example 1:

Regular Expression: a

Language: {a}

Explanation: The regular expression "a" represents the language that contains only the string "a."

Example 2:

Regular Expression: abcd

Language: {abcd}

Explanation: The regular expression "abcd" denotes the language that contains only the string "abcd."

Example 3:

Regular Expression: B|CD

Language: {B, CD}

Explanation: The regular expression "B|CD" denotes the language that contains either the string "B" or the
string "CD."

Example 4:

Regular Expression: A(B|C)D

Language: {ABD, ACD}

Explanation: The regular expression "A(B|C)D" denotes the language that contains either the string "ABD" or the
string "ACD."

Example 5:

Regular Expression: AB*C

Language: {AC, ABC, ABBC, ABBBC, ...}

Explanation: The regular expression "AB*C" denotes the language that contains strings starting with "A,"
followed by zero or more "B"s, and ending with "C."

Example 6:

Regular Expression: B|eC

Language: {B, C}

Explanation: The regular expression "B|eC" denotes the language that contains either the string "B" or the
empty string followed by "C."

Regular expressions are powerful tools for describing regular languages. By using different operators such as
union, concatenation, star, epsilon, empty set, and parentheses, we can define and understand the languages
denoted by regular expressions.

Regular Languages and Regular Expressions are fundamental concepts in the field of Computational Complexity
Theory and play a important role in the study of Cybersecurity. In this didactic material, we will explore the
basics of Regular Languages and Regular Expressions, focusing on their definitions and operations.

A Regular Language is a set of strings that can be described using Regular Expressions. A Regular Expression is
a formal notation that represents a Regular Language. Let's consider some examples to understand these
concepts better.

The first example is a Regular Language that consists of strings starting with an 'A' and ending with a 'C', with
either a 'B' or nothing in between. We can represent this Regular Language using the Union symbol '|' or using
the notation '[ 1'. The Regular Expression for this language is 'A (B|g) C', where 'e' represents the empty set. In
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this case, the language contains two strings: 'ABC' and 'AC'.

Next, let's consider the empty set. The empty set corresponds to the empty language, which does not contain
any strings. In Regular Expressions, we can represent the empty set as 'Q".

Now, let's explore concatenation with the empty set. When a Regular Expression is concatenated with the
empty set, the result is always the empty set. This means that any string concatenated with the empty set will
be empty. For example, if we have 'A (B|C) @', it implies that there are no strings in this language.

Moving on, we encounter an interesting concept - the empty set starred. While it may seem empty, it actually
contains the empty string. The empty set starred represents a language that contains zero or more occurrences
of effectively nothing. In other words, it includes the empty string. Therefore, 'O*' is the Regular Expression for
the language containing only the empty string.

Understanding Regular Languages and Regular Expressions is essential for computer scientists working in
various contexts. By analyzing a Regular Expression, one can determine the types of strings described by it.
This knowledge is valuable for tasks related to Cybersecurity and other computational problems.

To summarize, Regular Languages and Regular Expressions are fundamental concepts in Computational
Complexity Theory. A Regular Language is a set of strings described by a Regular Expression. We explored
examples of Regular Languages and Regular Expressions, including the empty set and concatenation with the
empty set. Additionally, we discussed the concept of the empty set starred, which includes the empty string.
Mastering Regular Expressions is important for computer scientists working with various applications.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: REGULAR LANGUAGES
TOPIC: EQUIVALENCE OF REGULAR EXPRESSIONS AND REGULAR LANGUAGES

Regular Languages and Regular Expressions

Regular languages and regular expressions are fundamental concepts in computational complexity theory and
cybersecurity. In this didactic material, we will discuss the equivalence between regular languages and regular
expressions.

Regular languages are a class of languages that can be recognized by finite state machines. A language is
considered regular if and only if it can be recognized by some finite state machine. Deterministic and non-
deterministic finite state machines have equivalent power in recognizing regular languages.

Regular expressions, on the other hand, are a concise and powerful notation for describing regular languages.
For every regular expression, there is a corresponding language that it describes. The syntax of regular
expressions defines the language it represents. We can recursively define the language described by a regular
expression based on its syntax.

The important result we are discussing in this material is that the set of regular languages is exactly the set of
languages that can be described by regular expressions. In other words, if a language is regular, it can be
described by a regular expression, and vice versa. Regular languages and regular expressions are equivalent in
their power.

To summarize, regular languages described by deterministic finite automata, non-deterministic finite automata,
and regular expressions are all equivalent. They describe the same class of languages. Whether a language is
described by a deterministic finite state machine, a non-deterministic finite state machine, or a regular
expression, it is still a regular language.

The equivalence between regular languages and regular expressions can be proven in two directions. First, if a
language is described by a regular expression, then it is regular. This can be shown by demonstrating that
regular languages are closed under the union, star, and concatenation operations, which are defined by regular
expressions. Additionally, a regular expression can be converted into a non-deterministic finite state automaton
to recognize the language it describes.

The second part of the proof is more complex. If a language is regular, it can be described by a regular
expression. The approach is to start with a deterministic finite state automaton that recognizes the regular
language and then transform it into a regular expression using a generalized non-deterministic finite state
automaton. This process involves modifying and reducing the automaton until a regular expression is obtained.

Regular languages and regular expressions are equivalent in their power. A language is regular if and only if it
can be described by a regular expression. This fundamental result is important in the study of computational
complexity theory and has significant implications in the field of cybersecurity.

Regular expressions and regular languages are fundamental concepts in computational complexity theory and
cybersecurity. In this didactic material, we will explore the equivalence between regular expressions and regular
languages, specifically focusing on the conversion of regular expressions into non-deterministic finite automata.

To begin, let's establish the connection between regular expressions and regular languages. Regular
expressions are syntactic entities composed of sequences of symbols. They can be seen as a way to describe
patterns in strings. On the other hand, regular languages are sets of strings that can be recognized by a finite
automaton.

We can prove the equivalence between regular expressions and regular languages through a proof by
construction. The idea is to show how to construct a non-deterministic finite state machine (NFA) for a given
regular expression. Since the language described by an NFA is regular, we can conclude that the language
described by the regular expression is also regular.
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The construction of the NFA for a regular expression follows an inductive approach. For every regular
expression, there is an outermost operation that joins one or two smaller regular expressions. The outermost
operation can be either concatenation, union, or the star operation.

Let's consider an example to illustrate this construction. Suppose we have a regular expression with an
outermost union operation. We assume that we can build NFAs for the smaller expressions operated on by the
outermost operator. Our goal is to show how to construct a new NFA for the larger expression.

The construction is inductive and based on the structure of the regular expression. We start with the basis
cases, which include a regular expression consisting of a single symbol from the alphabet, epsilon, or the empty
set. For each of these cases, we can construct a corresponding NFA.

If the regular expression is a single symbol, we create an NFA with a single start state, a single final state, and a
single transition. This NFA recognizes only the string represented by the symbol.

If the regular expression is epsilon, we construct an NFA with a starting state that is also a final state and no
transitions. This NFA accepts only the empty string.

If the regular expression is the empty set, we build an NFA with no final states. This NFA accepts no strings.

For the other cases, we use the construction we used to prove the closure properties of regular languages. For
example, if the regular expression is a union of two smaller regular expressions, we recursively construct NFAs
for each smaller expression and then add a new starting state and transitions to create a new NFA.

Similarly, for the concatenation operation, we join the NFAs of the two smaller expressions using appropriate
transitions.

By following this construction process, we can build an NFA for any regular expression, thereby proving the
equivalence between regular expressions and regular languages.

Regular expressions and regular languages are closely related concepts in computational complexity theory.
Regular expressions are syntactic entities that describe patterns in strings, while regular languages are sets of
strings recognized by finite automata. The equivalence between regular expressions and regular languages can
be established by constructing non-deterministic finite state machines for regular expressions. The construction
process follows an inductive approach based on the structure of the regular expression.

A regular expression that has concatenation as the outermost operation can be represented by a non-
deterministic finite state machine (NFA) that recognizes the same language. To build this NFA, we first construct
the machines for the subexpressions rl and r2. Then, we combine them by adding epsilon edges to make the
states non-final and use this as our starting state. Additionally, for the closure operation (star), we build the
machine as shown in the material.

This completion of the proof demonstrates that if a regular expression is given, it describes a regular language.
The proof shows that we can construct a non-deterministic finite state machine to recognize that language. It is
an inductive proof that illustrates how to build a machine step by step from smaller regular expressions to
larger ones, ensuring that it recognizes the correct language. Since a non-deterministic finite state machine can
be built to recognize the language, it implies that the language is regular. Therefore, the regular expression
must describe a regular language.

Now, let's turn to the other direction of the proof. If a language is regular, we can find a regular expression to
describe it. This part of the proof is complex, and the rest of the material will be dedicated to explaining the
proof and working through an example.

To understand the proof, we introduce the concept of a Generalized Non-deterministic Finite Automaton (GNFA).
A GNFA is similar to a non-deterministic finite state automaton but with a few differences. In a GNFA, the edges
are not labeled with single symbols but with regular expressions. There is only one accept state, and the
machine is fully populated, meaning there is an edge from every state to every other state, including an edge
from a state back to itself. However, there are no edges going into the initial state, and the final state has no
edges going out of it.
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To illustrate this concept, let's consider some examples. In a non-deterministic finite state automaton, edges are
labeled with characters from the alphabet. In a GNFA, edges can be labeled with complex regular expressions.
Multiple edges between the same pair of states can be represented by a comma in shorthand notation,
indicating that there are separate edges. However, in a GNFA, only one edge is allowed between any pair of
states. If there are multiple ways to get from one state to another, the edge would be labeled with a regular
expression representing the different possibilities.

In a non-deterministic machine, there can be missing edges, but in a GNFA, there is full connectivity. Every pair
of states has an edge going in both directions, and there is also an edge from every state to itself, except for
the starting state, which has no incoming edges. Therefore, our GNFA machines look like this: a starting state
with edges going to every state in the machine.

Understanding the concept of GNFA is important as we will use it to build a GNFA for the regular language and
then reduce it to obtain a regular expression.

In the study of computational complexity theory in the context of cybersecurity, understanding regular
languages and their equivalence to regular expressions is important. Regular languages are a fundamental
concept in theoretical computer science that can be recognized by finite automata, specifically deterministic
finite state machines (DFAs) and non-deterministic finite state machines (NFAs).

In @ non-deterministic machine, edges can connect final states to other final states, non-final states, or even
back to the same state. However, in a generalized non-deterministic finite automaton (GNFA), edges can only
go into a state. To illustrate this, let's consider an example. We have an initial state and a final state, and from
the initial state, we have edges going to all the states in the machine, including the final state. Similarly, from
every state, including the initial state, we have an edge going to the final state. For states that are neither initial
nor final, we have an edge going to every other state, including itself.

Now, the goal is to prove that for every regular language, we can construct a regular expression. If we have a
regular language, it means we have a DFA that recognizes it. However, to simplify the process, we can convert
the DFA into a GNFA in step one. This involves adding a single start state and a single new accept state, and
connecting them to the previous start and accept states using epsilon edges. We then consider every pair of
nodes that have more than one edge connecting them and reduce them to a single edge, creating a regular
expression that represents the union of all the different symbols. Finally, for any missing edges, we add them to
the GNFA and label them with the empty set.

After converting the DFA to a GNFA, we move on to step two, which is reducing the GNFA. The goal is to simplify
the GNFA until we are left with a single edge labeled with a single regular expression. This edge represents the
regular expression that describes the original regular language. To simplify the GNFA, we repeat the following
steps: choose an arbitrary state (excluding the initial and final states), eliminate the state by connecting its
incoming and outgoing edges with a regular expression that represents their concatenation, and update the
GNFA accordingly. We continue this process until we are left with a GNFA that consists of a single starting state,
a single accepting state, and a single transition labeled with a regular expression.

The process of converting a DFA to a GNFA and then simplifying the GNFA allows us to obtain a regular
expression that represents a regular language. This process is essential in understanding the equivalence
between regular expressions and regular languages, which is a fundamental concept in computational
complexity theory and its application in cybersecurity.

In the field of cybersecurity, understanding the fundamentals of computational complexity theory is important.
One important concept within this theory is regular languages and their equivalence with regular expressions.

To begin, let's consider the process of converting a deterministic finite state automaton (DFA) into an equivalent
regular expression. We start with a DFA and select a state, which we'll call Qrip, at random. However, we must
ensure that Qrip is not the start state or the accept state. Once we have chosen Qrip, we remove it from the
DFA, along with all the edges that connect to and from it. Afterward, we modify the remaining edges so that the
resulting machine still accepts the same language.

We repeat this process of selecting and removing states until only two states remain in the machine. At this
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point, we have successfully converted our DFA into an equivalent regular expression that recognizes the same
language.

The process of removing a state and modifying the edges can be complex. Let's consider two arbitrary states,
Qi and Qj, connected by an edge labeled with a regular expression R. Suppose we decide to remove another
state, Qrip. It is possible to go from Qi to Qj by directly following the edge labeled with R. However, there may
also be a path through Qrip that leads from Qi to Qj. In this case, we need to modify the edge connecting Qi and
Qj to account for both possibilities.

To illustrate this, let's imagine a generalized machine with Qi and Qj connected by multiple edges. One edge
corresponds to the direct path, labeled with R, while other edges represent the path through Qrip, labeled with
regular expressions rl, r2, and r3. When we remove Qrip, we modify the edge between Qi and Qj to include
both possibilities. The modified edge's label becomes the regular expression R or (rl followed by zero or more
occurrences of r2 followed by r3).

This process of modifying edges must be applied to every possible edge in the machine. For example, if there is
a way to go from Qk to Qj, we consider both the direct path and the path through Qrip, modifying the
corresponding edge accordingly.

By following this systematic approach, we can convert a DFA into an equivalent regular expression. This
conversion allows us to represent the same language using a more flexible and concise notation.

Understanding the equivalence between regular expressions and regular languages is an essential aspect of
computational complexity theory in the field of cybersecurity. By converting a deterministic finite state
automaton into a regular expression, we can represent the same language in a more compact form. This
process involves selecting and removing states from the automaton while modifying the remaining edges to
account for all possible paths. Through this conversion, we gain a deeper understanding of regular languages
and their relationship with regular expressions.

In the field of computational complexity theory, regular languages play a fundamental role. Regular languages
are a type of formal language that can be described by regular expressions. Regular expressions are powerful
tools for pattern matching and text manipulation. Understanding the equivalence between regular expressions
and regular languages is important in the study of cybersecurity.

To illustrate this concept, let's consider an example. Suppose we have a regular language described by a finite
state machine. The language accepts strings that start with either 0 or 1, followed by the digit 2, and then zero
or more occurrences of 0 or 1 in any order. For example, the strings "110021100" and "10120" would be
accepted by this language.

To derive a regular expression that describes this language, we can follow a systematic algorithm. First, we
convert the deterministic finite state machine into a generalized non-deterministic finite automaton. This
involves adding a new starting state and a new final state with epsilon edges. We also modify the existing edges
accordingly.

Next, we choose one state to remove, in this case, let's remove state B. We update the remaining edges to
reflect the new connections. For example, to get from state A to state C, we can either take the empty set or go
through the sequence of 0 or 1 followed by 2. We can simplify this expression to just 0 or 1 star 2.

We continue this process for each remaining edge, simplifying the expressions as we go along. Eventually, we
end up with a simplified diagram that represents the regular expression for the language.

In the case of our example, the resulting regular expression is 0 or 1 star 2. This expression accurately
describes the language accepted by the original finite state machine.

By understanding the equivalence between regular expressions and regular languages, we can effectively
analyze and manipulate patterns in cybersecurity. Regular expressions provide a concise and powerful way to
describe and match complex patterns in textual data.

In the study of cybersecurity, it is essential to understand the fundamentals of computational complexity theory.
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Regular languages are a important concept in this field, and understanding their equivalence with regular
expressions is of great importance.

Regular expressions are a powerful tool for describing patterns in strings. They consist of a combination of
symbols, operators, and special characters that define a pattern to be matched in a string. Deterministic finite
automata (DFAs) are another concept used in computational complexity theory. DFAs are mathematical models
that recognize regular languages, which are sets of strings that can be generated by regular expressions.

The goal is to prove that the class of languages recognized by DFAs, non-deterministic finite automata (NFAs),
and regular expressions is the same. In other words, they are all equivalent in their expressive power.

To demonstrate this equivalence, we will outline an algorithmic approach to convert a DFA into an equivalent
regular expression. By following this algorithm, we can transform a DFA into a regular expression that
recognizes the same language.

Let's consider a DFA with states A, B, C, and D, and an alphabet containing symbols 0 and 1. Suppose we want
to find a regular expression that recognizes the language recognized by this DFA.

We start by examining the transitions between states. If we remove state B, we can see that the only remaining
transition is from state A to D via state C. This transition can be represented as C*(0|1)*, where C* denotes zero
or more occurrences of C, and (0|1)* denotes zero or more occurrences of either 0 or 1.

Further simplification can be achieved by removing the empty string. This simplification results in the regular
expression (0[|1)*2(0]1)*, where (0|1)* denotes zero or more occurrences of either 0 or 1, and 2 represents the
symbol 2.

Therefore, we have successfully shown an algorithmic way to convert a DFA into an equivalent regular
expression. This proof establishes that the class of languages recognized by DFAs, NFAs, and regular
expressions is the same. They are all equivalent in their expressive power.

Understanding the equivalence between regular expressions and regular languages is fundamental in the field
of cybersecurity. This knowledge allows us to utilize regular expressions effectively in pattern matching and
language recognition tasks, enhancing our ability to analyze and protect against potential security threats.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: REGULAR LANGUAGES
TOPIC: PUMPING LEMMA FOR REGULAR LANGUAGES

The pumping lemma for regular languages is a fundamental concept in computational complexity theory. It
allows us to prove that certain languages are not regular. In this didactic material, we will focus on
understanding and applying the pumping lemma for regular languages.

Before we dive into the pumping lemma, let's first look at a couple of example languages that are not regular.
The first example is a language consisting of a sequence of zeros followed by a sequence of ones, where the
number of zeros is equal to the number of ones. Intuitively, this language requires counting to determine if a
string belongs to it. Counting, however, is beyond the capabilities of regular languages and finite state
machines, making this language non-regular.

Another example is a language where the number of zeros is equal to the number of ones, but the order of
zeros and ones can be arbitrary. Similar to the previous language, this language also requires counting or
keeping track of the difference in the number of zeros and ones. As this difference can be arbitrarily large, it
cannot be handled by a finite state machine, making this language non-regular as well.

Now, let's introduce the pumping lemma for regular languages. The pumping lemma is a key concept and
technique used to prove that languages are not regular. It applies to languages that have an infinite number of
strings, meaning that some of the strings are long or even very long. The idea is to consider a finite state
machine that generates these long strings. Since finite state machines have a finite number of states, we need
to examine how long a string can be without containing a cycle.

To illustrate this, imagine a finite state machine with a small number of states, let's say 5. In order to generate
long strings, the machine needs to follow a cyclic path. However, the question is, how long can the string be
without encountering a cycle? In this example, with 5 states, we can generate strings up to length 4 without a
cycle. If we try to extend the string to length 5, we would have to revisit a state we have already visited,
resulting in a cycle.

Based on this observation, we can conclude that any string longer than the number of states in the finite state
machine will necessarily contain a cycle. Therefore, if a language requires strings longer than the number of
states in a finite state machine, it cannot be regular.

The pumping lemma for regular languages allows us to prove that certain languages are not regular by
demonstrating that they require strings longer than the number of states in a finite state machine. By
understanding the limitations of regular languages and finite state machines, we can gain insights into the
computational complexity of different languages.

The Pumping Lemma for Regular Languages is a fundamental concept in Computational Complexity Theory,
specifically in the study of regular languages. The lemma provides a way to determine whether a language is
regular or not by examining the existence of cycles in the finite state machine that describes the language.

The key idea behind the Pumping Lemma is that if a string is long enough and belongs to a regular language,
then it can be divided into three parts: X, Y, and Z. The Y part represents the portion of the string that goes
around a cycle in the finite state machine. The lemma states that for any integer | greater than or equal to O,
the string formed by concatenating X, Y repeated | times, and Z must also be in the language.

To understand this concept, let's consider an example of a finite state machine that contains a cycle. In this
machine, there is a path from the initial state to the final state that goes around a cycle, visiting a specific state,
labeled q9, more than once. We can divide any string that involves this cycle into three parts: X, Y, and Z. The Y
part represents the portion of the path that goes from q9 to g9, while X goes up to g9 and Z goes from g9 to the
final state. Therefore, any string of the form XY~ IZ, where | is greater than or equal to 0O, is in the language.

In order for a language to be regular, there must exist a pumping length, denoted as P, such that any string
longer than or equal to P can be divided into X, Y, and Z, and the language must contain XY~IZ for all I. The
pumping length P is a property of the language itself, not of a specific finite state machine. Although it is
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possible to create a finite state machine that accepts a string without going around a cycle, the existence of a
pumping length is a characteristic of every regular language.

It is important to note that the length of the Y part must be greater than zero for the Pumping Lemma to hold. If
Y is an empty string, the lemma would lose its meaning. Additionally, for a cycle to be a cycle, it must have at
least one edge. Therefore, there must be an edge in the cycle.

The Pumping Lemma for Regular Languages provides a powerful tool for determining whether a language is
regular or not. By examining the existence of cycles in the finite state machine that describes the language, we
can identify a pumping length, denoted as P, which guarantees that any string longer than or equal to P can be
divided into X, Y, and Z, and the language must contain XY~ IZ for all I.

In computational complexity theory, regular languages play a important role. Regular languages can be
recognized by finite state machines. However, it is important to understand the limitations of regular languages.
The Pumping Lemma for Regular Languages provides a tool to prove that certain languages are not regular.

The Pumping Lemma states that if a language is regular, it must have a pumping length, denoted as P. This
pumping length is a property of the language itself, not of any specific finite state machine that recognizes the
language. The pumping length exists because any finite state machine that describes a regular language must
have cycles in order to generate strings of arbitrary length.

To understand the Pumping Lemma, let's consider some examples. In a regular language, if a string is longer
than or equal to the pumping length, it can be divided into three parts: X, Y, and Z. The important condition is
that for every integer |, X, Y to the I, Z must be in the language. This means that the Y part can be repeated any
number of times and the resulting string will still be in the language.

Additionally, the Y part cannot be empty, and the length of X and Y combined must be less than or equal to the
pumping length. This ensures that the pumping length is reached before going beyond P symbols.

Now, let's discuss how we can use the Pumping Lemma to prove that a language is not regular. We can follow a
proof by contradiction approach. First, assume that the language A is regular and has a pumping length P. Then,
we arrive at a contradiction, which leads us to the conclusion that A is not regular.

By applying the Pumping Lemma, we can choose a string in A that is longer than or equal to the pumping
length. This string can be divided into X, Y, and Z, satisfying the conditions of the Pumping Lemma. However, by
repeating the Y part, we can generate strings that are not in A, contradicting the assumption that A is regular.

The Pumping Lemma for Regular Languages is a powerful tool to prove that certain languages are not regular.
By assuming the language is regular and applying the conditions of the Pumping Lemma, we can arrive at a
contradiction, proving that the language is not regular.

The Pumping Lemma for Regular Languages is a powerful tool used to prove that a language is not regular. It
states that for any regular language, there exists a pumping length, denoted as P, such that any string in the
language with a length greater than or equal to P can be divided into three parts: X, Y, and Z. The string formed
by repeating XY to the power of | followed by Z must also be in the language for every possible value of I.

To prove that a language is not regular using the Pumping Lemma, we assume that the language is regular and
then find a string that cannot be pumped. We divide this string into X, Y, and Z in all possible ways and show
that none of these divisions satisfy all three pumping conditions simultaneously. This contradiction then proves
that the language is not regular.

Let's consider an example language, B, defined as 0 to the power of N followed by 1 to the power of N. We want
to prove that this language is not regular. We assume that B is regular and it has a pumping length, denoted as
P. We then choose a string of P Os followed by P 1s as our test string.

To find a contradiction, we divide the test string into X, Y, and Z. There are three possible cases for the
placement of Y: Y contains only 0s, Y contains some Os followed by 1s, and Y contains only 1s. We need to show
that regardless of how we divide the string, it cannot be pumped.
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In the first case, where Y consists only of Os, if the language is regular, XY to the power of 1Z should also be in
the language for every value of I. However, doubling Y would result in an increased number of 0s, which would
violate the condition of having equal numbers of Os and 1s.

Similarly, in the second case, where Y contains some 0Os followed by 1s, doubling Y would result in an unequal
number of Os and 1s, again violating the condition of the language.

In the third case, where Y consists only of 1s, doubling Y would result in an increased number of 1s, but the
number of 0s would remain the same. This violates the condition of having equal numbers of 0s and 1s.

By considering all possible ways of dividing the string into X, Y, and Z and showing that none of them satisfy the
pumping conditions, we reach a contradiction. Therefore, the language B, defined as 0 to the power of N
followed by 1 to the power of N, is not regular.

This example demonstrates the application of the Pumping Lemma to prove that a language is not regular. It is
important to note that even though B is not regular, it is context-free. This shows that the set of context-free
languages is strictly larger than the set of regular languages.

The Pumping Lemma for Regular Languages is a valuable tool in determining the regularity of a language. By
assuming the language is regular and finding a string that cannot be pumped, we can prove that the language
is not regular. This lemma helps us understand the limitations of regular languages and highlights the broader
class of context-free languages.

Regular Languages - Pumping Lemma for Regular Languages

Regular languages are an important concept in computational complexity theory and cybersecurity. They are a
class of formal languages that can be described by regular expressions or recognized by finite automata. In
order to determine if a language is regular, we can use the Pumping Lemma for Regular Languages.

The Pumping Lemma for Regular Languages states that if a language L is regular, then there exists a pumping
length p such that any string w in L with length greater than or equal to p can be divided into three parts: x, v,
and z. These parts must satisfy three conditions:

1. The length of x and y combined is less than or equal to p.
2. The length of y is greater than 0.
3. For any non-negative integer i, the string xy”~iz must also be in L.

To demonstrate the application of the Pumping Lemma, let's consider an example language L consisting of
strings of zeros and ones. We want to show that L is not regular.

First, we examine the case where the number of zeros and ones in a string is not equal. If we increase the value
of i, the number of zeros or ones will increase without a corresponding increase in the other. Therefore, strings
with unequal numbers of zeros and ones are not in the language.

Next, we consider the case where a string contains both zeros and ones, but they are not in the correct order. If
we pump the string by doubling the value of i, the number of zeros in front of a one will be greater than the
number of zeros in front of the next one. This violates the order requirement of the language and proves that
the string is not in L.

By analyzing these cases, we can conclude that no matter how we divide a string into x, y, and z, it cannot be
pumped in a way that maintains the properties of the language. Therefore, the language L is not regular.

It is important to note that the Pumping Lemma also includes a condition stating that the length of x and y must
be less than or equal to p. In our example, we have ignored this condition, but it does not affect the conclusion
that L is not regular.

The Pumping Lemma for Regular Languages is a powerful tool for determining whether a language is regular or
not. By examining the behavior of strings under pumping, we can identify patterns that violate the properties of
regular languages. This lemma is an essential concept in computational complexity theory and plays a
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important role in the study of cybersecurity.

Regular languages are an important topic in computational complexity theory, specifically in the field of
cybersecurity. Regular languages are a class of formal languages that can be recognized by deterministic or non-
deterministic finite automata. In this didactic material, we will focus on one of the fundamental tools used to
prove that a language is not regular, known as the Pumping Lemma for Regular Languages.

The Pumping Lemma for Regular Languages is a powerful tool that allows us to prove the non-regularity of a
language. It states that if a language L is regular, then there exists a constant p (the pumping length) such that
any string s in L with a length greater than or equal to p can be divided into three parts: xyz, where y is non-
empty and the length of xy is less than or equal to p. Moreover, for any non-negative integer n, the string xy"z
must also be in L.

To prove that a language is not regular using the Pumping Lemma, we follow a proof by contradiction approach.
We assume that the language L is regular and then show that there exists a string s in L that cannot be
pumped, leading to a contradiction. This contradiction implies that the initial assumption of L being regular must
be false, and therefore the language is not regular.

Let's illustrate this with an example. Suppose we have a language L and we want to prove that it is not regular
using the Pumping Lemma. We assume that L is regular and choose a pumping length p. We then consider a
string s in L with a length greater than or equal to p. According to the Pumping Lemma, we can divide s into
three parts: xyz, where y is non-empty and the length of xy is less than or equal to p.

Next, we choose a value for n and consider the string xy"z. If L is regular, this string should also be in L for any
non-negative integer n. However, by carefully selecting the values of x, y, and z, we can show that xy"z is not in
L for some value of n. This contradicts the assumption that L is regular, proving that L is not regular.

The Pumping Lemma for Regular Languages is a valuable tool for proving the non-regularity of languages. By
assuming that a language is regular and demonstrating a contradiction, we can conclude that the language is
not regular. This lemma provides a rigorous and systematic approach for analyzing the regularity of languages
in the field of computational complexity theory.

The Pumping Lemma for Regular Languages is a fundamental concept in computational complexity theory,
specifically in the study of regular languages. It allows us to prove that certain languages are not regular by
demonstrating a contradiction. By understanding and applying this lemma, researchers and practitioners in the
field of cybersecurity can gain insights into the complexity of languages and develop strategies to secure
systems against potential vulnerabilities.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: REGULAR LANGUAGES
TOPIC: SUMMARY OF REGULAR LANGUAGES

Regular Languages - Summary of Regular Languages

Regular languages are a fundamental concept in computational complexity theory. In this summary, we will
discuss the key aspects of regular languages and their properties.

Regular languages can be recognized by finite state machines. We have discussed two types of finite state
machines: deterministic finite state machines (DFSMs) and non-deterministic finite state machines (NDFSMs).
Interestingly, these two types of machines are equivalent in terms of their power. They recognize the same
class of languages. Therefore, we can refer to both types simply as finite state machines without worrying about
the distinction between deterministic and non-deterministic.

Regular expressions are another important tool for describing regular languages. We have shown that regular
expressions precisely describe regular languages. Every regular language can be described by a regular
expression. Regular expressions are widely used and convenient for describing various patterns. For example, in
compilers, regular expressions are often used to define tokens in programming languages, such as identifiers.

Regular languages and finite state machines allow us to address various questions and problems. These
questions are known as decidable questions, meaning that we can write programs to answer them. Some
examples of decidable questions include finding the minimal equivalent finite state machine for a given
machine, determining if two finite state machines accept the same language, and checking if a language is
empty or infinite. We can also compare regular expressions for equivalence.

Moreover, when it comes to parsing strings and determining if they belong to a regular language, we can
efficiently perform these tasks. There are simple algorithms to convert finite state machines or regular
expressions into code, enabling us to automatically generate code for parsing languages. This allows for
efficient recognition and acceptance/rejection of strings.

Almost every question about regular languages is decidable. Regular languages provide a solid foundation for
understanding computational complexity theory. They have practical applications in various fields, particularly
in the design and implementation of programming languages.

Regular languages are an important topic in the field of cybersecurity and computational complexity theory.
Regular languages are a subset of formal languages that can be recognized by a finite state machine or
expressed using regular expressions. In this didactic material, we will summarize the key concepts related to
regular languages.

Regular languages have a finite number of states in their corresponding finite state machine. The time required
to answer a question about a regular language can be exponential in the number of states. However, despite
this potential complexity, regular languages are decidable, meaning that we can answer questions about them.

The world of regular languages, finite state machines, and regular expressions is a well-explored and practical
domain. Understanding regular languages is important for anyone studying computer science, as it provides a
foundation for further topics. Regular languages are a fixed and small world, but they are highly useful in
practice.

While regular languages have decidable questions, more challenging questions arise in other language classes.
In the context of difficult questions, everything is still decidable, but the focus shifts to finding efficient and
convenient ways to solve them. This aspect falls under the realm of engineering, which goes beyond the scope
of this class.

In the next set of materials, we will consider the world of context-free languages. Context-free languages
introduce more interesting and intricate questions compared to regular languages. Understanding regular
languages is a stepping stone to exploring the broader landscape of formal languages.
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LESSON: CONTEXT FREE GRAMMARS AND LANGUAGES
TOPIC: INTRODUCTION TO CONTEXT FREE GRAMMARS AND LANGUAGES

Context-Free Grammars and Languages - Introduction

In this material, we will discuss context-free grammars (CFGs) and context-free languages. A context-free
grammar consists of variables, terminals, rules, and a start variable. The variables are also known as non-
terminals, while the terminals are symbols from the alphabet. The rules, or productions, define how the
variables can be replaced by other variables or terminals.

Let's consider an example CFG. The non-terminal symbols in this example are E, T, and F. On the right-hand
side of the rules, we have both non-terminals and terminals. The vertical bar "|" represents different right-hand
sides, and it is used as a shorthand for separate productions.

Every CFG has a start variable, which is typically denoted as "S." In our example, we assume that E is the start
symbol. Variables are sometimes called non-terminals, while terminals are symbols from the alphabet. In more
complex grammars, terminals may be referred to as tokens, which can consist of sequences of characters like
identifiers.

A context-free grammar generates strings of tokens or describes legal strings of tokens. The grammar itself can
be described using regular expressions. It consists of a set of rules or productions. The arrow "->" is commonly
used to represent a production in a CFG.

Now, let's discuss how we can use a CFG to generate a string of symbols. We start with the start symbol and
apply the rules in each step to change the form of the string. This process continues until we are left with a
string consisting only of terminals. This final string is said to be in the language described by the CFG.

During the derivation, we may have multiple intermediate forms called sentential forms. These forms can
contain both terminals and non-terminals. The derivation can be represented using a star notation, indicating
that it can go from one sentential form to another in zero or more steps.

In the derivation, we can choose to expand a non-terminal using one of the rules. It is common to choose the
leftmost non-terminal at each step, resulting in a leftmost derivation. Alternatively, we can choose the rightmost
non-terminal to obtain a rightmost derivation.

To summarize, a context-free grammar consists of variables, terminals, rules, and a start variable. It can be
used to generate strings of symbols by applying the rules in a derivation process. The leftmost derivation
involves choosing the leftmost non-terminal at each step, while the rightmost derivation involves choosing the
rightmost non-terminal.

A context-free grammar is a fundamental concept in computational complexity theory and cybersecurity. It is a
formal system used to describe the syntax and structure of a language. In the context of cybersecurity,
understanding context-free grammars and languages is important for analyzing and protecting computer
systems from potential vulnerabilities and attacks.

A context-free grammar is defined as a four-tuple consisting of variables (also known as non-terminals), an
alphabet (consisting of terminal symbols), rules (also known as productions), and a starting variable. The
variables represent different components or structures in the language, while the alphabet represents the set of
symbols that make up the language. The rules define how the variables can be expanded or replaced by other
variables or terminals. The starting variable indicates the initial symbol from which the language can be
derived.

The language of a grammar is the set of strings that can be derived from the starting variable according to the
rules of the grammar. In other words, any string that can be obtained by applying the rules of the grammar
starting from the starting variable is considered to be part of the language defined by that grammar. It is
important to note that the strings in the language must be finite in length.
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Parsing is the process of analyzing a string to determine its syntactic structure according to the rules of a
grammar. A parse tree, also known as a derivation tree, is a graphical representation of the syntactic structure
of a string derived from a grammar. It abstracts away the order in which the rules are applied and only shows
which rules were used and where they were used. By examining the parse tree, we can understand the
structure of the string and the rules that were applied during its derivation.

In the context of context-free grammars and languages, it is important to understand that the order in which the
rules are applied does not affect the final result. Regardless of the order in which the variables are expanded,
the same string can be derived. The parse tree helps to visualize this by focusing on the rules used and their
application rather than the specific order in which they were applied.

Understanding context-free grammars and languages is essential for analyzing and protecting computer
systems from potential vulnerabilities and attacks. By using formal systems like context-free grammars, we can
describe the syntax and structure of languages and develop techniques for parsing, analyzing, and securing
computer systems.

A language in the context of computational complexity theory refers to a set of strings. This set can contain
both short and long strings, and even arbitrarily large ones, as it is an infinite set. In order to have an infinite set
of strings, we allow for longer and longer strings. Therefore, if a language is infinite, it means that for any given
length, there will be a string of that length or greater in the language.

A context-free language is a language that is generated by a context-free grammar. In other words, if there
exists a context-free grammar to describe a language, then that language is considered context-free. It is
important to note that even if we may not know the specific grammar that describes a language, the language
itself can still be context-free. It may be challenging to find the grammar for a given language, but as long as
there is at least one context-free grammar that can describe it, the language is considered context-free.
Additionally, it is worth mentioning that for a particular context-free language, there can be multiple context-
free grammars that describe it. It is possible to add unnecessary rules to a grammar that are never used or
applicable, resulting in a slightly different grammar. Therefore, there are an infinite number of context-free
grammars for every context-free language. Ideally, we would like to have a small and easily understandable
grammar, but these are often difficult to discover.

Now, let's examine an example of a context-free grammar. Consider the following grammar:

1.S-> print S

2.5->SS

3. S -> € (epsilon)

In this example, we can observe that the right-hand sides of the rules consist of a combination of terminals and
non-terminals, and this combination can also be empty. The grammar has only one non-terminal, which must be
the start symbol, denoted by S. This grammar generates the empty string, and by using the first rule, it can also
generate "print prin". By analyzing the grammar further, we can see that for every left parenthesis generated, a

corresponding right parenthesis is generated as well. This rule allows for the generation of various
combinations, resulting in a language that represents balanced parentheses in arithmetic expressions.

Here is another example of a context-free grammar:

1.S->¢
2.5->0S1

In this grammar, for every 0 generated on the left-hand side, a 1 is generated on the right-hand side. A sample
parse tree for a string can be constructed, where the non-terminal S is replaced by "0 S 1" repeatedly. The
resulting string consists of a sequence of zeroes followed by a sequence of ones, with the number of zeroes
being equal to the number of ones.

To express this language in a different notation, we can use the form "0™n 17™n", where n represents the
number of repetitions of 0 followed by the same number of repetitions of 1. It should be noted that elsewhere,
the pumping lemma has been used to demonstrate that this language is not a regular language. By providing a
context-free grammar for this language, we have shown that it is indeed a context-free language. Therefore, we
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can conclude that regular languages are a subset, and a proper subset, of context-free languages. While every
regular language is a context-free language, there are numerous context-free languages that are not regular.
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LESSON: CONTEXT FREE GRAMMARS AND LANGUAGES
TOPIC: EXAMPLES OF CONTEXT FREE GRAMMARS

In this material, we will discuss the different kinds of context-free languages, focusing on ambiguous languages.
We will also explore LL(k) languages, LR(k) languages, and other classes of languages, and examine how these
different types of context-free languages relate to each other and to non-context-free languages.

To illustrate these concepts, let's consider an example of a context-free language defined by a context-free
grammar. The language we will examine is for expressions using plus, multiplication, and parentheses. For
simplicity, we will only have one terminal called "a". An example expression in this language is "a + a * a".

In arithmetic, we learn that multiplication should have precedence over addition, meaning that we should
perform the multiplication operation first and then do the addition. However, with this grammar, we can see
that this particular expression can have two different parse trees.

The first parse tree expands the starting symbol using the second rule first, resulting in "E * E". Then, the first
"E" is expanded using the first rule, yielding "E + E". This parse tree represents the expression "a + a * a" with
the multiplication being performed first.

The second parse tree expands the starting symbol using the first rule first, resulting in "E + E". Then, the
second "E" is expanded using the second rule, yielding "E * E". This parse tree represents the expression "a + a
*a" with the addition being performed first.

These two parse trees represent fundamentally different interpretations of the same string using this grammar.
The fact that a string has more than one parse tree is what makes it ambiguous. In other words, an ambiguous
string is a string that has more than one leftmost derivation or more than one rightmost derivation.

An ambiguous grammar is a grammar in which at least one string can be derived in more than one way. In other
words, if a grammar can generate ambiguous strings, then the grammar itself is considered ambiguous.
However, it's important to note that just because a grammar is ambiguous doesn't mean that an equivalent
unambiguous grammar does not exist. In fact, an equivalent unambiguous grammar may exist, even though it
may be difficult to find.

In the example we have been discussing, the initial grammar was shown to be ambiguous. However, we can
also present another grammar that is equivalent to the initial grammar but is unambiguous. This grammar is
designed based on the topic of compiler classes. It breaks down expressions into terms (represented by "T") and
factors (represented by "F"). The grammar ensures that multiplication is grouped more tightly than addition.

The goal in compiler classes and designing grammars for computer languages is to come up with unambiguous
grammars. While the initial grammar may be easier to understand in loose terms, an unambiguous grammar,
such as the second grammar we presented, is preferable in programming languages. It ensures that the
interpretation of a program is completely unambiguous.

We have explored the concept of context-free languages, focusing on ambiguous languages. We have seen how
different parse trees can represent different interpretations of the same string. We have also discussed the
notion of ambiguous and unambiguous grammars, highlighting the importance of unambiguous grammars in
programming languages.

In the field of cybersecurity, understanding the fundamentals of computational complexity theory is important.
One important concept in this theory is the study of context-free grammars and languages. It is worth noting
that every regular language is also context-free, but not every context-free language is regular. In other words,
the set of context-free languages is larger than the set of regular languages.

To further illustrate this concept, let's consider an example. Suppose we have a regular language for which we
already have a deterministic finite state automaton. We can construct an equivalent context-free grammar for
this language, thus proving that the regular language is indeed context-free. This is because if a context-free
grammar exists for a language, then the language itself is context-free.
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Let's take a look at a sample deterministic finite state machine. It has terminal symbols 1, 2, 3, and 4, and
states A, B, C, and D. The starting state is A, and there is only one accepting state, which is D. To create a
context-free grammar to accept this language, we make a non-terminal for each state (A, B, C, and D). The
starting non-terminal for the grammar is A. For each edge in the deterministic finite state machine, we add a
rule to the grammar. Additionally, we add an epsilon edge for every accepting state.

For example, for the edge from A to B on 1, we add the rule A -> 1B. Similarly, for the edge from A to C on 3, we
add the rule A -> 3C. The non-terminal B goes to itself on 2, and the accepting state D goes to epsilon. By
generating a parse tree for any string generated by this language, we can observe a linear structure that
matches the nature of regular languages and their finite state machines.

Now, let's discuss the relationship between different types of languages using a Venn diagram called the
"language onion." Starting from the bottom, we have the set of all regular languages. Regular languages can be
described by regular expressions and can be recognized by deterministic and non-deterministic finite state
machines. Moving up, we have the set of all context-free languages. These languages can be recognized by non-
deterministic pushdown automata, which are more powerful than finite state machines.

Within the context-free language category, there are different classes of languages that are interesting to study
based on how they are parsed. One class is the LLk languages, which are parsed by predictive (top-down)
parsers. These languages are relatively simple and easy to parse using top-down parsers. Another class is the
LRk languages, which can be accepted by deterministic pushdown automata. This category includes many
programming languages such as C, C++, and Java, and the parsing algorithms for these languages are more
complex.

Above these classes, we have the set of unambiguous languages, which refers to languages that have a unique
parse tree for every string. Finally, we have the set of all context-free languages, which includes both
unambiguous and ambiguous languages. It is important to note that there are context-free languages that are
ambiguous, meaning they have multiple parse trees for some strings.

Understanding the relationship between regular languages and context-free languages is essential in the field of
cybersecurity. Regular languages are a subset of context-free languages, and constructing an equivalent
context-free grammar for a regular language proves its context-free nature. The language onion diagram
provides a visual representation of the hierarchy of different language classes, including LLk and LRk languages,
unambiguous languages, and all context-free languages.

In the field of cybersecurity, understanding the fundamentals of computational complexity theory is important.
One important concept in this theory is the study of context-free grammars and languages. In this context, we
have different categories of languages, namely decidable languages, Turing recognizable languages, and all
languages.

Decidable languages refer to those that can be decided by a computer program, similar to a Turing machine. If
a Turing machine is given a specific sample string for a decidable language, it will always halt. If the string is in
the language, the program will halt and say "yes." On the other hand, if the string is not in the language, the
program will halt and say "no." It's important to note that decidable languages are a proper superset of context-
free languages.

Moving on, Turing recognizable languages are a more complex category. These languages can be recognized by
a Turing machine. If a string is in the language, the Turing machine will halt and say "yes." However, if we
provide a string that is not in the language, the Turing machine may never halt. This means that we can
determine whether a string is in the language, but we have difficulty determining when it is not.

Finally, we have the class of all languages. For these languages, when we are given an example string, we
cannot tell whether it is in the language or not. It is impossible to write a program that can determine that.
These languages are particularly interesting and abstract.

As we move up the hierarchy of language complexity, from regular languages to LLK, LRK, unambiguous context-
free languages, decidable languages, Turing recognizable languages, and finally all languages, we encounter
more complex and abstract concepts. While regular languages seem concrete and relatively easy to
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understand, the higher levels become more challenging to comprehend. However, they also become more
interesting and offer deeper insights into language theory.

The study of context-free grammars and languages in the context of computational complexity theory provides
valuable insights into the complexity and abstractness of different language categories. Understanding the
distinctions between decidable languages, Turing recognizable languages, and all languages is essential for a
comprehensive understanding of cybersecurity.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: CONTEXT FREE GRAMMARS AND LANGUAGES
TOPIC: KINDS OF CONTEXT FREE LANGUAGES

Context-free languages are a fundamental concept in computational complexity theory. In this material, we will
explore the properties of context-free languages, specifically focusing on their closure under Union,
concatenation, and intersection.

Let's start with Union. The question is whether the union of two context-free languages is still a context-free
language. To answer this, we consider that if two languages are context-free, there must be a grammar to
describe each of them. By combining these two grammars into a new grammar with a new starting symbol and
a new rule, we can generate the language that is the union of the original languages. Therefore, context-free
languages are closed under Union.

Moving on to concatenation, we ask whether the concatenation of two context-free languages results in a
context-free language. Concatenation is the set of all strings that can be formed by taking a string from the first
language and a string from the second language and combining them. To prove that the result is a context-free
language, we can construct a context-free grammar by combining the grammars for the two languages. It is
important to ensure that the two grammars have no non-terminals in common, which can be achieved by
renaming the non-terminals if necessary. Therefore, context-free languages are closed under concatenation.

Now, let's consider intersection. The question is whether the intersection of two context-free languages is also a
context-free language. Surprisingly, the answer is no. While it is possible for the intersection to be a context-
free language, it is not necessarily the case. To illustrate this, let's examine two context-free languages, L1 and
L2. L1 consists of strings with a number of zeros followed by the same number of ones, followed by any number
of twos. L2 consists of strings with a number of zeros followed by the same number of ones, followed by the
same number of twos. Both L1 and L2 are context-free languages. However, when we take the intersection of
these languages, the resulting language is not necessarily context-free. This serves as a counterexample to
show that context-free languages are not closed under intersection.

Context-free languages are closed under Union and concatenation, but not under intersection. These properties
have been proven by constructing grammars and demonstrating how the languages can be combined or
intersected. Understanding these properties is important in the field of cybersecurity, as context-free languages
play a significant role in programming languages, parsing, and formal language theory.

In the study of computational complexity theory, a fundamental concept is the understanding of context-free
grammars and languages. A context-free language is a language that can be generated by a context-free
grammar. In this material, we will explore the different kinds of context-free languages and their properties.

One kind of context-free language is the language where the number of zeros is equal to the number of ones. In
order to be in this language, the number of zeroes must be equal to the number of ones. Similarly, another kind
of context-free language is the language where the number of ones is equal to the number of twos. The
intersection of these two languages would require both conditions to be met, meaning that the number of
zeroes, ones, and twos would have to be the same. However, it is important to note that this intersection is not
a context-free language. While there may be some languages where the intersection is context-free, in general,
the answer is no.

Another question to address is whether context-free languages are closed under complement. When we take
the complement of a language, it means that we consider the set of strings that are not in the original language.
The answer to this question is also no in general. While there may be some languages where the complement is
context-free, it is not true for all context-free languages.

To better understand why this is the case, we can apply De Morgan's laws, which state that the complement of
the intersection of two sets is equal to the union of their complements. Using this principle, we can assume that
context-free languages are closed under complement. If we have two context-free languages, A and B, and we
take their complements, the union of the complements would also be context-free. However, we have already
shown that the intersection of context-free languages is not necessarily context-free. Therefore, we have a
contradiction, and it is not true that context-free languages are closed under complement.
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An interesting example to consider is the language of strings where the first half is exactly the same as the
second half. This language, denoted as WW, is not context-free because it requires remembering things in a non-
stack order. However, the complement of this language is context-free. It is also worth noting that the language
of palindromes, where the first half is equal to the second half reversed, is a context-free language.

The final question we want to address is whether two grammars are equivalent. Two grammars are considered
equivalent if they generate the same language. While in some cases it may be easy to determine if two
grammars are equivalent by examining them, in general, this question is undecidable. This means that we
cannot write a computer program that can always determine if two context-free grammars generate the same
language.

Understanding the different kinds of context-free languages and their properties is essential in the field of
computational complexity theory. While some context-free languages have specific properties, such as the
number of zeros being equal to the number of ones, or being palindromes, it is important to note that not all
context-free languages exhibit these properties. Additionally, the question of whether context-free languages
are closed under complement or if two grammars are equivalent is not always straightforward to answer.

Context-free grammars are an essential concept in computational complexity theory. They are used to define
languages that can be generated by a set of production rules. However, determining whether two context-free
grammars generate the same language is an undecidable problem.

To understand this, let's consider an alphabet consisting of zeros and ones. We can generate every possible
string of zeros and ones, although there are infinitely many of them. We can generate these strings in a specific
order, one by one. For each generated string, we can test whether it is accepted by grammar one and grammar
two.

Determining whether a string is accepted by a grammar is a decidable problem. We can write a program to
generate all possible parse trees or derivations for strings of a certain length or shorter. By doing so, we can
determine whether a string is accepted or not by a particular grammar. This program will always halt with a yes
or no answer.

So, for each string of zeros and ones, we test whether it is accepted by grammar one and grammar two. If we
find a counterexample, a string that is accepted by one grammar but not the other, then we can conclude that
the two grammars are not equivalent. However, if a string is accepted or not accepted by both grammars, it
doesn't provide any new information, and we continue to the next string.

The problem arises because there is no way to know when to stop looking for a counterexample and declare
that the two grammars are equal. We may never halt in our search for a counterexample. This is why
determining whether two context-free grammars generate the same language is an undecidable question.

The question of whether two context-free grammars generate the same language is undecidable. We can write
a program to test whether a string is accepted by a particular grammar, but there is no algorithm to determine
the equivalence of two context-free grammars.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: CONTEXT FREE GRAMMARS AND LANGUAGES
TOPIC: FACTS ABOUT CONTEXT FREE LANGUAGES

A context-free language is a type of formal language that can be generated by a context-free grammar. In this
didactic material, we will explore an example context-free language and design two different grammars for it.
The language consists of strings made up of the characters 0 and 1, where the number of zeros is equal to the
number of ones in the string.

Let's start by describing the first grammar. The grammar consists of three non-terminals: S, A, and B. The non-
terminal S represents a string of zeros and ones with an equal number of zeros and ones. The non-terminal A
represents a string with one more one than zeros, and the non-terminal B represents a string with one more
zero than ones.

The rules for the starting non-terminal S are as follows:
- The empty string is a valid string in our language.
- The string can start with eithera 0 or a 1.

The rules for the non-terminal A are:

- A can start with eithera O or a 1.

- If A starts with a 1, it can be followed by any string with an equal number of zeros and ones.
- If A starts with a 0, it needs to have two additional A's to compensate for the deficit of ones.

The rules for the non-terminal B are:

- B can start with eithera 0 or a 1.

- If B starts with a 0, it already has the required number of zeros and can be followed by any string with an
equal number of zeros and ones.

- If B starts with a 1, it needs to have two additional B's to compensate for the deficit of zeros.

It is interesting to note that this context-free language can be described by two different grammars, as shown in
the example. The second grammar also consists of three non-terminals: S, A, and B. In this grammar, A and B
are defined in a way that ensures the number of zeros and ones are balanced. The non-terminal S represents a
string with the same number of zeros and ones.

The example context-free language can be described by two different grammars, each with its own set of rules
for generating valid strings. These grammars demonstrate that a context-free language can have multiple valid
grammars that describe the same language.

In the context of computational complexity theory, a fundamental concept is the study of context-free
grammars and languages. Context-free languages are a class of formal languages that can be generated by
context-free grammars. In this didactic material, we will explore facts about context-free languages.

Let's consider a specific example to illustrate these concepts. Suppose we have a context-free grammar with
two non-terminal symbols, A and B, and two terminal symbols, 0 and 1. The grammar rules are as follows: A can
be replaced by an epsilon (empty string) and B can also be replaced by an epsilon.

With these rules, we can derive any string of A's and B's. This means that we can generate any arbitrary string
of A's and B's using this grammar. For instance, we can have a string consisting of all A's. By applying the rule
for A, which states that A can be replaced by 0 1, we can expand the string to become 01010 1.

Another way to understand the generated strings is by looking at the presence of 0's and 1's. Every 0 must have
a matching 1, and between them, there should be a string with matching zeros and ones. This perspective
provides an alternative way to interpret what A can produce.

These examples demonstrate that the given grammar can generate different strings, but they all belong to the
same context-free language. In other words, the language generated by this grammar remains the same
regardless of the specific strings it produces.

* X %
* El'l'[: | © 2024 European IT Certification Institute
* ; . 56/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/lessons/context-free-grammars-and-languages/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/lessons/context-free-grammars-and-languages/topic/facts-about-context-free-languages/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

Understanding context-free languages and their associated grammars is important in the field of cybersecurity.
It allows us to analyze and manipulate the structure and patterns of languages, which is essential for tasks such
as parsing, pattern matching, and vulnerability detection.

To summarize, context-free grammars and languages play a significant role in computational complexity theory
and cybersecurity. They provide a formal framework for generating and analyzing languages, allowing us to
derive various strings while maintaining the same underlying language.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: CONTEXT SENSITIVE LANGUAGES
TOPIC: CHOMSKY NORMAL FORM

Chomsky normal form is a constraint that can be applied to context-free grammars. In Chomsky normal form,
every rule in the grammar has a specific form. On the right-hand side of the rule, there can either be two non-
terminal symbols or a single terminal symbol. Additionally, the start symbol, denoted as 's', can only appear on
the left-hand side of rules. The only exception is that the rule 's goes to Epsilon' is allowed.

It has been proven that every context-free grammar can be transformed into an equivalent grammar in
Chomsky normal form. Two grammars are considered equivalent if they generate the same language. Although
determining the equivalence of two context-free grammars is generally undecidable, we can show that for every
context-free grammar, there exists an equivalent grammar in Chomsky normal form.

To convert a context-free grammar into Chomsky normal form, a specific algorithm can be followed. The
algorithm consists of several steps. First, the start symbol is modified to ensure that it does not appear on the
right-hand side of any rule. This can be achieved by adding a new start symbol and creating a rule where the
new start symbol goes to the original start symbol.

Next, any rules that have Epsilon on the right-hand side, except for the rule 's goes to Epsilon', are removed.
This ensures that Chomsky normal form does not allow rules with Epsilon on the right-hand side, unless it is the
start symbol.

After that, any unit rules, where one non-terminal goes to another non-terminal, are eliminated. Unit rules do
not contribute much to the parse tree and can be easily removed.

Furthermore, rules with more than two symbols on the right-hand side, whether they are terminals or non-
terminals, are transformed into rules with only two symbols. This step ensures that Chomsky normal form only
allows rules with two symbols on the right-hand side.

Finally, the grammar is modified to ensure that if there are two symbols on the right-hand side, they must be
non-terminals, and if there is only one symbol, it must be a terminal.

By following this algorithm, any context-free grammar can be converted into an equivalent grammar in
Chomsky normal form. Although the algorithm may be complex and detailed, it can be implemented by a
computer to simplify the process.

Chomsky normal form is a constraint applied to context-free grammars. It ensures that every rule in the
grammar has a specific form, allowing only two non-terminals or a single terminal on the right-hand side. By
following a specific algorithm, any context-free grammar can be transformed into an equivalent grammar in
Chomsky normal form.

In the context of computational complexity theory and cybersecurity, understanding the fundamentals of
context-sensitive languages and Chomsky normal form is important. Context-sensitive languages are a class of
formal languages that are more expressive than regular languages and context-free languages. They are
defined by context-sensitive grammars, which allow for rules that have the ability to modify the context of a
symbol based on the surrounding symbols.

One important step in the conversion of a context-sensitive grammar to Chomsky normal form is the elimination
of the rule where a symbol can go to the empty string (Epsilon). This is done by replacing each occurrence of
the symbol on the right-hand side of other rules with the empty string. This process is performed for each
possible combination of symbols that can go to Epsilon.

Another step is the removal of unit rules, where one non-terminal symbol goes to another non-terminal symbol.
This is done by directly connecting the non-terminal symbols in a rule, eliminating the intermediate non-
terminal.

In the next step, any rule with a right-hand side longer than two symbols is broken down into multiple rules with
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two symbols each. New non-terminal symbols are introduced to represent the intermediate steps of the
expansion.

By following these steps, a context-sensitive grammar can be transformed into Chomsky normal form, where all
rules have either two non-terminal symbols or a single terminal symbol on the right-hand side.

Understanding these concepts is essential for analyzing the computational complexity of algorithms and
designing secure systems. By formalizing the rules and structures of languages, we can better understand their
properties and limitations.

In the context of Computational Complexity Theory and Cybersecurity, one fundamental concept is the
Chomsky Normal Form for context-sensitive languages. The Chomsky Normal Form is a specific form in which a
context-free grammar can be transformed. This form is useful for various purposes, including parsing and
analysis of languages.

To transform a context-free grammar into Chomsky Normal Form, we follow a step-by-step algorithm. The
algorithm involves several transformations and introduces new non-terminals to ensure that all rules adhere to
the specific form.

The first step is to eliminate any epsilon rules, which are rules that can produce an empty string. This is done by
introducing new rules that cover all possible combinations of non-terminals that can derive an empty string.

Next, we eliminate any unit rules, which are rules that have only one non-terminal on the right-hand side. This is
achieved by replacing each unit rule with the rules that it implies, until no unit rules remain.

After eliminating epsilon and unit rules, we proceed to the next step, which involves eliminating any right-hand
sides longer than two. In this step, we introduce new non-terminals and rules to ensure that all right-hand sides
are either terminals or non-terminals. For example, if we have a rule like 'A -> aC', where 'a' is a terminal, we
introduce a new non-terminal, say 'Al', and a rule 'Al -> a'. Then, we replace the occurrence of 'a' with 'Al".

Finally, we examine the resulting grammar and identify any rules that violate the Chomsky Normal Form. If we
encounter a rule like 'A -> BC', where 'B' and 'C' are non-terminals, we introduce a new non-terminal, say 'A2',
and a rule 'A2 -> B'. Then, we replace the occurrences of 'B' with 'A2'. We repeat this process for all violating
rules until the grammar is fully transformed into Chomsky Normal Form.

By applying this algorithm to a given context-free grammar, we can convert it into Chomsky Normal Form. This
transformation allows for easier analysis and manipulation of the grammar, which is valuable in various
computational complexity and cybersecurity contexts.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: CONTEXT SENSITIVE LANGUAGES
TOPIC: CHOMSKY HIERARCHY AND CONTEXT SENSITIVE LANGUAGES

The Chomsky hierarchy of languages is a classification system developed by Noam Chomsky, a renowned
philosopher and linguist. It categorizes languages into four types: type 3 (regular languages), type 2 (context-
free languages), type 1 (context-sensitive languages), and type 0 (recursively enumerable languages).

In a context-free grammar, the rules consist of a non-terminal symbol on the left-hand side and a string of
terminals and non-terminals on the right-hand side. The key characteristic is that there is only a single symbol
on the left-hand side, which is a non-terminal. Context-sensitive grammars, on the other hand, allow for
additional context around the non-terminal symbol. This means that the rule is applied only when the non-
terminal is preceded by a certain string (alpha) and followed by another string (beta).

Type 0 languages, also known as recursively enumerable languages, are the most powerful in terms of
computational complexity. In these languages, the grammar rules can have multiple symbols being replaced,
and the context surrounding the symbols can also change. This gives them the ability to express Turing power.

An example of a context-sensitive language is the language consisting of strings with an equal number of ones,
twos, and threes. This language is not context-free, but it can be recognized by a context-sensitive grammar.
The approach to designing a grammar for this language involves starting with a start symbol and gradually
transforming it into a sentential form with a sequence of ones, twos, and threes. The A's in the sentential form
are replaced by ones, the B's are replaced by twos, and the C's are replaced by threes.

Understanding the Chomsky hierarchy and the different types of languages is important in the field of
computational complexity theory and cybersecurity.

In the field of computational complexity theory, the study of context-sensitive languages is an important topic.
These languages are part of the Chomsky hierarchy, which classifies formal grammars based on their
generative power. Context-sensitive languages are more powerful than context-free languages and less
powerful than recursively enumerable languages.

To understand context-sensitive languages, we need to understand the rules that govern their formation. In the
context-sensitive grammar we will explore, we have rules that convert certain symbols into others based on
their context. Specifically, we have rules for converting "b" into "2" and "c" into "3". These rules are applied
based on the symbols that precede the "b" or "c" in question. For example, if a "b" is preceded by a "1", it is
converted into a "2". Similarly, if a "b" is preceded by a "2", it is also converted into a "2". The same applies to
the conversion of "c" into "3", where the context can be either a "2" or a "3".

To illustrate these rules, let's consider an example. Starting with the string "1b", we apply the first rule to
convert the "b" into a "2". Now we have "12". We can then apply the second rule to convert the second "b" into
a "2", resulting in "122". Finally, we apply the third rule to convert the "c" into a "3", giving us the desired string
"1223". It is important to note that a "cb" pattern can never be reduced further, as the rules only allow "c" to be
converted into "3" and not into "b". This ensures that we cannot generate a string of terminals.

Now, let's explore the main rule that generates the correct number of "1"s, "b"s, and "c"s. This rule is
repeatedly applied to generate these symbols, ensuring that for every "1" generated, we also generate a "b"
and a "c". However, this rule does not guarantee the correct order of these symbols. For example, it may
generate a string like "1111bcbcbcbc". To address this, we have an additional rule that swaps the order of "b"
and "c", changing "cb" into "bc". This rule ensures that all the "b"s are placed in front of the "c"s.

At this point, we have generated the correct number of "1"s, "b"s, and "c"s in the desired order. However, there
is one rule in our grammar that is not context-sensitive. This rule, which changes "c" into "b", does not specify
the context in which the change occurs. As a result, our grammar is not yet a context-sensitive grammar.

To rectify this, we need to introduce a new non-terminal symbol. We will call it "h". By adding new rules, we can
change "c" into "h" when it is preceded by a "b", change "b" into "c" when it is preceded by an "h", and change
"h" into "b" when it is preceded by a "c". These rules ensure that we can apply them to transform "cb" into "bc",
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making our grammar truly context-sensitive.

We have developed a context-sensitive grammar that describes a language consisting of strings with the
correct number of "1"s, "b"s, and "c"s in the correct order. The rules in this grammar ensure that the symbols
are converted based on their context, allowing us to generate the desired strings.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: CONTEXT SENSITIVE LANGUAGES
TOPIC: THE PUMPING LEMMA FOR CFLS

The pumping lemma is a technique used to prove that certain languages are not context-free. It is similar to the
pumping lemma for regular languages, but more complex. A context-free language is defined as any language
that can be described by a context-free grammar.

A context-free grammar consists of rules, which are sometimes called productions. The grammar also includes
non-terminals and terminal symbols. Non-terminals are sometimes referred to as variables, while terminal
symbols are symbols from the alphabet.

A parse tree is a way to represent the structure of a string generated by a context-free grammar. The starting
symbol is often denoted as 's', and the leaves of the parse tree are labeled with terminal symbols. The goal is to
show that there exists a path in the parse tree where a non-terminal appears more than once.

In the case of context-free grammars, there is a finite set of rules, but an infinite set of strings that can be
generated from those rules. This means that some very long strings can be generated. However, if a language
described by a context-free grammar only contains a finite number of strings, it is also a regular language.

To illustrate this, let's consider an example grammar. We have a language that consists of strings of the form '0
017n237”n44' where 'n'is a positive integer. The grammar has the following rules: 's->00R 4 4'and 'R ->
R 12 3] 2" Here, 'R'is a non-terminal that can be recursively expanded.

Using this grammar, we can construct a parse tree for a specific string, suchas'001 112 33 3R 44" Inthis
case, we use the rule 'R -> R 1 2 3' three times and then apply the rule 'R -> 2' to end the recursion.

The pumping lemma is based on the idea that with a long enough string, there will be a repeated non-terminal
on the path from the starting symbol to a terminal symbol in the parse tree. This repetition is what allows us to
generate very long strings.

The pumping lemma for context-free languages is a technique used to prove that certain languages are not
context-free. It is based on the idea that with a long enough string, there will be a repeated non-terminal in the
parse tree. By demonstrating this repetition, we can show that a language is not context-free.

In the context of computational complexity theory, particularly in the study of context-sensitive languages, the
pumping lemma plays a important role. The pumping lemma provides a necessary condition for a language to
be considered context-free. It states that for any string in a context-free language that is sufficiently long, it can
be "pumped" or broken down into smaller components.

To understand the pumping lemma, let's consider a grammar with a recursive rule, denoted as R goes to
something R something. This rule allows us to use the symbol R an arbitrary number of times. By applying this
rule multiple times, we can generate different strings in the language.

In the grammar, we can break down the generated strings into four parts: u, v, X, and Y. The parts v and Y are
involved with the recursive rule, allowing them to be repeated. It is important to note that the parts u and X do
not involve recursion. By analyzing the generated strings, we can see that the string UV to the IX Y to the | Z is
also part of the language.

In the context of a parse tree, we can observe that the recursion can be used multiple times or not at all,
depending on the desired string. This means that the language will contain strings where the parts V and Y are
repeated. Additionally, for any sufficiently long string, there will be a situation where a non-terminal symbol is
repeated in the parse tree.

To further illustrate this concept, we can break down the parse tree into different patterns. These patterns can
include cases where recursion is not used at all or where the non-terminal R is repeated multiple times. These
variations of parse trees are all valid within the context of the language.
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It is important to clarify that the symbols u, v, X, Y, and Z represent strings of terminal symbols and are not part
of the alphabet directly. They represent strings of non-terminals. To generate long strings from this grammar,
recursion must be utilized.

Finally, the pumping lemma for context-free grammars states that for any context-free language, there exists a
pumping length denoted as P. For any string in the language that is longer than or equal to P, it can be pumped.
This means that the parts V and Y can be repeated, allowing the string to be broken down into multiple pieces.
The language must also include strings of the form UV to the | X Y to the | Z.

There are a couple of additional considerations for the pumping lemma to hold. Firstly, the parts V and Y must
be non-empty, meaning that at least one of them must contain symbols. Secondly, there must be a repeat
before the string becomes too long, ensuring that there is a connection between the beginning of V and the end
of Y.

The pumping lemma for context-free grammars provides a necessary condition for a language to be considered
context-free. It states that for any sufficiently long string in a context-free language, it can be broken down into
smaller components and the parts V and Y can be repeated. This lemma allows us to analyze the structure and
properties of context-sensitive languages.

The pumping lemma for context-free languages is a fundamental concept in computational complexity theory. It
states that for any context-free language, there exists a pumping length, denoted as P, such that any string in
the language whose length is greater than or equal to P can be broken into five pieces: UVXYZ. These pieces
satisfy three conditions:

1. The string UVXYZ is in the language, and for any integer | (including | = 0), the string UV~ IXY”™1Z is also in the
language. This means that the string can be "pumped" by repeating the UVXY segment.

2. Both V and Y cannot be empty strings. They must have a length greater than 0.

3. V and Y must occur within P characters of each other. In other words, the beginning of V cannot be too far
away from the end of Y.

The pumping lemma is a powerful tool for proving that certain languages are not context-free. It is often used in
proof by contradiction, where we assume that a language is context-free and then use the pumping lemma to
show that it leads to a contradiction.

To understand the logic behind the pumping lemma, it's helpful to review some concepts in predicate logic. In
predicate logic, we have the universal quantifier (V) and the existential quantifier (3). The negation of a
universally quantified expression (VX) is equivalent to an existentially quantified expression (3X), and vice
versa. Similarly, the negation of an existentially quantified expression (3X) is equivalent to a universally
quantified expression (VX).

We can also apply De Morgan's law in logic, which allows us to push a negation symbol past a conjunction (A) or
a disjunction (v), flipping it from one to the other.

In the context of the pumping lemma, we can loosely describe its conditions using first-order logic notation. The
pumping lemma states that if a language L is context-free, then there exists a pumping length P. For all strings
in L that are long enough, the following conditions hold:

1. (V string in L) (3 P) [Length(string) = P] = [ UVXYZ in L, V | (including | = 0), UV"IXY"™IZ in L]

2. (V string in L) (3 P) [Length(string) = P] = [(Length(V) > 0) A (Length(Y) > 0)]

3. (V string in L) (3 P) [Length(string) = P] = [(Position(V) - Position(Y)) = P]

By using the pumping lemma and logical reasoning, we can prove that certain languages are not context-free.

In the context of computational complexity theory and cybersecurity, understanding context-sensitive
languages and the pumping lemma for context-free languages is important. The pumping lemma is a powerful
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tool used to prove that a language is not context-free.

To begin, let's define the pumping lemma for context-free languages. The pumping lemma states that for any
context-free language L, there exists a constant P, known as the pumping length, such that any string in L with
a length greater than or equal to P can be divided into five pieces: UVXYZ. These pieces must satisfy certain
conditions:

1. Foralli = 0, the string UV"iXY”iZ must be in L.
2. Both V and Y cannot be empty.
3. The beginning of V must be adjacent to the end of Y, meaning they cannot be too far apart.

The goal is to use the pumping lemma to prove that a language is not context-free. This is done by negating the
pumping property and showing that it holds for all pumping lengths. By negating the property, we can rephrase
it as follows: For all P, there exists a string in the language that is longer than P, and for all ways to divide this
string into five pieces, none of those ways can be pumped.

To illustrate this concept, let's consider a specific language, which we will call B. The language B consists of a
sequence of 'a's, followed by a sequence of 'b's, and then a sequence of 'c's. The number of 'a's, 'b's, and 'c's in
the string is the same. Our goal is to prove that this language is not context-free.

To do this, we assume that B is context-free and proceed to show that the pumping property does not hold. We
start by assuming a pumping length P without further constraints. We then construct a string a”~Pb”~Pc”P,
which is in the language B. This string is significantly longer than the pumping length, as it is three times the
pumping length in length.

Next, we consider all possible ways to divide this string into five pieces. We need to show that the conditions of
the pumping lemma do not hold for any division. While we can assume that conditions two and three hold, we
focus on condition one, which states that for all i = 0, the string UV”iXY”™iZ must be in the language. By
showing that this condition does not hold, we can conclude that the pumping property does not hold for the
language B.

The pumping lemma for context-free languages is a powerful tool used to prove that a language is not context-
free. By negating the pumping property and showing that it holds for all pumping lengths, we can demonstrate
that a language does not meet the criteria of a context-free language. Understanding the pumping lemma and
its application is essential in the field of computational complexity theory and cybersecurity.

In the context of cybersecurity and computational complexity theory, understanding the fundamentals of
context-sensitive languages is important. One important concept in this field is the Pumping Lemma for Context-
Free Languages (CFLs). The Pumping Lemma allows us to determine whether a language is context-free or not
by examining the properties of its strings.

To illustrate the Pumping Lemma for CFLs, let's consider a case where the pumping length does not hold. In this
case, we need to explore all possible ways to break a given string into five pieces: V, Y, U, X, and Z. We can
divide this into two cases.

In the first case, V and Y each contain only one occurrence of a symbol. For example, V may contain only 'a's
and Y may contain only 'c's. In this case, we observe that one symbol is always left out. By applying the
pumping lemma, we can pump the string and still obtain a valid string in the language. For instance, by
pumping the string as UV"2XY"2Z, we can increase the number of 'a's and add an extra 'c'. However, since one
symbol is always left out, the string cannot be in the form of a™n b”~n c”™n. Therefore, in this case, the string
cannot be part of the language.

In the second case, either V or Y has more than one type of symbol. For example, V may contain 'a's and 'b's,
while Y may contain 'b's and 'c's. In this scenario, pumping the string may result in the correct number of
symbols, but the order will not be maintained. For instance, when doubling Y, we would get 'bcbc', which
violates the correct order of symbols. Thus, in all possible ways of dividing the string, we find that the pumping
condition is not satisfied.

By focusing on the pumping part and ignoring the other conditions, we can conclude that the pumping property
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does not hold for this language. Therefore, we can assert that this language is not context-free.

Now, let's consider another example to demonstrate that a language, which we'll call D, is not context-free.
Language D consists of strings composed of '0's and '1's that can be divided into two halves, where the first half
is identical to the second half.

To determine whether language D is context-free, we will assume that it is and proceed to show that the
pumping property does not hold. By contradiction, we will conclude that language D is not context-free.

To begin, we cannot constrain the pumping length, as it can vary. Let P be the pumping length, without any
constraints. Our goal is to provide an example that demonstrates the absence of the pumping property.

Consider the string S = 0°~P 17P 0™P 17P. It is evident that the first half of this string is equal to the second
half. To analyze this string and show that all possible divisions violate the pumping property, we need to
examine different cases.

For each way of dividing S into five pieces (UVXYZ), we assume that condition three holds, which states that
VXY is not larger than P. Our objective is to show that one of the other conditions fails.

By carefully analyzing the string and exploring various divisions, we find that in all cases, the pumping property
is violated. Therefore, we can conclude that language D is not context-free.

Understanding the Pumping Lemma for CFLs is essential in the field of cybersecurity and computational
complexity theory. By examining the properties of strings and their divisions, we can determine whether a
language is context-free or not. In the cases presented, we observed that the pumping property did not hold,
leading us to conclude that the respective languages were not context-free.

In the context of computational complexity theory, we will discuss the fundamentals of context-sensitive
languages and specifically focus on the Pumping Lemma for Context-Free Languages (CFLs).

Consider a sample string consisting of P zeroes followed by P ones, with a midpoint dividing the string into two
halves. Our goal is to analyze the boundaries between the zeros and the ones, as well as the ones and the
Zeros.

Let's examine several cases to determine whether a substring VXY straddles a boundary or not. In the first case,
we assume that VXY does not straddle any boundaries. This means that VXY consists of either only ones, only
zeros, or a combination of both.

If we pump up the string by increasing the number of V's and Y's, we will end up with a string that has more
ones than the original. As a result, the midpoint of the string will shift towards the area of ones. Notably, the
first half of the string will start with a zero, while the second half will start with a one. Consequently, the string
will no longer have the form W W, and it will not be in the language. Hence, condition one of the Pumping
Lemma is violated in this case.

Moving on to the second case, we consider when XY straddles the first boundary. In this scenario, pumping
down the string will make it shorter, causing the midpoint to shift. As a result, the first half of the string will end
with a zero, while the second half will end with a one. This deviation from the form W W indicates that the string
is not in the language, violating the Pumping Lemma.

Similarly, in the third case, if XY straddles the third boundary, pumping down the string will also result in a
string that is not in the language. Hence, the pumping property does not hold for this case.

Lastly, let's consider the case where VXY straddles the midpoint of the sample string. Due to the length
restriction imposed by the third condition, VXY cannot extend into the first section of zeros or the last section of
ones. Pumping down the string will yield a shorter string, and its exact form may not be immediately apparent.
However, upon closer examination, we observe that the midpoint has shifted, and both the first and second
halves of the string are now shorter.

Analyzing the first and second halves, we find that the first half consists of P zeroes followed by fewer than P
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ones, while the second half has fewer than P characters followed by P characters. Consequently, there must be
an overlap between the zeros and the ones, making it impossible for the first half of the string to be equal to the
second half. As a result, the pumping property is violated, indicating that the language is not context-free.

By examining various ways of dividing the string into five pieces, we have demonstrated that the pumping
property is violated in all cases. Therefore, the pumping property does not hold for this language, and we
conclude that it is not context-free.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: PUSHDOWN AUTOMATA
TOPIC: PDAS: PUSHDOWN AUTOMATA

A pushdown automaton (PDA) is a machine that recognizes context-free languages, making it as powerful as a
context-free grammar. It is similar to a finite state machine, but with the addition of a stack. The stack serves as
a form of memory, allowing the PDA to push and pop characters during its execution.

The PDA operates by reading an input string character by character, advancing as it reads each character. It
can push and pop characters on the stack, and the stack operations can be combined with state transitions. The
PDA must read the entire input string to accept or reject it, and it cannot backtrack.

In addition to the input alphabet, characterized by Sigma, the PDA also has a stack alphabet, characterized by
gamma. The state transitions in a PDA depend not only on the current state and input symbol but also on the
top of the stack. Each transition can also push a symbol onto the stack.

There are two types of PDAs: deterministic and non-deterministic. While deterministic finite state machines
have the same power as non-deterministic finite state machines, the same is not true for PDAs. Non-
deterministic PDAs are strictly more powerful than deterministic PDAs.

In the notation used for PDAs, each transition is labeled with three things: an input symbol, the symbol on top of
the stack (which gets popped), and the symbol that gets pushed onto the stack. The PDA advances one symbol
on the input and pushes the designated symbol onto the stack after the transition is taken. Empty symbols,
denoted by epsilon, can be used for the input symbol, the stack symbol, or the symbol to be pushed.

Let's illustrate with an example. Consider the language consisting of all strings that begin with zeros and end
with ones, with an equal number of zeros and ones, including the empty string. The input alphabet is {0, 1}.
The PDA for this language would have transitions labeled with input symbols from {0, 1}, stack symbols from
gamma, and symbols to be pushed onto the stack. Epsilon symbols can be used when necessary.

A pushdown automaton is a machine that recognizes context-free languages and is as powerful as a context-
free grammar. It operates by reading an input string, pushing and popping characters on a stack, and
transitioning between states based on the current state, input symbol, and top of the stack. PDAs can be
deterministic or non-deterministic, with non-deterministic PDAs being more powerful. The notation for PDAs
includes transitions labeled with input symbols, stack symbols, and symbols to be pushed. Epsilon symbols can
be used to denote empty symbols.

A pushdown automaton (PDA) is a type of abstract machine used in computational complexity theory and
cybersecurity. It is a finite state machine with an additional stack memory. In this didactic material, we will
focus on the fundamentals of pushdown automata and how they work.

A pushdown automaton consists of a set of states, an input alphabet, a stack alphabet, a set of transitions, a
starting state, and one or more accepting states. The stack alphabet of a PDA is used to store symbols during its
computation. In our example, the stack alphabet consists of two symbols: a dollar sign ($) and a zero (0).

The purpose of our pushdown automaton is to recognize a specific pattern in the input. Let's take a closer look
at how it works. The PDA starts in a designated starting state and has one final state called the accepting state.
In general, there can be multiple accepting states.

The transitions in a PDA are labeled and determine the behavior of the machine. In our example, we have
transitions that are labeled with input symbols and epsilon (€), which represents an empty string. Epsilon
transitions do not depend on the input or the stack.

The first transition in our example is an epsilon transition. This means that it is taken without considering the
input or the stack. It is used to push the dollar sign onto the stack.

The next transition is labeled with the input symbol zero (0). When the PDA reads a zero, it takes this transition.
It ignores the stack and does not pop anything, but it does push a zero onto the stack. This process repeats
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every time a zero is encountered in the input.

At some point, we encounter non-determinism in our PDA. This means that there are multiple possible
transitions to take. In our example, we move to state C through an epsilon transition.

After making the epsilon transition, the PDA scans the input and reads ones (1). For each one encountered, it
reads a zero from the top of the stack. If the top of the stack is a zero, it can take the transition labeled with a
one (1). This process ensures that the number of zeros matches the number of ones in the input. The PDA does
not push anything onto the stack in this step.

Finally, when we reach the end of the ones in the input, we take the final transition. At this point, the stack
should only contain the dollar sign that was pushed at the beginning. The PDA pops the dollar sign, ensuring
that the stack is empty, and ends in an accepting state.

To accept a string, the PDA must scan the entire string and end in an accepting state. It must consume all of the
input symbols, but it is okay to leave symbols on top of the stack. If we want to ensure an empty stack at the
end, we can add an extra state and a transition that scans everything off the stack.

A pushdown automaton is a computational model used to recognize patterns in input strings. It consists of
states, an input alphabet, a stack alphabet, transitions, a starting state, and one or more accepting states. The
stack is used to store symbols during computation. The PDA scans the input and manipulates the stack based
on the transitions. To accept a string, the PDA must scan the entire string and end in an accepting state.

A pushdown automaton (PDA) is a formal definition consisting of six elements: a set of states (Q), an input
alphabet (2), a stack alphabet ('), a transition function (A), a starting state (q0), and a set of accepting states
(F). To specify a PDA, we need to define these elements.

The set of states (Q) represents the possible states that the PDA can be in. The input alphabet (X) consists of
the symbols that can be read from the input. The stack alphabet (') contains the symbols that can be pushed
onto and popped from the stack.

The transition function (A) defines how the PDA moves between states based on the current state, the input
symbol, and the symbol on top of the stack. It also specifies the symbol(s) to be pushed onto the stack or
popped from it. The transition function can also handle the empty symbol (€) as an input or a stack symbol.

The starting state (q0) is the initial state of the PDA. It is one of the states in the set of states (Q). The accepting
states (F) are the states in which the PDA accepts the input. There can be zero or more accepting states, which
form a subset of the set of states (Q).

The transition function allows for non-determinism, meaning that for a given state, input symbol, and stack
symbol, there can be multiple possible transitions to different states. This is represented using the power set of
states.

Let's consider an example of a pushdown automaton that recognizes palindromes. A palindrome is a string that
can be divided into two halves, with the second half being the reverse of the first half. For example, "madam" is
a palindrome because its reverse is also "madam".

To recognize palindromes over the alphabet of letters, we can use a context-free grammar. The grammar
specifies rules for generating palindromes. For each symbol in the alphabet, there is a rule that adds the same
symbol at the other end. Additionally, the grammar includes the empty symbol (g).

A context-free language can be recognized by a pushdown automaton. In this case, the pushdown automaton
checks for the presence of a dollar sign ($) at the bottom of the stack to ensure it is empty. It also verifies that
there is a dollar sign at the top of the stack before taking the final transition.

The transitions of the pushdown automaton involve scanning the input symbols and pushing them onto the
stack. By the nature of stacks, when the symbols are popped, they will be in reverse order. The transitions also
check for the presence of the correct symbols at the top of the stack and pop them accordingly.
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It is important to note that the language of palindromes over the alphabet of zeros and ones only accepts
strings with an even number of zeros and ones.

A pushdown automaton is a formal definition used to recognize languages. It consists of states, input and stack
alphabets, a transition function, a starting state, and accepting states. The transition function allows for non-
determinism, and the automaton can be used to recognize palindromes and other languages.
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LESSON: PUSHDOWN AUTOMATA
TOPIC: EQUIVALENCE OF CFGS AND PDAS

In the field of computational complexity theory, there is an interesting and exciting result that shows the
equivalence between context-free grammars (CFGs) and non-deterministic pushdown automata (PDAs). Both
CFGs and PDAs have the same expressive power and describe the same class of languages. In this didactic
material, we will discuss the proof of this equivalence.

The theorem states that a language is context-free if and only if it can be recognized by a pushdown automaton.
This means that the class of context-free languages is exactly the same as the class of languages accepted by a
non-deterministic pushdown automaton.

The proof of this theorem consists of two parts. In the first part, given a context-free language, we need to show
how to construct a pushdown automaton that recognizes it. In the second part, given a pushdown automaton,
we need to show how to construct a context-free grammar that recognizes the same language. Both parts are
converses of each other, forming an if and only if theorem.

Part one of the proof involves constructing a pushdown automaton from a given context-free grammar. The idea
is to show how to build a pushdown automaton that recognizes the language described by the grammar. This is
a proof by construction, where we demonstrate the steps to create the pushdown automaton.

Part two of the proof involves constructing a context-free grammar from a given pushdown automaton. In this
direction, we show how to build a context-free grammar that recognizes the same set of strings as the
pushdown automaton. This step is also a proof by construction.

To illustrate the process, let's consider an example grammar. The terminals of the grammar are symbols 0, 1,
and 2. We start with a start symbol and apply rules to derive a string of terminals. The leftmost derivation is
used, where at each step, we expand the leftmost non-terminal. The goal is to accumulate a string of terminals
on the left-hand side, while gradually moving the leftmost non-terminal to the right.

The pushdown automaton works by taking a string and reconstructing the leftmost derivation. It checks if the
reconstructed derivation matches the grammar rules. If it does, then the string is recognized by the pushdown
automaton.

This is just an overview of part one of the proof. In the subsequent material, we will discuss the algorithm for
turning a context-free grammar into a pushdown automaton and explore the reverse direction of the proof.

The equivalence between context-free grammars and non-deterministic pushdown automata is a significant
result in computational complexity theory. This means that both CFGs and PDAs have the same expressive
power and describe the same class of languages.

A pushdown automaton is a computational model that works like a non-deterministic parser. It is used to
determine if a given string of terminals is accepted by a grammar. In the computation process, the automaton
scans the input string and uses its stack to represent the sentential form in the derivation.

At each step of the computation, the automaton has already scanned some terminal symbols and stores them in
the stack. The stack also holds the remaining symbols that need to be processed. The automaton works in a
leftmost derivation manner, finding the leftmost non-terminal and expanding it according to the grammar rules.

To illustrate this, let's consider an example. In the leftmost derivation, we have a sentential form with terminals
followed by some symbols that include the leftmost non-terminal. The stack represents the sentential form, with
the leftmost non-terminal at the top. The automaton works backward in the leftmost derivation, expanding the
non-terminal and scanning the corresponding symbols.

For instance, if we have a rule B -> a s a x B a, we replace the leftmost non-terminal B with its right-hand side.
The stack is updated accordingly, and we continue the computation by matching the stack top to a rule and
pushing the right-hand side onto the stack.
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In the design of the pushdown automaton, we add edges to the finite control based on the grammar rules. When
matching the stack top to the left-hand side of a rule, we pop it and push the right-hand side onto the stack. To
handle the situation where multiple symbols need to be pushed, we introduce additional states and push the
symbols in reverse order.

The beauty of non-determinism in pushdown automata is that we can guess or try all possible transitions in
parallel to find the correct leftmost derivation. This allows us to have a powerful computational model for
parsing and accepting strings based on a given grammar.

In the field of cybersecurity, understanding computational complexity theory is important. One fundamental
concept in this theory is the equivalence between Context-Free Grammars (CFGs) and Pushdown Automata
(PDAs). This equivalence allows us to build a PDA that recognizes the language generated by a given CFG.

To illustrate this concept, let's consider a grammar with a rule that we want to apply. We can assume that we
know which rule to apply, which gives us a significant advantage. Now, let's imagine that we are building a PDA
for this grammar. During the execution of the PDA, at some point, we decide to replace a non-terminal symbol,
let's say 'A’, with its right-hand side, which is a sequence of symbols.

To represent the PDA's state, we use a stack. Initially, the stack is empty, and we push the right-hand side of
the rule onto the stack. For example, if the right-hand side is '0 1 0 2 B 3 C', we push these symbols onto the
stack.

Next, we need to determine what the next input symbol should be. Looking at the stack, we find that the next
symbols in the input should be '0 1 0 2'. If these symbols are indeed the next ones in the input, we need to scan
them in advance. This is because our fundamental rule is to replace the non-terminal on the top of the stack
with its right-hand side. However, after applying this rule, we end up with a stack that contains a terminal
symbol on the top, which is not desired. Therefore, we need to match the terminal symbol on the top of the
stack with the corresponding input symbol and advance both the stack and the input.

To achieve this, we define transition rules for each terminal symbol in the input alphabet. For example, if we see
a '0' on the top of the stack and the input symbol is also '0', we pop the stack and advance the input. Similarly,
we define such transitions for every terminal symbol in the input alphabet.

By using these transition rules, we can scan the input up to the point where the leftmost non-terminal 'B'
appears on the stack. At this point, we ensure that 'B' expands to the symbols that follow it in the input. We
continue this process until we reach the end of the input, denoted by the dollar sign symbol.

To summarize, we can construct a pushdown automaton for a given grammar by following these steps:

1. Push the dollar sign symbol onto the stack.

2. Push the starting symbol of the grammar onto the stack.

3. Define transitions to handle each rule of the grammar. For each rule, pop the non-terminal on the top of the
stack and push the symbols of the right-hand side onto the stack.

4. Define transitions to match each terminal symbol in the input alphabet. When a terminal symbol appears on
the top of the stack, match it with the corresponding input symbol, pop the stack, and advance the input.

5. Add a rule 'X X goes to epsilon' for every symbol 'X' in the alphabet. This rule ensures that we can handle
empty strings.

By constructing such a pushdown automaton, we can recognize the language generated by the given context-
free grammar.
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TOPIC: CONCLUSIONS FROM EQUIVALENCE OF CFGS AND PDAS

In this part of the proof, we will show that context-free grammars (CFGs) and non-deterministic pushdown
automata (PDAs) have the same expressive power. A language is considered context-free if and only if it can be
recognized by a non-deterministic PDA.

In the previous material, we discussed part 1 of the proof, where we demonstrated how to construct a PDA from
a given CFG that recognizes the same language. Now, in part 2, we will go in the opposite direction. Given a
PDA, we will show how to construct an equivalent CFG that recognizes the same set of strings.

To achieve this, we will follow two steps. First, we will simplify the PDA, and then we will construct the CFG. Let's
go through these steps slowly.

In the simplified PDA, we will have a single accept state. To achieve this, we add a new accept state, called
Qaccept, and create additional transitions from all previous accept states to this new state. These transitions
are labeled with epsilon, indicating that they do not read any input.

Next, we ensure that the PDA empties its stack before accepting. We introduce a new start state, g0, which
pushes a special symbol, such as a dollar sign ($), onto the stack without reading any input. We then modify the
previous accept state to become a non-accept state. For every element in the stack alphabet, except the dollar
sign, we add transitions that pop that symbol from the stack. Finally, we add a transition that pops the dollar
sign and moves to the new accept state. This guarantees that the PDA empties its stack before reaching the
accept state.

After simplifying the PDA, we move on to constructing the CFG. For every pair of states in the PDA, we create a
single unique non-terminal symbol in the CFG. For example, for states P and Q, we generate a non-terminal
called PQ. Additionally, we create a non-terminal for QP. The starting symbol of our grammar will be the non-
terminal representing the pair of states Q0 and the accept state.

To further simplify the PDA, we ensure that every transition either pushes something onto the stack or pops
something from the stack, but not both. If we encounter a transition that both pops an X and pushes a Y, we
introduce a new state in the PDA that first pops X and then immediately pushes Y. For transitions that neither
pop nor push, we modify them accordingly.

By following these steps, we can construct an equivalent CFG from a given PDA that recognizes the same set of
strings. The modifications made to simplify the PDA do not change its nature, and the resulting PDA will accept
the same set of strings as the original PDA.

We have shown that context-free grammars and non-deterministic pushdown automata have the same
expressive power. A language is context-free if and only if it can be recognized by a non-deterministic PDA. By
constructing a PDA from a given CFG and vice versa, we have demonstrated the equivalence between these two
formalisms.

In the context of computational complexity theory and cybersecurity, the concept of pushdown automata (PDA)
plays a important role. PDAs are a type of automaton that extends the capabilities of finite automata by
incorporating a stack. This stack allows the automaton to store and retrieve symbols during its computation. In
this didactic material, we will explore the relationship between context-free grammars (CFGs) and PDAs,
focusing on the equivalence between the two.

To begin, let's introduce the notion of a dummy symbol. We can add a new symbol, denoted as Z, to the stack
alphabet of a PDA. This symbol is not used anywhere else and serves as a dummy symbol. By modifying the
transitions of the PDA, we can ensure that every transition either pushes or pops onto the stack, but not both
simultaneously. This modification involves replacing a transition with two transitions and creating a new state.
When scanning a symbol on the input, whether it be a or epsilon, we push the dummy symbol Z onto the stack.
Immediately after, without scanning any further input, we pop the same symbol from the stack. It is important
to note that PDAs always start with an empty stack and end with an empty stack.
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Now, let's consider the perspective of a programmer working with a PDA. When programming a PDA, the goal is
often to leave the bottom of the stack unchanged. Temporary data may be pushed onto the stack for
computational purposes, but it is later popped. The idea is to ensure that the stack remains in the same state as
it was initially. This concept of computation, where the stack is not modified beyond temporary pushes and
pops, is significant. If a computation starts with an empty stack and ends with an empty stack, it will work
correctly. The computation does not delve deep into the stack or modify any existing items on the stack.

To illustrate this idea, consider an example computation that adheres to this principle. The computation involves
a series of pushes and pops, represented by black hash marks. Regardless of what else is on the stack, the
computation pushes and pops symbols, ultimately ending with the stack in the same state as it was initially.
During this computation, the stack may grow and shrink, but it never goes below the level it started at. This
graph visually demonstrates the behavior of the stack throughout the computation.

Now, let's consider the connection between CFGs and PDAs. In the proof, we consider two states, P and Q, in the
PDA and ask whether it is possible to transition from state P to state Q without modifying the stack. In other
words, we want to find strings that take us from P to Q in the PDA without needing to access or modify any
existing items on the stack. To achieve this, we construct a context-free grammar that mimics the behavior of
the PDA. For every pair of states in the PDA, we introduce a non-terminal in the grammar, denoted as P Q. This
non-terminal represents the possibility of transitioning from state P to state Q in the PDA without affecting the
stack.

By constructing the grammar in this way, we aim to recognize the same set of strings as the PDA. The goal is to
establish the equivalence between CFGs and PDAs, showing that any language recognized by a PDA can be
generated by a CFG, and vice versa. This equivalence is a fundamental result in computational complexity
theory and has significant implications in the field of cybersecurity.

The relationship between context-free grammars and pushdown automata is a key concept in computational
complexity theory. By introducing a dummy symbol and modifying the transitions of a PDA, we can ensure that
every transition either pushes or pops onto the stack. This concept of computation, where the stack remains
unchanged beyond temporary pushes and pops, is essential. Furthermore, the equivalence between CFGs and
PDAs allows us to generate the same set of languages using either formalism. This result has important
implications for understanding and analyzing the complexity of computational systems in the context of
cybersecurity.

In the field of computational complexity theory, an important concept is the equivalence between context-free
grammars (CFGs) and pushdown automata (PDAs). This equivalence allows us to analyze the computational
complexity of certain problems and determine their solvability.

To understand this equivalence, let's start by considering a pushdown automaton with states P and Q. Our goal
is to find a grammar that generates exactly those strings that take us from state P to state Q on an empty stack,
without modifying the stack during the process.

To achieve this, we will create a non-terminal for every pair of states in the pushdown automaton. This non-
terminal will generate the strings that fulfill our desired condition. For example, if we want to go from state P to
state Q, we will create a non-terminal A(P,Q) that generates the strings that achieve this transition.

To analyze how these transitions occur, let's consider going from state P to state Q. We start with an empty
stack and end with an empty stack. This can also be interpreted as starting with a non-empty stack and never
looking at its contents, ending with the same non-empty stack. To get from P to Q, we need to take a series of
transitions, where each transition either pushes or pops a symbol.

The first transition cannot be a pop, as we are starting with an empty stack. Therefore, the first transition must
be a push. Similarly, the last transition must be a pop. This means that we push a symbol onto the stack,
increase the stack height, and eventually pop that same symbol.

Now, let's consider two cases. In the first case, we push a symbol onto the stack and pop the exact same
symbol in the last transition. In this case, the stack height never goes down to zero. It remains at 1 or greater
during the intermediate stages. We can represent this scenario with a non-terminal A(R,S), where R and S are
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states that we transition through.

In the second case, the stack does go down to zero between states P and Q. We start with an empty stack, push
a symbol W, then go back to an empty stack, pop W, and continue with the computation. At some point, we
push another symbol Z, and the transition right before Q pops a different symbol Z. In this scenario, the strings
that take us from P to Q consist of the strings that take us from P to R and from R to Q. We can represent this
with a non-terminal A(P,R) and A(R,Q).

To summarize, to get from state P to state Q in a pushdown automaton, we need to scan an input symbol,
transition from state P to R without modifying the stack, scan another input symbol, and then transition from
state R to Q without looking below the current level of the stack. We can construct a context-free grammar from
the pushdown automaton by adding rules that generate these strings.

The equivalence between context-free grammars and pushdown automata allows us to analyze the
computational complexity of problems and determine their solvability. By constructing a grammar that
generates the strings representing transitions between states in a pushdown automaton, we can gain a deeper
understanding of the problem at hand.

In the study of computational complexity theory, it is important to understand the fundamentals of pushdown
automata and their relationship with context-free grammars (CFGs). In this didactic material, we will explore the
conclusions drawn from the equivalence of CFGs and pushdown automata.

To construct a context-free grammar from a pushdown automaton, we follow a specific recipe. First, we ensure
that the pushdown automaton has only one start state and one accept state, and that the stack is emptied
before reaching the accept state. Additionally, every transition in the automaton should either push or pop
symbols from the stack.

The construction of the context-free grammar involves adding rules based on specific patterns observed in the
pushdown automaton. If we have edges that go from a state P to a state R, pushing a symbol, and from a state
S to a state Q, popping the same symbol, then if it is possible to reach state S from state R on an empty stack
without modifying the stack, we can conclude that any string that takes us from state R to state S can also be
used to take us from state P to state Q without modifying the stack.

Formally, for every set of states P, Q, R, and S in the pushdown automaton, such that there is a push edge from
state P to state R with input symbol 'a' and no stack popping, and a transition from state S to state Q with stack
popping but no pushing, we add a rule to the context-free grammar. The rule has the form: A -> aARsB, where A
is a non-terminal, 'a' is the input symbol, and R and S are non-terminals that represent the states.

In addition to the above rule, we also need to add rules that allow us to transition from one state to another
without modifying the stack. If there is a way to go from state P to state R without touching the stack, we add a
non-terminal symbol, PR, to the grammar, which expands to all the strings that take us from state P to state R
without modifying the stack. Similarly, if there is a way to go from state R to state Q without touching the stack,
we add a non-terminal symbol, RQ, to the grammar, which represents the set of strings that take us from state
R to state Q without modifying the stack.

To account for the trivial case of transitioning from a state to itself without modifying the stack, we add a rule
for every state P that looks like: AP -> epsilon, where epsilon represents the empty string.

Finally, to ensure that the context-free grammar generates the same set of strings as the pushdown automaton
recognizes, we set the start state of the grammar to be the non-terminal AQOQaccept, where QO represents the
starting state and Qaccept represents the accept state of the pushdown automaton.

We have shown that both context-free grammars and pushdown automata have the same power and can
accept and recognize the same class of languages. By understanding the equivalence of CFGs and pushdown
automata, we can gain insights into the computational complexity of various problems in the field of
cybersecurity.

* X %
* El'l'[: | © 2024 European IT Certification Institute
* ; . 74/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: TURING MACHINES
TOPIC: INTRODUCTION TO TURING MACHINES

Turing Machines - Introduction to Turing Machines

Turing machines are a type of machine used in computational complexity theory. They are a model of
computation that can be used to describe different classes of languages. In this didactic material, we will
introduce Turing machines and describe how they work.

Before we dive into Turing machines, let's put them into context. We have already talked about other types of
machines, such as finite state machines and non-deterministic pushdown automata. Turing machines are a new
kind of machine that can model some new classes of languages.

A finite state machine is a simple model of computation that can describe regular languages. Similarly, a
pushdown automaton can describe context-free languages. Turing machines are also simple models of
computation, but they have additional power that allows them to describe more complex languages. In fact,
Turing machines can describe all kinds of languages, making them a very powerful model of computation.

Now, let's talk about the different classes of languages that can be defined using Turing machines. We have
three classes: decidable languages, Turing recognizable languages, and languages that are not Turing
recognizable. Decidable languages are those that can be decided by a Turing machine, meaning the machine
can determine whether a given input belongs to the language or not. Turing recognizable languages are those
that can be recognized by a Turing machine, but may not be decidable. Finally, there are languages that are not
even Turing recognizable, meaning there is no Turing machine that can recognize them.

To better understand the relationships between these classes of languages, we can use a Venn diagram. In the
innermost circle, we have regular languages. Around that, we have context-free languages. Every regular
language is also context-free. Then, we have decidable languages, which include all context-free languages.
Every decidable language is Turing recognizable. Finally, we have the set of all languages, which includes
languages that are not even Turing recognizable.

Now, let's talk about how Turing machines work. It's important to note that there are different variations of
Turing machines, but all variations are equivalent in terms of computational power. The specific variation we will
describe here may not be exactly the same as what you have seen elsewhere, but they all have the same
power.

Turing machines use a data structure called the tape. The tape is a sequence of cells, each containing a symbol
from the tape alphabet. The tape is infinite in one direction, with a left end and an infinite string of blanks filling
the rest of the tape. The tape serves as the only data structure in a Turing machine.

To work with the tape, a Turing machine has a read/write head that can move left or right along the tape. The
read/write head can read the symbol in the current cell and write a new symbol in that cell. It can also move to
the left or right to access different cells.

With the tape as the only data structure, a Turing machine can perform various operations, such as reading
symbols, writing symbols, and moving the read/write head. These operations are defined by a set of rules called
the transition function. The transition function specifies what action the Turing machine should take based on
the current state and the symbol being read.

By following the transition function, a Turing machine can process the input on the tape and perform
computations. It can change its state, read and write symbols on the tape, and move the read/write head. The
goal is to reach an accepting state, indicating that the input belongs to the language being recognized or
decided by the Turing machine.

Turing machines are a powerful model of computation that can describe different classes of languages. They
use a tape as the only data structure and follow a transition function to perform computations. By
understanding Turing machines, we can gain insights into the computational complexity of languages.

* X %
* El'l'[: | © 2024 European IT Certification Institute
* ; . 75/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/lessons/turing-machines/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/lessons/turing-machines/topic/introduction-to-turing-machines/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

A Turing machine is a theoretical device that operates on an infinite tape divided into cells. At any given
moment, the tape head is positioned on one cell. During computation, the tape head can move either one step
to the right or one step to the left. The symbols on the tape come from an alphabet, denoted as Sigma, which
represents the input characters. The blank symbol is special because it is not part of the alphabet, and it is used
to fill the infinite tape.

In the initial configuration, the input string is placed on the tape, and the tape head is positioned at the left end
of the tape. The tape head can scan or look at the symbol directly below it and update that symbol. This allows
the Turing machine to read a symbol, write a new symbol in its place, and move left or right to the adjacent
symbol. The Turing machine is controlled by a finite state machine, which consists of states and transitions
between states. It has an initial state and one or more final states.

The Turing machine operates by examining the current symbol under the tape head. Based on the symbol, it
determines which transition to take. The Turing machine then updates the symbol on the tape by overwriting it
with a new symbol. Finally, it moves one cell to the left or right, except when it is at the left end of the tape and
trying to move left, in which case it stays put.

The transitions between states are labeled using a notation that includes the symbol being read, the symbol
being written, and the direction to move (left or right). For example, if the tape head is positioned over a cell
containing the symbol 'a', the Turing machine may transition to a new state, overwrite the 'a' with the symbol
'‘B', and move to the right.

It is important to note that Turing machines are deterministic, meaning that they do not use non-determinism.
This is significant because it has been shown that non-determinism does not provide any additional
computational power. Therefore, Turing machines are defined as deterministic, and this is sufficient to perform
any computation that a computer program can do.

A Turing machine is a theoretical device that operates on an infinite tape divided into cells. It uses a finite state
machine to control its operation, transitioning between states based on the symbol under the tape head. The
Turing machine can read and update symbols on the tape and move left or right. It is deterministic, meaning it
does not use non-determinism. This allows Turing machines to perform any computation that a computer
program can do.

A Turing machine is a theoretical model of computation that helps us understand the limits of what can be
computed. It consists of a tape, a head, and a set of states. The tape is divided into cells, each containing a
symbol from a finite alphabet. The head can read and write symbols on the tape, and it can move left or right
along the tape. The set of states represents the internal state of the machine.

The machine starts in an initial state and reads the symbol under the head. Based on the current state and the
symbol read, the machine performs a transition to a new state, writes a new symbol on the tape, and moves the
head left or right. This process continues until the machine reaches a final state.

There are two types of final states: the accept state and the reject state. If the machine enters the accept state,
the computation immediately stops and halts. If it enters the reject state, the computation also stops and halts.
However, the machine may also fail to halt, which means it keeps computing on and on forever. This is known
as looping.

A Turing machine can halt in three ways: it can halt and accept, halt and reject, or fail to halt altogether. When
the machine halts and accepts, it means that the computation is successful and has produced the desired
output. When it halts and rejects, it means that the computation is unsuccessful and the input is not accepted.
However, when the machine fails to halt, we don't have a clear output or outcome.

One important characteristic of a Turing machine is that it is deterministic. This means that at every state, there
is exactly one transition that can be taken. There are no choices or non-deterministic behavior. The machine
follows a predefined set of rules and performs computations in a predictable manner.

Understanding the concept of Turing machines and their behavior is important in the field of computational
complexity theory, as it helps us analyze the efficiency and limitations of algorithms and computational
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problems.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: TURING MACHINES
TOPIC: TURING MACHINE EXAMPLES

A Turing machine is a theoretical device that can manipulate symbols on a tape according to a set of rules. In
this didactic material, we will explore two examples of Turing machines to understand their structure and
functionality.

Example 1:

Our goal is to create a Turing machine that recognizes a specific language. The language consists of zero
followed by zero or more ones, and finally a zero. This language is considered regular and can be recognized by
a simple Turing machine. Let's analyze the components of this Turing machine:

1. States: The Turing machine consists of several states, including the initial state 'A', an accept state, and a
reject state. It is important to note that there is always exactly one initial state, one accept state, and one reject
state.

2. Transitions: Each state has transitions labeled with symbols. In this example, the symbols are '0' and 'l".
Additionally, there are transitions labeled with blanks. These transitions define the movement of the Turing
machine through the input.

The operation of this Turing machine can be summarized as follows:

- Starting from the initial state, if the Turing machine reads a '0', it transitions to state 'B'.

- If the Turing machine reads a 'l' in state 'B', it stays in state 'B'.

- The Turing machine can keep reading zero or more ones while staying in state 'B'.

- Whenever the Turing machine reads a '0', it replaces it with an 'X' and moves to the right.

- For each '1' it reads, it replaces it with a 'Y' and moves to the right.

- When the Turing machine encounters the final ‘0, it replaces it with an 'X' and moves to state 'C'.

- If there are no more zeros after the final '0' (i.e., the next symbol is a blank), the Turing machine transitions to
the accept state and halts the execution.

- In all other cases, the Turing machine transitions to the reject state.

This Turing machine is deterministic since it has defined transitions for each symbol ('0', '1', and blank) in each
state. It always moves to a specific state based on the symbol it reads. It is worth mentioning that the Turing
machine also modifies the tape by replacing '0' with 'X" and '1"' with "Y'. This modification serves as an example
of how the tape can be updated during computation.

Example 2:
In this example, we will focus on a different language: '0' to the power of 'N', followed by '1' to the power of 'N'.
The input alphabet consists of zeros and ones, and the number of zeros must be equal to the number of ones.

To understand the execution of this Turing machine, let's follow the algorithm step-by-step:

. Start with the tape containing the input.

. Modify the first tape cell by overwriting it with an 'X".

. Move to the right, passing through zeros until a '1' is encountered.

. Modify the '1' cell to 'Y".

. Start moving back to the left, passing through zeros until an 'X' is encountered.
. Take one step to the right and check the symbol. If it is '0', overwrite it with 'X".
. Repeat steps 5 and 6 until there are no more zeros left.

. Move right, passing through zeros and 'Y's until a '1' is encountered.

. Change the '1' to 'Y".

10. Move back, passing through 'Y's until an 'X' is encountered.

11. If an 'X" is encountered, the computation is complete.

12. If there is still one more zero, change it to 'X' and move right.

OCoOoO~NOOULDS WN B

This Turing machine demonstrates a looping structure where the Turing machine moves back and forth while
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modifying the tape. The algorithm ensures that the number of zeros and ones remains equal. If any discrepancy
is found, the Turing machine transitions to the reject state.

Turing machines are powerful theoretical devices that can recognize various languages. They consist of states
and transitions that determine their behavior. By understanding the structure and functionality of Turing
machines, we can gain insights into the fundamentals of computational complexity theory.

A Turing machine is a theoretical model of a computer that helps us understand the concept of computational
complexity theory. In this context, we will discuss the fundamentals of Turing machines and provide examples
to illustrate their functionality.

A Turing machine consists of an input tape, a tape head, and a set of states. The input tape is a sequence of
symbols, which can be either 0 or 1 in our examples. The tape head is responsible for reading and writing
symbols on the tape, and it can move left or right. The set of states represents the different configurations the
machine can be in during its computation.

To demonstrate the operation of a Turing machine, let's consider an example where we want to copy a string of
Os and 1s. The Turing machine starts in an initial state and scans the input tape. Whenever it encounters a 0, it
replaces it with an X and moves to the right. If it encounters a 1, it replaces it with a Y and moves to the left.

The machine continues this process until it has scanned the entire tape. It checks for the absence of any
remaining zeros or ones. If it finds any, it rejects the input. However, if it reaches a blank symbol, it accepts the
input. This process can be expressed in pseudocode as follows:

. Change any 0 to X.

. Move right until the first 1 is found.
.ChangetheltoY.

. Move left until the leftmost 0 is found.

. Repeat steps 1-4 until no more zeros are present.
. Ensure no more ones are present.

. Accept if the tape is blank; otherwise, reject.

NO U WN K

During the computation, the tape of the Turing machine undergoes changes. Each line in the history of the tape
represents a specific configuration of the tape. The tape alphabet consists of input symbols (0 and 1) and
additional symbols used during computation (X, Y, and blank).

To visualize the Turing machine, we can represent it using a diagram. The diagram shows the different states
and transitions of the machine. In our example, the machine has an initial state, an accept state, and a reject
state. It scans the tape, modifying symbols and moving left or right until certain conditions are met.

It is important to note that this specific Turing machine accepts the empty string as well. If the machine starts in
the initial state and encounters a blank symbol immediately, it goes directly to the accept state.

While this Turing machine appears to perform the desired copy operation, it is essential to acknowledge that it
may contain bugs or errors, just like any computer program. Turing machines serve as a model for computers
and programs, allowing us to analyze their computational capabilities and complexities.

Turing machines are theoretical models of computers that aid in understanding computational complexity
theory. They consist of input tapes, tape heads, and sets of states. By using examples, we can observe how
Turing machines operate and perform tasks such as copying strings. However, it is important to evaluate their
correctness and potential bugs, as we would with any computer program.
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LESSON: TURING MACHINES
TOPIC: DEFINITION OF TMS AND RELATED LANGUAGE CLASSES

A Turing machine is a fundamental concept in computational complexity theory. It is a mathematical model that
allows us to describe and define various language classes. A Turing machine can be formally described as a
tuple with several components.

The set of states, denoted as Q, represents the finite control for the Turing machine. There are two alphabets
associated with a Turing machine: Sigma and Gamma. Sigma is the collection of characters used for input
strings, while Gamma is the tape alphabet. The tape alphabet includes all the characters from the input
alphabet and may also contain additional characters to facilitate computation. The blank symbol is a special
character that signifies the end of the input. It is part of the tape alphabet and allows the Turing machine to
know where the input ends.

QO0, Qaccept, and Qreject are the names of states within Q. QO is the initial state, Qaccept is the accepting state,
and Qreject is the rejecting state. The transition function, denoted as Delta, determines the next state and the
symbol to write on the tape based on the current state and the symbol being read. It also specifies whether to
move the tape head left or right. Importantly, the transition function must be deterministic.

To capture the state of the Turing machine at any moment during computation, we use the concept of a
configuration. A configuration is a snapshot of the machine and includes the contents of the tape (specifically
the non-blank portion), the location of the tape head, and the current state. With this information, we can
restart the computation from any point and obtain the same result.

Representing configurations with a string of characters simplifies notation. The finite non-blank portion of the
tape is represented using symbols from the tape alphabet, followed by the current state and the tape head
position. The symbol immediately following the state represents the symbol being read. This notation allows us
to represent the entire history of a computation as a sequence of configurations.

A computation consists of a series of steps, each accompanied by a configuration. The starting configuration
includes the initial input and the initial state. The computation history is a sequence of configurations, capturing
the progress of the computation. If the computation halts, the final configuration will indicate whether it ends in
an accepting or rejecting state.

The Turing machine formalism enables the definition of different categories or classes of languages. Three
important classes are decidable languages, Turing recognizable languages, and languages that are not Turing
recognizable. A decidable language is one that can be decided by a Turing machine, meaning it will always halt
and provide the correct answer. Turing recognizable languages are those that can be recognized by a Turing
machine, but they may not halt for all inputs. Finally, there are languages that are not Turing recognizable,
meaning there is no Turing machine that can recognize them.

Turing machines are a foundational concept in computational complexity theory. They are described by a tuple
consisting of states, alphabets, a transition function, and initial and accepting/rejecting states. Configurations
capture the state of the machine at any moment during computation. The Turing machine formalism allows us
to define different classes of languages, including decidable languages, Turing recognizable languages, and
languages that are not Turing recognizable.

A Turing machine is a theoretical device that can decide or recognize languages. When we say a Turing machine
decides a language, it means that the language is decidable. In other words, the Turing machine will always halt
when given a string as an input. If a language is decidable, there exists a Turing machine that will always halt
and accept the input if it is a member of the language, and reject the input if it is not in the language.

Decidable languages are those for which we can determine, within a finite amount of time, whether an input is
part of the language or not. These are desirable because it means we can write a computer program that will
terminate for all inputs with the correct answer. However, it is important to note that the program we write may
have bugs or loop indefinitely, in which case it is not a good program. Nevertheless, with a decidable language,
we can be confident that it is possible to write a program that will terminate for all inputs with the correct
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answer.

Decidable languages are also known as recursive, computable, or solvable languages. However, the term
decidable is more widely accepted and less ambiguous.

On the other hand, Turing recognizable languages are those for which there exists a Turing machine that will
recognize inputs that are in the language. When given a string that is in the language, the Turing machine will
always halt and accept it. However, when given a string that is not in the language, the Turing machine may not
necessarily halt. If it does halt, it will reject the input. Therefore, it is not possible to create a Turing machine
that will always halt with the correct answer for inputs that are not in the language. These languages are
sometimes called recursively enumerable, partially decidable, or semi-decidable.

Finally, there are languages that are not even Turing recognizable. This means that it is not possible to
construct a Turing machine to recognize members of these languages. Any Turing machine constructed for such
a language may loop indefinitely on some inputs, both for strings that are in the language and for strings that
are not in the language. These languages are sometimes called not recursively enumerable or not partially
decidable.

It is important to note that languages that are not Turing recognizable do exist. While these concepts may be
difficult to understand, they are the most complex and interesting class of languages.

Turing machines define different classes of languages. A Turing machine decides a language if the language is
decidable, meaning it always halts and either accepts or rejects the input. A Turing machine recognizes a
language if it is Turing recognizable, meaning it halts and accepts the input if it is in the language, but may not
halt for inputs that are not in the language. Languages that are not Turing recognizable are the most complex
and elusive.

A Turing machine is a theoretical device that can compute functions. It consists of a tape, which stores the input
before computation begins and the output after computation terminates. To run a Turing machine, an input is
placed on the tape, and then the machine is executed. The machine will either halt or not. If it halts, it may
leave something interesting on the tape, such as the result of a computation.

When we talk about computable functions, we are referring to functions that can be computed by a Turing
machine. In other words, the Turing machine will run and eventually halt, without entering an infinite loop. This
corresponds to a decidable language. Sometimes, we also say that the function is totally computable, meaning
it is defined for all possible inputs and can be computed by a Turing machine that will halt.

However, not all functions are always defined. There are partially computable functions, which are undefined for
some inputs. These functions are sometimes referred to as semi-decidable functions. In other words, there may
be inputs for which the Turing machine does not halt or does not produce a meaningful output.

It is important to note that the Turing machine, which we are using to define language classes, can also be used
to define and study functions. We have different notions of computable functions, partially computable
functions, and functions that are not even partially computable.
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LESSON: TURING MACHINES
TOPIC: THE CHURCH-TURING THESIS

The Church-Turing Thesis is a fundamental concept in computational complexity theory. It provides a definition
of what it means for a problem to be computable. Before the Church-Turing Thesis, the notion of computability
was unclear and there were different ideas about what it meant to be computable.

Alan Turing introduced the concept of Turing machines as a way to define computability. Turing machines are
theoretical devices that can perform computations. They consist of a tape divided into cells, a tape head that
can read and write symbols on the tape, and a set of rules that determine how the tape head moves and
changes symbols.

Lambda calculus is another computational model that is different from Turing machines but can also be used to
perform computations. This led to the question of what it means for a problem to be computable. Are Turing
machines the only way to define computability, or can other models like lambda calculus also be used?

Different variations of Turing machines were proposed, such as machines with multiple tapes or machines with
larger alphabets. It was questioned whether these variations would give the machines more computational
power. However, it was proven that all variations of Turing machines are equivalent in their computing
capability. This means that if a function is computable, it can be computed by any form of Turing machine.

The Church-Turing Thesis states that when we say something is computable, it means that it can be computed
by a Turing machine. An algorithm is defined as something that can be executed on a Turing machine. Other
forms of computation, such as lambda calculus, are also equivalent in power to Turing machines.

It is important to note that the Turing test is unrelated to Turing machines. The Turing test is used to determine
whether a computer or computer program displays human-like characteristics and has nothing to do with the
rigorous definition of computability provided by Turing machines.

The Church-Turing Thesis defines computability as the ability to be computed by a Turing machine. Turing
machines and other computational models, such as lambda calculus, are equivalent in their computing power.
The variations of Turing machines do not provide any additional computational power. The Turing test, on the
other hand, is a test for human-like intelligence in computers and is unrelated to Turing machines.

In the field of computational complexity theory, one fundamental concept is the classification of languages
based on their decidability. A language can be understood as a set of strings. We can define several classes of
languages based on whether they can be decided by a Turing machine, which is a theoretical computational
device.

To illustrate this classification, we can use a Venn diagram. The simplest class is the set of regular languages,
followed by context-free languages. The remaining categories are represented by a square, which represents
the set of all languages.

A decidable language is one that can be determined to be in the language or not by a Turing machine that
always halts. In other words, if an input can be accepted or rejected by a Turing machine, the language is
decidable. We refer to the Turing machine that decides the language as a decider. It will always halt, either
accepting or rejecting the input string.

On the other hand, there are languages that are Turing recognizable but not decidable. These languages are
sometimes called recursively enumerable. A Turing machine can recognize such a language, meaning that if the
input is part of the language, the machine will eventually accept it. However, if the input is not part of the
language, the machine may not halt. If it does halt, it will reject the input. It is important to assume that the
Turing machine is correct and free of bugs. However, there is no Turing machine that can decide these
languages, meaning there is no Turing machine that will always halt for every conceivable input and provide the
correct answer.

Lastly, there are languages that are not even Turing recognizable. These languages are extremely complex, and
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there is no Turing machine that will halt on all inputs, even when those inputs are guaranteed to be elements of
the language. We sometimes refer to these languages as not recursively enumerable.

It is worth noting that there is an equivalence between languages and problems. Any yes/no problem can be
transformed into a language. The input to the Turing machine would be a description of the problem, and the
Turing machine would accept or reject the input based on whether the answer to the problem is yes or no.
Therefore, a language consists of all possible problems within a particular problem area for which the answer is
yes.

For example, let's consider the problem of determining whether a graph is fully connected, meaning all the
components are connected. This is a decidable problem, as it is possible to determine whether a given graph is
connected or unconnected. We can encode all instances of this problem as input strings, which defines a
language. The input is in the language if it represents a connected graph, and it is not in the language if it
represents an unconnected graph or if the input is invalid and does not describe any graph at all.

In computational complexity theory, languages can be classified based on their decidability. We have decidable
languages, Turing recognizable but not decidable languages, and languages that are not even Turing
recognizable. There is an equivalence between languages and problems, where any yes/no problem can be
transformed into a language.
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LESSON: TURING MACHINES
TOPIC: TURING MACHINE PROGRAMMING TECHNIQUES

In this material, we will discuss some techniques for programming Turing machines. One challenge we face is
recognizing the left end of the tape, as the tape head cannot move beyond the left end and there is no built-in
mechanism to detect it. To overcome this, we can introduce a special symbol, such as the dollar sign, and shift
the input over one cell to the right. By doing this, we can place the dollar sign on the left end and start our main
computation. As we move the tape head left and right, we can now detect the left end of the input.

To illustrate this technique, let's consider a Turing machine with an input alphabet consisting of A's and B's. The
first step is to shift all the input characters over one cell and place the dollar sign on the left end. Then, we can
begin our computation. Here is a suggested Turing machine that accomplishes this:

- Start in the initial state.

- If the first character on the tape is an A, move to the right and replace it with a dollar sign.

- Regardless of whether we saw an A or a B, write an A as the next character.

- If the second character is also an A, stay in this state and continue copying A's.

- If we see a B, move to a different state.

- If we started from the initial state and saw a B, replace it with a dollar sign and write a B in the next transition.
- When we encounter a blank, it indicates the end of our input.

- If the last character we saw before the blank was a B, write a B as the final character.

- If the last character was an A, write an A as the final character and move back to the left.

- Scan over A's and B's without changing them until we reach the dollar sign.

- Replace the dollar sign with itself, move to the right, and position ourselves for the main part of the
computation.

This programming technique allows us to overcome the limitation of not being able to detect the left end of the
tape. By using a special symbol and shifting the input, we can effectively recognize the left end and perform our
computations accordingly.

It is important to note that, like any Turing machine, this example is subject to human error during its creation.
However, upon careful examination, it can be seen that it functions correctly and achieves the desired outcome.

In terms of programming on a Turing machine, the amount of programming needed depends on understanding
how they work and convincing ourselves that any desired program can be implemented on a Turing machine.
The goal is to program Turing machines until we are confident that any algorithm can be expressed and
executed on them.

To better understand the progression of programming from high-level to low-level, we can consider the analogy
of traditional computers. At the lowest level, we have machine code, where algorithms are expressed in binary
and OP codes. This is a tedious and error-prone way of programming. Assembly code was then introduced,
providing a higher-level form of expressing algorithms. The translation from assembly code to machine code is
relatively straightforward. This advancement made programming more interesting and allowed for the
implementation of various algorithms.

Further progress led to the development of high-level programming languages, such as Java. These languages
provide a more intuitive and easier-to-use notation for expressing algorithms. The coding time is significantly
reduced, from hours to minutes or even seconds.

By using techniques like shifting the input and introducing special symbols, we can overcome certain limitations
of Turing machines, such as not being able to detect the left end of the tape. Programming on Turing machines
is a process of understanding their workings and ensuring that any desired algorithm can be implemented. The
progression from low-level to high-level programming allows for more efficient and intuitive expression of
algorithms.

In the field of cybersecurity, understanding the fundamentals of computational complexity theory is important.
One important concept in this theory is the Turing machine, which allows us to analyze and program algorithms.
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Turing machines can be expressed at different levels of detail, from high-level pseudocode to low-level machine
code.

At the highest level of specification, algorithms are defined without any implementation details specific to
Turing machines. On the other hand, at the lowest level of programming, the Turing machine is specified with a
lot of detailed implementation information, such as states and transition functions. However, programming a
Turing machine at this level can be challenging and error-prone.

To bridge the gap between these levels, there are intermediate stages where some implementation details are
abstracted away. For example, we can specify the movement of the tape head without specifying the exact
states and transitions. This allows us to focus on the algorithm itself without getting lost in the details.

Interestingly, we can even imagine compiling programming languages like C or Java into states and transition
functions for a Turing machine. This shows the versatility of Turing machines and their ability to represent
various programming paradigms.

In the context of recognizing languages, we can use Turing machines to decide whether a given input belongs
to a particular language. For example, we can create a Turing machine to decide the language of strings
consisting of Os followed by an equal number of 1s and then an equal number of 0s. This language is decidable,
meaning the Turing machine will either accept or reject the input without getting stuck in an infinite loop.

Furthermore, we can use one Turing machine as a subroutine for another Turing machine. This allows us to build
larger Turing machines by incorporating smaller ones. For instance, if we have a Turing machine that can decide
the language of Os followed by an equal number of 1s, we can use it as a subroutine to recognize the language
of Os followed by an equal number of 1s and then an equal number of Os.

To illustrate this, let's consider the language of strings consisting of 0s followed by an equal nhumber of 1s and
then an equal number of 0s. We can divide the recognition process into several steps. In the first step, we scan
the input and convert Os and 1s into Xs and Ys, respectively. If the number of initial Os is not equal to the
number of 1s that follow, the Turing machine will reject the input.

In the second step, we recognize the language of Ys followed by an equal number of 0s. This is similar to the
previous step, where we can position the tape head appropriately and use a Turing machine similar to the one
used for recognizing 0s followed by an equal number of 1s.

Finally, we connect these two Turing machines together with appropriate states to move the tape head to the
right position. After converting Os followed by an equal number of 1s into Xs followed by an equal number of Ys,
we need to move the tape head back to the beginning of the Ys before starting the second stage.

Understanding the fundamentals of computational complexity theory, including Turing machines and their
programming techniques, is essential in the field of cybersecurity. By utilizing Turing machines as subroutines,
we can build larger Turing machines to recognize more complex languages.

In the field of cybersecurity, understanding computational complexity theory and Turing machines is important.
One fundamental concept is the comparison of two arbitrarily long strings to determine if they are equal. This
subroutine is commonly used in Turing machines to compare the representation of two things.

To accomplish this, a new symbol, denoted as X, is introduced to mark the symbols that have been examined.
Let's consider an example input: "a a b a c pound a a b a c". Our goal is to determine if the first half of the string
is equal to the second half.

We start by examining the first symbol, which is an 'a'. We mark it with an X and then scan past the first part of
the string until we reach the pound sign. We check if the character after the pound sign is the same as the first
character. In this case, it is also an 'a', so we mark it with an X. We continue this process, scanning back and
forth, marking symbols that match until we have marked all the symbols. If we encounter a different symbol,
such as 'b', we switch to a different state and scan until we find the next 'b'.

In a larger Turing machine, it is desirable to perform this task non-destructively, without altering the original
strings. To achieve this, a different technique is employed. Instead of using only the symbol X for marking, three
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new symbols, denoted as XY, and Z, are introduced. These symbols are used to mark different types of symbols
without losing the original information. For example, A's are turned into X's, B's into Y's, and C's into Z's. After
the comparison is complete, the symbols can be restored to their original values.

This technique of marking symbols and preserving their original values is a general programming technique that
can be applied in various situations. In our notation, marking a symbol can be represented by placing a dot
under it. This can be achieved by replacing the symbol with a different symbol, such as 'a' with 'a dot', and later
treating the dot as if it were an 'a'. This allows us to remember specific locations on the tape and perform
operations accordingly.

In future algorithms, when we say "mark a symbol with a dot," it means using this technique of replacing
symbols and later changing them back. We can use different types of marks, such as colors, to differentiate
between different types of symbols. For example, placing a blue dot on a symbol or multiple red dots on a
symbol.

By understanding these concepts and utilizing Turing machine primitive operations, we can effectively mark
symbols and remember their significance in algorithms. This technique enables us to perform various tasks,
such as remembering specific locations and comparing strings, without losing important information.

A Turing machine is a theoretical device that can simulate any algorithmic computation. It consists of an infinite
tape divided into cells, where each cell can hold a symbol from a given alphabet. The machine has a read-write
head that can move along the tape and read or write symbols on the cells. It also has a set of states and a set of
rules that determine its behavior.

One important feature of a Turing machine is its ability to mark any place on the tape using different kinds of
marks, similar to pointers in programming languages. These marks allow the machine to keep track of specific
symbols or positions of interest. For example, we can use marks to point to the beginning of a certain string or
to a particular location on the tape.

To implement marking using the primitives of a Turing machine, we can define additional states and rules. For
instance, we can introduce a state P that represents the marking of a symbol as something of particular
interest. We can also introduce a state Q to mark another symbol or position on the tape. By utilizing these
techniques of marks, we can effectively implement the desired functionality.

A Turing machine allows us to mark any place on its tape using different kinds of marks, similar to pointers in
programming languages. These marks enable the machine to keep track of specific symbols or positions of
interest. By utilizing the primitives of the Turing machine, we can implement marking functionality and perform
various computations.
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LESSON: TURING MACHINES
TOPIC: MULTITAPE TURING MACHINES

A multi-tape Turing machine is a type of Turing machine that has multiple tapes. In this video, we will explore
the concept of multi-tape Turing machines and discuss how they are no more powerful than a Turing machine
with a single tape.

The main result is that every multi-tape Turing machine has an equivalent single-tape Turing machine. By
equivalent, we mean that both machines decide or recognize the same languages. This means that the class of
languages that can be recognized is the same for both types of machines. The power of a multi-tape Turing
machine lies in its ability to operate on several tapes simultaneously, which may result in faster computation
but does not change the languages that can be recognized.

To prove this, we need to show how to build an equivalent single-tape Turing machine given a multi-tape Turing
machine. The trick is to store all the tapes on a single tape. Each tape in the multi-tape machine has its own
tape head, and at any point in the computation, each head is in a different position. We need to store this
information as well.

To simulate a move in a multi-tape Turing machine on a single-tape Turing machine, we need to scan the tape
to determine the positions of the tape heads and the symbols underneath them. Once we have this information,
we can make the transition in the multi-tape machine. Afterward, we need to update the cells on the single tape
and move the dots representing the tape heads.

Multi-tape Turing machines are not more powerful than single-tape Turing machines. They can be simulated by
equivalent single-tape Turing machines by storing all the tapes on a single tape and updating the cells
accordingly. The main advantage of multi-tape Turing machines is their ability to perform computations faster,
but they do not change the class of languages that can be recognized.

A Turing machine is a theoretical computing device that can simulate any algorithmic computation. It consists of
an infinite tape divided into cells, a tape head that can read and write symbols on the tape, and a control unit
that determines the machine's behavior.

In the context of multitape Turing machines, each tape has its own tape head, allowing for parallel processing.
This enables the machine to perform multiple operations simultaneously. However, implementing the same
functionality on a single tape Turing machine requires additional steps and states.

To illustrate this, let's consider an example. Suppose we have a multitape Turing machine that updates the
symbols on three tapes: tape B, tape X, and tape Y. The machine needs to update the symbol on tape B with a
zero, the symbol on tape X with a y, and move the symbol from tape Y to tape B.

On a multitape Turing machine, these updates can be done in a single transition. However, on a single tape
Turing machine, it may take multiple states and steps to achieve the same result. The machine needs to move
the tape head to the appropriate positions, update the symbols, and perform the necessary operations.

Additionally, it is important to note that the tapes in a Turing machine are assumed to be infinite and filled with
blanks. If a tape head moves off the right end of a tape, the machine needs to shift the tape and insert a blank
symbol. This ensures that the tape head always sees a blank symbol when moving to the right.

Multitape Turing machines allow for parallel processing and can perform multiple operations in a single
transition. However, the same functionality can be achieved on a single tape Turing machine, albeit with more
states and steps. It is also important to handle the movement of tape heads off the right end by shifting the
tape and inserting a blank symbol.
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LESSON: TURING MACHINES
TOPIC: NONDETERMINISM IN TURING MACHINES

A non-deterministic Turing machine is a type of Turing machine that operates based on a modified transition
function. In a deterministic Turing machine, given a state and an input symbol, there is only one possible
transition. However, in a non-deterministic Turing machine, there can be multiple transitions for a given state
and input symbol.

To represent these multiple transitions, the transition function in a non-deterministic Turing machine uses the
power set notation. Instead of transitioning to a single state, the machine transitions to a set of states. This
means that at each step of the computation, there can be multiple possible successor configurations.

A configuration in a Turing machine represents the entire state of the machine at a given moment during
computation. It includes the tape contents, the position of the tape head, and the current state. In the case of
non-determinism, the current state is indicated by placing the state number directly to the left of the scanned
cell on the tape.

In a deterministic Turing machine, the computation history is a linear sequence of configurations. However, in a
non-deterministic Turing machine, the computation history forms a tree-like structure. Each branch of the tree
represents a different possible computation path.

To illustrate this, let's consider a simple example. Suppose we have a non-deterministic Turing machine with a
finite control consisting of states Q4, Q5, Q6, Q7, Q8, and Q9. Let's also assume that the input tape contains the
symbols 'a' and 'b'.

In the deterministic case, the computation history would be a linear sequence of configurations. We would start
in state Q4, scan the 'a‘, transition to state Q5, change the 'a' to an 'X', move to the right, scan the 'b', transition
to state Q6, change the 'b' to a 'Y', and so on.

In the non-deterministic case, the computation history forms a tree. When we are in state Q4 and scanning the
'a', we have two possible transitions: one to state Q5 and one to state Q7. If we take the transition to Q5, we
change the 'a' to an 'X', move to the right, and continue the computation. If we take the transition to Q7, we
change the 'a' to a 'Y', move to the left, and continue the computation.

At each step of the computation, there can be multiple choices, leading to different branches in the computation
history tree. This non-determinism allows the non-deterministic Turing machine to explore different computation
paths simultaneously.

It is important to note that despite the non-determinism, non-deterministic Turing machines have the same
computational power as deterministic Turing machines. This means that any problem that can be solved by a
non-deterministic Turing machine can also be solved by a deterministic Turing machine.

Non-determinism in Turing machines refers to the ability of a Turing machine to have multiple possible
transitions for a given state and input symbol. This is represented by using the power set notation in the
transition function. The computation history in a non-deterministic Turing machine forms a tree-like structure,
allowing for different computation paths to be explored simultaneously. Despite the non-determinism, non-
deterministic Turing machines have the same computational power as deterministic Turing machines.

A computation history in a non-deterministic Turing machine shows all the decision points and different
configurations that may result from the computation. It can be visualized as a tree, where each node represents
a configuration. The root of the tree represents the initial configuration, starting in the starting state and
positioned at the leftmost end of the tape.

As we move down the tree, different tapes and configurations are encountered. Some branches of the
computation may reach an accept state, indicating that the computation halts and accepts the input. Other
branches may reach a reject state, indicating that the computation on that branch halts and rejects the input. If
there are no choices at a particular point in the computation history, it is equivalent to rejecting the
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computation.

Additionally, there is a possibility of some branches of the tree being infinite, meaning that the computations on
those branches never halt. Therefore, in a computation history, we can have branches that accept, reject, or
loop indefinitely.

To define the overall outcome of a non-deterministic Turing machine, we need to consider these three
possibilities. The machine is said to accept the input if any branch of the computation accepts, meaning that the
non-deterministic Turing machine halts and accepts the input. It is said to reject the input if all branches of the
computation halt and either reject or die out. If the computation continues indefinitely on any branch, the
machine is said to loop, and it neither accepts nor rejects the input.

The main result in this context is that every non-deterministic Turing machine has an equivalent deterministic
Turing machine. This means that non-determinism does not introduce new categories of languages, although it
may speed up computation. To prove this, we can construct a deterministic Turing machine for every non-
deterministic Turing machine. The constructed machine recognizes the same class of languages and behaves in
the same way. Specifically, if the non-deterministic Turing machine accepts on any branch, the constructed
deterministic Turing machine will also accept. If the non-deterministic Turing machine halts on every branch
without reaching an accept state, the constructed machine will halt and reject.

The approach to constructing the deterministic Turing machine is to simulate the execution of all branches of
the computation. This can be done by searching the computation history tree to find an accept state. If the tree
is finite, indicating that every branch terminated, we either accept or reject based on the presence of an accept
state. If the tree contains any accept states, we accept the input. Otherwise, we reject it.

The computation history in a non-deterministic Turing machine provides a visual representation of the different
configurations and decision points during computation. By defining the outcomes of accept, reject, and loop, we
can determine the overall behavior of the machine. The main result is that every non-deterministic Turing
machine has an equivalent deterministic Turing machine, which can be constructed by simulating the execution
of all branches of the computation.

In the field of computational complexity theory, one important concept to understand is the role of Turing
machines in cybersecurity. Turing machines are theoretical models of computation that help us analyze the
complexity of algorithms and determine their efficiency.

When dealing with Turing machines, we often encounter the concept of non-determinism. A non-deterministic
Turing machine is a theoretical construct that can be in multiple states at the same time and make non-
deterministic choices during its computation. This means that at each step, it can have multiple possible
transitions or choices to make.

To simulate a non-deterministic Turing machine with a deterministic Turing machine, we need to find a way to
explore all possible branches of computation. One approach is to represent the computation as a tree, where
each node represents a configuration of the machine and each edge represents a possible transition.

In this tree, every branch represents a different computation path, and each choice point is shown as a bubble.
To describe a specific branch, we can assign it a unique number that represents the choices made at each step.
By searching this tree, we are essentially looking for an accept node, which indicates that the non-deterministic
Turing machine accepts a given input.

To perform this search, we can use either a depth-first or breadth-first search algorithm. However, a depth-first
search may miss an accept node if some paths are infinite while an accept node exists elsewhere in the tree.
Therefore, a breadth-first search is more suitable for our purpose.

Performing a breadth-first search requires simulating the entire computation from the initial configuration to
each node we want to search. This means that we need to perform the computation from scratch for each node,
following the choices indicated by the path numbers.

To determine the maximum number of branches at each point in the computation, we can examine the machine
and count the number of choices available at each state. By doing this, we can construct the full tree, where
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some branches may terminate or die out, but we have the maximum possible computation with the given
number of branches at each node.

To simulate a non-deterministic Turing machine with a deterministic Turing machine, we can make use of a
previous result that shows multi-tape Turing machines are just as powerful as single-tape Turing machines.
Therefore, we can use a deterministic Turing machine with three tapes: the input tape, the simulation tape, and
the address tape.

The input tape stores the initial input to the non-deterministic Turing machine and remains unmodified
throughout the simulation. The simulation tape is used to perform the computation, simulating the transitions
and choices of the non-deterministic machine. Finally, the address tape is used to control the breadth-first
search, storing the path numbers or addresses of the nodes we want to explore.

By utilizing these three tapes and following a breadth-first search algorithm, we can effectively simulate the
behavior of a non-deterministic Turing machine using a deterministic Turing machine.

Understanding the fundamentals of computational complexity theory, Turing machines, and non-determinism is
important in the field of cybersecurity. Simulating non-deterministic Turing machines using deterministic Turing
machines allows us to explore all possible computation paths and analyze the behavior of algorithms more
efficiently.

A fundamental concept in computational complexity theory is the use of Turing machines, which are abstract
devices that can simulate any algorithmic process. In the context of cybersecurity, understanding the
computational complexity of algorithms is important for analyzing the security of cryptographic protocols and
other security mechanisms.

One important aspect of Turing machines is their ability to make non-deterministic choices during computation.
This means that at certain points in the computation, the machine can have multiple possible paths to follow. To
represent these choices, we use path numbers, which are sequences of digits that indicate which choices to
make during a simulation.

To illustrate this concept, let's consider a decision tree with a path to a particular node. The path is represented
by a sequence of numbers, suchas 2322132232213 2, which guides us to the desired node. If the
maximum number of choices at any point is three, single-digit numbers are sufficient. However, if we have more
choices, we may need to use commas or other separators to distinguish between them.

To increment path numbers, we need to ensure that shorter paths come first. For example, if we have a path
ending in 1 3 2, we can increment it to 2 1 3 3 by rolling over the digits. This allows us to search the next level
in a breadth-first search manner.

Now let's discuss the algorithm for simulating non-deterministic Turing machines using deterministic ones. We
start with three tapes: tape one contains the input, while tapes two and three are initially empty. We begin by
copying tape one to tape two, which serves as our simulation tape. We then run the simulation using tape two
as the tape we operate on.

During the simulation, when we encounter non-deterministic branch points, we consult tape three, which
contains the path numbers. Each number in the path corresponds to a choice we need to make. We follow the
path as far as it goes, and we may reach an accept or reject state, or the computation may terminate.
Regardless of the outcome, we continue searching by incrementing the path number on tape three and
repeating the algorithm.

If we encounter an accept state during the simulation, we know that our non-deterministic Turing machine
should accept. Conversely, if all branches reject or terminate, our algorithm will halt and reject. If the
computation tree is infinite, the algorithm will keep searching until it finds an accept state or all paths
terminate.

We have discussed the use of path numbers to represent choices in non-deterministic Turing machines. We
have also presented an algorithm for simulating non-deterministic machines using deterministic ones, which
involves copying the input to a simulation tape and incrementing path numbers to explore all possible branches.
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Understanding the equivalence between non-deterministic and deterministic Turing machines is essential in
computational complexity theory. By showing how to construct an equivalent deterministic machine for any non-
deterministic one, we have demonstrated that both models have the same computational power. This result is
important for analyzing the complexity of algorithms and reasoning about their security properties.

In the field of computational complexity theory, an important concept to understand is the role of Turing
machines in the context of non-determinism. Turing machines are theoretical models of computation that can
simulate the behavior of algorithms. They consist of a tape, a read/write head, and a set of states. The behavior
of a Turing machine is determined by its transition function, which specifies how the machine should move the
head and update the tape based on its current state and the symbol it reads.

In the case of non-deterministic Turing machines, there is an additional element of uncertainty. Unlike
deterministic Turing machines, which have a unique transition for each combination of state and symbol, non-
deterministic Turing machines can have multiple possible transitions for a given combination of state and
symbol. This means that at any given step, the machine can choose between different paths to follow.

To understand the implications of non-determinism in Turing machines, we can consider the concept of Turing
recognizability. A language is Turing recognizable if there exists a non-deterministic Turing machine that
recognizes it. In other words, if there is a machine that can accept any string in the language and either reject
or loop indefinitely for strings not in the language. Interestingly, this definition is equivalent to the case of
deterministic Turing machines recognizing a language.

On the other hand, a language is decidable if there exists a non-deterministic Turing machine that decides it. In
this case, the machine will always halt for any input string and either accept or reject it. The important
distinction here is that a decider will never loop, regardless of whether it is non-deterministic or deterministic.
This means that a decidable language can be recognized by a Turing machine that always halts and provides a
definitive answer.

To analyze the behavior of non-deterministic Turing machines, we can simulate all possible branches of
computation and search for any path that the machine could take to accept an input. This can be done by
traversing the computation history tree in a breadth-first order, using a multi-tape deterministic Turing machine.
By doing so, we can define the terms of Turing recognizability and decidability in terms of non-deterministic
Turing machines and observe that these definitions align with those of deterministic Turing machines.

A language is Turing recognizable if and only if some non-deterministic Turing machine recognizes it, which is
equivalent to the case of deterministic Turing machines. Additionally, a language is decidable if and only if some
non-deterministic Turing machine decides it, and the concept of deciding remains the same for both non-
deterministic and deterministic machines.
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LESSON: TURING MACHINES
TOPIC: TURING MACHINES AS PROBLEM SOLVERS

Turing Machines as Problem Solvers

In this material, we will explore how Turing machines can be utilized as problem solvers. So far, we have
focused on how Turing machines can decide or recognize languages. However, we also want to understand how
they can solve arbitrary problems. Fortunately, any problem can be expressed as a language. This means that
we can convert any problem into a language, where each instance of the problem is represented by a specific
string. This string will either be in the language or not.

To illustrate this concept, let's consider the problem of determining whether a graph is connected or not. In this
case, an instance of the problem would involve a particular graph, and we would need to determine if it is
connected or not. We can convert the problem of graph connectivity into a language using a corresponding
Turing machine. This Turing machine will decide the language by examining the encoded problem instance
represented as a string. If the string is in the language, the answer to the question of whether the graph is
connected or not is "yes." Conversely, if the string is not in the language, the answer is "no."

By using languages to describe problems, we can encode each problem instance into a string. If the answer to
the question is "yes," the string will be in the language. If the answer is "no," the string will not be in the
language. This approach allows us to apply Turing machines as problem solvers effectively.

Let's consider the example of graph connectivity in more detail. We will focus on undirected graphs and
determine if a graph is connected. Consider a graph with 12 nodes, as shown. In this example, the graph is not
connected because there are two separate components, and some nodes are not reachable from others. To
convert this problem into a language, we define a language called A. This language consists of strings
representing connected graphs.

To represent the graph as input for a Turing machine, we need to transform the graphical pictorial
representation into a string. We can number the nodes and edges, creating a list of edges and nodes. The
language A comprises strings that represent connected graphs. Therefore, we seek a Turing machine capable of
deciding this language. This is a decidable problem, meaning we can find a Turing machine that accepts the
representation of a connected graph as input and rejects the representation of a graph that is not connected.
Additionally, the Turing machine will reject any invalid representation that does not make sense as a graph.

It is essential to consider how to represent data or knowledge when programming. In the case of graph
representation, a picture is intuitive for humans but not suitable for processing by a computer or Turing
machine. We need to convert the graph into a string with symbols. Ultimately, if we want to represent it in a
practical computer, we convert it into zeros and ones or voltage levels. In this example, we represent the graph
by numbering each node and using parentheses and commas. Our alphabet includes digits, commas, and open
and close parentheses. The graph representation consists of a list of nodes, where each node is assigned a
number.

By understanding how Turing machines can be utilized as problem solvers, we can tackle a wide range of
problems by converting them into languages and encoding problem instances as strings. This approach allows
us to apply the power of Turing machines to solve complex computational problems effectively.

In computational complexity theory, the concept of Turing machines plays a fundamental role. Turing machines
are abstract mathematical models that can be used to solve various computational problems. In this didactic
material, we will focus on Turing machines as problem solvers.

Before diving into Turing machines, let's first discuss how graphs can be represented. In graph theory, a graph
consists of nodes (also known as vertices) and edges. The edges connect pairs of nodes, indicating a
relationship between them. In our example, we have a graph with four nodes, and we represent the edges using
pairs of numbers enclosed in parentheses.

To represent numbers, we typically use the decimal system, where digits 0 through 9 are used. However, other
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number representations, such as binary or unary, can also be used depending on the context. In binary
representation, we need fewer symbols in our alphabet, while in unary representation, we simply use a mark for
each item. Although unary representation is not efficient for larger numbers, the choice of number
representation is ultimately a programming detail.

Now, let's discuss algorithms and their relationship with Turing machines. The Church-Turing thesis states that
anything that can be executed with a Turing machine is considered an algorithm. Therefore, algorithms can be
implemented on Turing machines. We can express algorithms at different levels of detail, from high-level
specifications using pseudocode or programming languages to more detailed descriptions that consider the
layout of symbols on the tape and the motion of the tape head.

At the lowest level, we can specify the algorithm as a Turing machine, including all its states, alphabets, and
transition functions. However, such detailed specifications can be complex and difficult to comprehend for
anything but the simplest algorithms. Therefore, we can give more abstract algorithms, as long as we
understand that any algorithm can be implemented on a Turing machine.

Now, let's focus on the algorithm for determining whether a graph is connected. First, we need to verify whether
the given representation is a legitimate representation of a graph. If not, we reject it. Once we have verified the
representation, we can proceed to determine whether the graph is connected.

The algorithm for determining graph connectivity involves marking nodes. We start by selecting a node and
marking it. Then, we repeat the following steps until no more nodes can be marked: for each unmarked node,
we check if there is an edge from a previously marked node to that node. If there is, we mark the node. This
process continues until we cannot mark any more nodes.

By applying this marking algorithm, we can determine whether a graph is connected or not.

To summarize, Turing machines provide a powerful framework for understanding and solving computational
problems. They can be used to represent and solve various problems, including determining graph connectivity.
Algorithms can be expressed at different levels of detail, from high-level specifications to detailed Turing
machine specifications. Ultimately, the Church-Turing thesis states that algorithms and Turing machines are
equivalent.

A key aspect of computational complexity theory in the field of cybersecurity is understanding Turing machines
and their role as problem solvers. Turing machines are abstract mathematical models that can simulate any
algorithm or computation. They consist of a tape divided into cells, a read-write head that can move along the
tape, and a control unit that determines the machine's behavior based on its current state and the symbol it
reads.

One fundamental concept in Turing machines is the notion of reachability. Given a graph with nodes and edges,
we can determine if a particular node is reachable from a starting node by marking all the nodes that are
reachable. To do this, we iterate through the nodes and check if each one has been marked. If we find a node
that has never been marked, we can conclude that it is not reachable from the starting node. On the other
hand, if all nodes are marked, we accept that the graph is connected.

When building a Turing machine for a specific algorithm, we need to provide a more detailed description of the
algorithm's implementation. This includes considerations such as checking if the input describes a valid graph,
ensuring that node and edge lists are correctly formatted, and verifying that nodes are not repeated in the list.
Once these checks are done, we can proceed to the actual algorithm.

For example, one step in the algorithm may involve marking the first node by placing a dot under it on the node
list. Then, we scan the node list to find an unmarked node and continue the process. This level of detail allows
us to translate the algorithm into a Turing machine.

It is important to note that the process of converting an algorithm into a Turing machine can be complex and
time-consuming. However, the Church-Turing thesis states that any algorithm that can be implemented by a
human programmer can also be implemented by a Turing machine. This thesis highlights the equivalence
between Turing machines and algorithms.

* X %
* El'l'[: | © 2024 European IT Certification Institute
* . . 93/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

Understanding Turing machines and their role as problem solvers is important in the field of cybersecurity.
Turing machines provide a theoretical framework for analyzing computational complexity and simulating
algorithms. By translating algorithms into Turing machines, we can gain insights into their behavior and analyze
their efficiency.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: TURING MACHINES
TOPIC: ENUMERATORS

An enumerator is a computational device that is similar to a Turing machine but with the ability to produce a
sequence of strings. It generates or enumerates a language by printing out the strings. The enumerator consists
of an infinite tape, a finite state control, and a printer.

Initially, the tape is empty, and instead of taking input, the enumerator produces a series of strings and prints
them on its printer. This machine lists out or prints all the strings that are in a language, defining the language
in @ similar way to a Turing machine. However, unlike a Turing machine that accepts or rejects strings in the
language, the enumerator simply prints out all the strings that are in the language.

An enumerator can either halt or loop, representing its two possible outcomes. In general, most interesting
languages are infinite, so the enumerator will run indefinitely. It is important to note that the enumerator is
allowed to print duplicates, and the language is still defined by the set of strings it prints. The order of printing is
not significant, as long as the strings are printed.

A fundamental result in computational complexity theory is that a language is Turing-recognizable if and only if
some enumerator enumerates it. This means that enumerators have the same computational power as Turing
machines. The proof of this result involves constructing a Turing machine given an enumerator and constructing
an enumerator given a Turing machine.

To construct a Turing machine from an enumerator, the Turing machine runs the enumerator as a subroutine.
For a given input string, the Turing machine compares it to each string produced by the enumerator. If a match
is found, the Turing machine accepts the input string.

To construct an enumerator from a Turing machine, the enumerator runs the Turing machine on all possible
strings simultaneously. It lists out all the possible strings in the language and checks if the Turing machine
accepts any of them. If the Turing machine accepts a string, the enumerator prints it out.

Enumerators are computational devices that generate or enumerate languages by producing and printing
strings. They have the same computational power as Turing machines. Given an enumerator, a Turing machine
can be constructed to recognize the same language, and given a Turing machine, an enumerator can be
constructed to list all the strings in the language.

In the study of computational complexity theory, Turing machines play a important role in understanding the
limits of computation. However, when it comes to determining whether a given string is in the language
recognized by a Turing machine, we don't want to get stuck analyzing just one string. Instead, we want to
examine all possible strings and determine if the Turing machine would accept any of them.

To achieve this, we can use an enumerator, which is a device that runs a Turing machine on all strings in
parallel. By interleaving the computations of the Turing machine on different strings, we can ensure that if there
is any string accepted by the Turing machine, we will eventually discover it.

To illustrate this concept, let's consider an algorithm that achieves the desired outcome. We will iterate over
two nested loops: an outer loop that runs indefinitely and an inner loop that iterates from 1 up to the current
value of the outer loop variable. This nested loop structure guarantees that every pair of numbers will
eventually be encountered.

Inside this doubly nested loop, we simulate the Turing machine using each string in our list of all possible strings
as input. We run the simulation for a specified number of steps determined by the outer loop variable. If the
Turing machine accepts a string within the specified number of steps, we print out that string.

Regardless of the specific string or the number of steps required for acceptance, we can be confident that
eventually, there will exist a pair of values (I, J) such that the Turing machine will be simulated on the J-th string
for | steps, leading to the discovery of an accepted string, which will then be printed out.
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To further illustrate this concept, let's consider an example. Suppose we have a Turing machine that accepts
some strings after a certain number of steps, rejects others, and possibly enters an infinite loop for certain
strings. By applying the algorithm described above, we can systematically check each string for acceptance
within a range of steps.

For instance, when | is 1, we check the first string (s1) for acceptance after one step. When | is 2, we check both
sl and s2 for acceptance after two steps. As we increase | to 3, we check sl for acceptance after three steps, s2
for acceptance after three steps, and s3 for acceptance after three steps. We continue this process, increasing |
and checking each string for acceptance within the specified number of steps.

Through this iterative process, we can identify which strings are accepted by the Turing machine and print them
out accordingly. It's important to note that duplicates may be printed since the enumerator explores all possible
strings. However, this does not invalidate the enumerator's functionality.

Given a Turing machine that recognizes a specific language, we can construct an enumerator that recognizes
the same language. Enumerators and Turing machines are both powerful tools in defining and understanding
the class of Turing recognizable languages.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: DECIDABILITY
TOPIC: DECIDABILITY AND DECIDABLE PROBLEMS

Decidability and Decidable Problems

In the field of computational complexity theory, one important concept to understand is decidability. In this
material, we will explore what it means for a problem to be decidable, as well as problems that are not
decidable.

Decidability refers to whether a problem can be solved by a Turing machine, a theoretical model of
computation. A problem is considered decidable if there exists a Turing machine that will always halt and
provide the correct answer. In other words, if a problem is decidable, it means that we can write an algorithm to
solve it, and that algorithm will always terminate with the correct answer.

Many questions and problems are decidable, which is a positive aspect as it allows us to create programs to
answer these questions. For example, every question about regular languages is decidable. This means that
anything we can ask about regular expressions, regular languages, or finite state automata can be handled by
programs, and these programs will terminate with the correct answer.

Moving up the hierarchy to context-free languages, some questions about them are also decidable. However,
we start to encounter interesting questions that are not decidable in this area. When we consider the realm of
Turing machines, we find that many questions about them are not decidable. In fact, some questions are not
even Turing recognizable.

One example of a problem that is not decidable is the halting problem. This problem asks whether a Turing
machine will loop indefinitely or eventually halt. Similarly, in terms of programming languages, the halting
problem asks if a given program will terminate or not. While we can solve this problem for many programs,
there is no general algorithm that can determine whether any arbitrary program will halt. Therefore, the halting
problem is considered undecidable.

It is important to note that some problems may be Turing recognizable, meaning there exists a Turing machine
that can recognize the language associated with the problem, even though the problem itself is not decidable.
However, there are languages that are not even Turing recognizable.

To summarize, decidability is a fundamental concept in computational complexity theory. A problem is
decidable if there exists an algorithm that will always halt and provide the correct answer. Many questions
about regular languages and some about context-free languages are decidable. However, when it comes to
Turing machines, many questions are not decidable, including the halting problem. Some problems may be
Turing recognizable, but there are languages that are not even Turing recognizable.

In the field of computational complexity theory, one important concept to understand is decidability. A problem
is said to be decidable if there exists an algorithm that can provide the correct answer and always terminate. On
the other hand, the halting problem, which refers to determining whether a program will halt or not, is an
example of an undecidable problem.

To illustrate the concept of decidability, let's consider the problem of determining whether a given deterministic
finite state automaton (DFA) will accept a specific input string. Given a DFA and an input string, we can execute
the DFA by moving through the input and transitioning from state to state. When we reach the end of the input,
we check if we are in a final state. If we are, then the DFA accepts the string; otherwise, it does not. This
process is straightforward, terminates, and provides a definite answer, making the problem decidable.

In terms of formal language representation, we can define a language corresponding to this problem. Every
instance of the problem can be represented as a string, where the string is either in the language (indicating a
"yes" answer) or not in the language (indicating a "no" answer). For example, an instance of the problem would
consist of a specific DFA and a particular input string. We can encode the DFA and the input string into a single
string, which we can then process using a Turing machine. If the Turing machine accepts the string, the answer
to the problem instance is "yes"; if it rejects the string, the answer is "no". This language is decidable because
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we can design a Turing machine that can determine whether a given DFA accepts a specific input string.

It's important to note that there may be some confusion when dealing with two different languages. At one
level, we are dealing with the language defined by the DFA, which is a regular language. We are asking whether
a given input string is a member of this regular language. However, at another level, we are dealing with a
separate language called a sub-DFA, which is more complex and not a regular or context-free language. Despite
its complexity, this language is still decidable, meaning we can create a Turing machine that can determine
membership in this language.

Decidability in computational complexity theory refers to the existence of an algorithm that can provide the
correct answer and always terminate. The problem of determining whether a given DFA accepts a specific input
string is an example of a decidable problem. By encoding the DFA and input string into a single string and
processing it using a Turing machine, we can determine whether the DFA accepts the string or not. This
language, although more complex than a regular language, is still decidable.

A language is said to be decidable if there exists a Turing machine that can determine whether a given string
belongs to that language. In the context of computational complexity theory, we are interested in proving the
decidability of certain languages.

One example of such a language is the language that consists of the encoding of a deterministic finite
automaton (DFA) along with a string, such that the DFA accepts that string. We want to prove that this language
is decidable.

To prove the decidability of a language, we need to provide a Turing machine that can decide it. In other words,
we need to provide an algorithm that always halts and can determine whether a given input belongs to the
language.

In the case of the language described above, our Turing machine will have two parts. The first part is a check to
ensure that the input is a valid representation of a DFA. If it is not, we can reject immediately. If it is a valid
representation, the Turing machine proceeds to simulate the DFA on the given string.

Simulating a DFA on a string is a well-defined process that can be done in linear time based on the length of the
string. We can determine whether the DFA reaches a final state at the end of the string. If it does, then the
Turing machine accepts the input. If the DFA does not reach a final state by the time the string is exhausted,
the Turing machine rejects the input.

While we have glossed over the details of how we encode DFAs as strings, it is important to note that any object
can be encoded using zeros and ones. Therefore, we can assume that we have a valid encoding of the DFA.

It is evident that this algorithm will always halt, as simulating a DFA on a string is a simple process. Thus, we
have proven that the language described above is decidable.

Now, let's consider the acceptance problem for non-deterministic finite state automata (NFA). The language in
question consists of strings such that the input is the encoding of an NFA and a string, and if the NFA accepts
that string, then the encoding is a member of the language.

To prove the decidability of this language, we need to construct a Turing machine that can determine whether a
given NFA accepts a given string.

There are two approaches we can take in building this Turing machine. In the first approach, we simply simulate
the NFA on the string. This simulation can be more complicated than simulating a DFA, as NFAs have non-
deterministic transitions. However, it is still possible to simulate the NFA and determine whether it accepts the
string.

The second approach involves transforming the NFA into an equivalent DFA and then simulating the DFA on the
string. This approach can be more straightforward, as we can leverage the deterministic nature of DFAs.

Both approaches are valid, and it is not clear which one is easier or more straightforward. However, regardless
of the approach chosen, we can construct a Turing machine that decides whether a given string belongs to the
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language.

We have shown that the language consisting of the encoding of a DFA along with a string, such that the DFA
accepts the string, is decidable. Additionally, we have discussed the decidability of the acceptance problem for
NFAs, where the language consists of strings such that an NFA accepts the string. We have outlined two
approaches for constructing a Turing machine that can decide this language.

A non-deterministic finite state machine (NFA) can be simulated by moving through the input one symbol at a
time. At each step, we move from one transition to another, considering all the states we are currently in. If
there are transitions labeled with the current symbol, we move to the corresponding next state. If there are no
transitions, we remove the finger altogether. This process continues until we reach the end of the input string.
We then check if any of our fingers are on a final state. If yes, we accept the string.

The second approach involves converting the NFA to a deterministic finite state automaton (DFA). This
conversion process is complex and involves epsilon closures. However, there exists an algorithm that can
convert an NFA to a DFA, making this part of the solution decidable. Once we have the DFA, we can create a
Turing machine to check if it accepts the input string. We already know that a Turing machine exists for
accepting languages recognized by DFAs. To combine these two Turing machines, we first convert the NFA to a
DFA and then run the DFA on the input string. If the simulation accepts, we accept the string. Otherwise, we
reject it.

In the context of regular languages, we can also ask if a given regular expression generates a given string. This
problem can be formulated as a language, known as the acceptance problem for regular expressions. Given a
regular expression R and a string, we can determine if the regular expression describes or generates that string.
We can write an algorithm to solve this problem, making the language decidable. In other words, we can build a
Turing machine or write a program that, given a regular expression and a string, determines if the regular
expression generates the string or if the string is described by the regular expression.

It is important to note that the algorithms used to solve these problems are guaranteed to terminate and can be
extremely fast. While termination is straightforward for these algorithms, it may not be obvious for other
algorithms, and a more careful proof may be required. Nevertheless, many programs can be proven to always
halt, and the question of termination is self-evident in such cases.

Program Verification and Decidability in Cybersecurity - Computational Complexity Theory Fundamentals

Program verification is a important aspect of cybersecurity, involving the process of proving that a program
produces the correct output and always terminates. To ensure the correctness of a program, both of these
properties need to be established. While many programs can be proven to always halt and give the correct
answer, the general problem of determining whether a program halts or not, known as the halting problem, is
undecidable.

In the field of computational complexity theory, the concept of decidability plays a significant role. A problem is
said to be decidable if there exists an algorithm that can determine its solution for any given input. However,
the halting problem itself is an example of an undecidable problem. This means that there is no algorithm that
can always determine whether a particular program halts or not.

In the context of language acceptance for regular expressions, an algorithm can be employed to determine
whether a given string belongs to the language defined by a regular expression. This algorithm utilizes the
concept of non-deterministic finite state automata (NFA). By converting a regular expression into an NFA, the
problem can be broken down into smaller components. The algorithm constructs an NFA for each subexpression
and then combines them using union, concatenation, and star operations.

Once the NFA representation, denoted as B Prime, is obtained, the algorithm constructs a string that represents
the NFA along with the input string. This new string is then fed into a Turing machine, as described in a previous
theorem, to decide whether the NFA accepts the input string. This Turing machine serves as a decider, providing
a solution to the problem of language acceptance for NFAs.

This algorithm is significant as it demonstrates the ability to build complex algorithms by utilizing previously
developed algorithms. In essence, it allows the construction of Turing machines from smaller Turing machines
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that are already known to be deciders. By leveraging deciders for smaller components, a decider for a larger
language can be constructed. This approach mirrors the practice of programmers building new algorithms based
on existing ones.

Program verification is an essential aspect of cybersecurity, involving the proof of correctness and termination
of programs. While many programs can be proven to always halt and provide the correct output, the halting
problem itself is undecidable. In the context of language acceptance for regular expressions, an algorithm
utilizing non-deterministic finite state automata can be employed to determine whether a given string belongs
to the language defined by a regular expression. This algorithm showcases the ability to construct larger
algorithms by leveraging smaller deciders. By utilizing known deciders for smaller components, a decider for a
larger language can be built.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: DECIDABILITY
TOPIC: MORE DECIDABLE PROBLEMS FOR DFAS

In this material, we will explore additional problems related to Deterministic Finite State Automata (DFAs). As
mentioned before, all problems for DFAs and regular languages in general are decidable. In the previous
material, we discussed the acceptance problem for DFAs, which involved testing whether a string is accepted by
a specific DFA. We also examined non-deterministic finite state automata and regular expressions.

Apart from the acceptance problem, we can also inquire about the emptiness of a language and equality
testing. For the emptiness problem, denoted as 'e', we are interested in determining if a language contains no
strings. In this case, the language of interest, denoted as 'e sub DFA', consists of strings that represent valid
DFAs. The question is whether the DFA accepts any string at all.

For the equality testing problem, denoted as 'EQ', we can provide two DFAs, A and B, and ask if they accept the
same language. In other words, we want to determine if they are equivalent in terms of language acceptance.

All of these problems are decidable, but let's delve deeper into the emptiness problem for regular languages.
This problem is described by the language 'e sub DFA', which consists of strings representing DFAs for which the
accepted language is empty. To show that this is a decidable problem, we need to provide an algorithm to
decide it.

The algorithm for the emptiness problem is relatively straightforward. Given a DFA, we ask a simple question:
Can we go from the initial state to any final state following transitions in the machine? If we can reach a final
state from the initial state, then the DFA can generate some string.

This problem essentially boils down to a graph problem. A DFA can be represented as a directed graph of states.
To solve the emptiness problem, we can use a marking algorithm. We imagine drawing the graph on a piece of
paper, with circles representing states and arrows representing transitions. We start by marking the initial state.
Then, we repeat the following step in a loop: for each transition, we check if it leads from a marked state to an
unmarked state. If it does, we mark the unmarked state. We continue this process until no new states can be
marked.

After marking all reachable states, we check if any of the final states in the DFA have been marked. If they
have, it means there is a path from the initial state to a final state, and the language is not empty.

This algorithm is intuitive and can be easily solved by humans when the graph is small and visually presented.
However, we need an algorithm to solve it when the graph is not visually represented or when it is large, such
as a DFA with thousands of states and transitions.

The emptiness problem for regular languages is decidable, and we can use the marking algorithm to determine
if a DFA accepts any string at all.

In the field of cybersecurity and computational complexity theory, one important concept to understand is
decidability. Decidability refers to the ability to determine whether a problem has a solution or not. In this
material, we will explore more decidable problems for Deterministic Finite Automata (DFAs).

When designing computer programs, it is important to consider whether they will terminate or continue running
indefinitely. If we encounter a repeat statement in an algorithm, we should be suspicious and question whether
the loop will eventually terminate. In the case of DFAs, we can analyze the repeat loop and determine if it will
terminate. This is because the loop repeats until no new states get marked. Since DFAs have a finite number of
states, each iteration of the loop must mark at least one state. As a result, either every state will eventually get
marked, or the loop will stop marking states because there are no more states to mark. Therefore, the problem
of determining whether a DFA will terminate is decidable.

Next, let's consider the question of determining whether two DFAs are equivalent. Equivalence in this context
means that the languages they accept are identical. To solve this problem, we need to devise an algorithm that
compares the DFAs and ignores differences in state names. However, simply comparing the graphs of the DFAs
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can lead to problems. For example, two DFAs may accept the same language but have different graphs. To
overcome this challenge, we can utilize the concept of symmetric difference.

The symmetric difference between two sets, denoted by A A B, consists of elements that are in set A or set B,
but not in both. In the context of DFAs, we can apply this concept to languages. If two languages, A and B, are
equal, their symmetric difference will be the empty set. This observation allows us to determine whether two
DFAs accept the same language. Given two DFAs that accept languages A and B, we can construct a new DFA,
C, that accepts the symmetric difference of A and B. We can then use a Turing machine to test whether C
accepts the empty language or contains strings. If C accepts the empty language, it means that A and B are
equivalent.

To summarize, in the realm of cybersecurity and computational complexity theory, we have explored more
decidable problems for DFAs. We have seen that determining whether a DFA will terminate is decidable because
DFAs have a finite number of states. Additionally, we have discussed how to determine whether two DFAs are
equivalent using the concept of symmetric difference. By constructing a new DFA that accepts the symmetric
difference of the languages accepted by the original DFAs, we can use a Turing machine to test for emptiness
and determine equivalence.

In the field of computational complexity theory, one fundamental concept is the decidability of problems.
Decidability refers to the ability to determine whether a particular question or problem can be solved
algorithmically. In this didactic material, we will explore the topic of decidability in the context of deterministic
finite automata (DFAs) and discuss more decidable problems related to them.

A deterministic finite automaton (DFA) is a mathematical model used to recognize patterns in strings of
symbols. It consists of a set of states, a set of input symbols, a transition function, a start state, and a set of
accepting states. DFAs can be used to represent and analyze various computational processes, including
language recognition.

One important aspect of DFAs is their ability to accept or reject languages. A language is a set of strings, and a
DFA can determine whether a given input string belongs to a particular language by transitioning between
states based on the input symbols. If, for a DFA C, the empty language is accepted, it implies that both
languages A and B are equivalent, and the DFAs for A and B accept the same language. Hence, we should
accept C. On the other hand, if C is not the empty language, we reject it.

Decidability in the context of DFAs extends beyond the acceptance of languages. There are several other
problems related to DFAs that can be proven to be decidable. For example, determining whether a DFA accepts
any string at all (emptiness problem), whether a DFA accepts all possible strings (universality problem), and
whether two DFAs accept the same language (equivalence problem) are all decidable problems.

To illustrate the concept of decidability, consider the following algorithmic approach for the emptiness problem
of a DFA:

1. Start with the initial state of the DFA.

2. For each possible input symbol, simulate the transition function of the DFA to determine the next state.

3. If, after processing all input symbols, the current state is an accepting state, the DFA accepts at least one
string, and the emptiness problem is solved.

4. If, after processing all input symbols, the current state is not an accepting state, the DFA does not accept any
string, and the emptiness problem is solved.

By following this algorithm, we can decide whether a given DFA accepts any string or not.

The concept of decidability plays a important role in computational complexity theory, particularly in the
context of DFAs. We have discussed the acceptance of languages by DFAs and explored the emptiness problem
as an example of a decidable problem. Additionally, we mentioned other decidable problems related to DFAs,
such as universality and equivalence. Understanding these fundamental concepts is essential for analyzing the
computational power and limitations of DFAs.
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LESSON: DECIDABILITY
TOPIC: PROBLEMS CONCERNING CONTEXT-FREE LANGUAGES

Context-Free Languages and Decidability

In the field of computational complexity theory, one important topic is the study of context-free languages and
the decidability of problems related to them. In this material, we will explore several questions concerning
context-free languages and determine which of these problems are decidable and which are not.

One fundamental question we can ask about context-free languages is whether we can parse them. In other
words, given a context-free grammar, can we determine whether it accepts a particular string? The answer to
this question is yes, we can. This problem is decidable. By examining the grammar, we can determine whether a
given string is accepted by that grammar.

To parse a context-free language, we can build a parser and run it on the string. This allows us to determine
whether the language is empty or not. In other words, does the language generate any string at all? This
question is also decidable.

However, if we are given two context-free grammars and asked whether they accept the same language, this
problem is not decidable. We cannot generally determine whether two context-free grammars are equivalent or
not. Some grammars may have the same language, while others may not. The question of equivalence for
context-free grammars is not decidable.

In fact, many questions about context-free grammars are not decidable. For example, determining whether a
context-free grammar is ambiguous is not decidable. Additionally, determining whether two different context-
free grammars have any string in common, or whether the complement of a context-free grammar is also
context-free, are also not decidable.

Despite these undecidable problems, there are decidable problems related to context-free grammars. One such
problem is the acceptance problem. Given a context-free grammar and a string, we can write a program to
determine whether the grammar generates that string. This problem is decidable. We can create a parser for
any given grammar and run it on the string to determine if it is in the language.

Furthermore, for certain types of grammars, such as LL(k) or LR grammars, we can create efficient parsers that
operate in linear time. This means that the time it takes to parse a string is proportional to the length of the
string. While some grammars may require more time to parse, in general, efficient parsers can be constructed
for most common types of grammars found in programming languages.

However, it is important to note that in the worst case, the parser may take cubic time, where n is the length of
the string. This is because we need to examine every symbol in the input string, and therefore, the time
required is proportional to the length of the string. Nevertheless, after sufficient processing and computation,
we will always obtain a yes or no answer. The problem is decidable, and we will not continue computing
infinitely.

While some problems concerning context-free languages are decidable, others are not. We can determine
whether a string is accepted by a context-free grammar and whether the language is empty. However,
determining equivalence between two context-free grammars, ambiguity of a grammar, and intersection of
languages are undecidable. Nonetheless, efficient parsers can be constructed for most common types of
grammars, providing a solution to the acceptance problem.

In the field of computational complexity theory, particularly in the context of cybersecurity, the study of
decidability plays a important role. Decidability refers to the ability to determine whether a particular problem
can be solved by an algorithm. In the case of context-free languages, there are specific problems related to
decidability that need to be addressed.

One approach to determine whether a string W is in the language generated by a context-free grammar is to
generate all leftmost derivations of W. However, this approach has a major drawback. If W is not in the
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language, the algorithm will not halt, making it an ineffective solution.

To overcome this limitation, a better approach is to make use of Chomsky normal form. Chomsky normal form is
a specific form of context-free grammar where all rules have the form of a non-terminal going to either two non-
terminals or a single terminal. The starting symbol can only appear on the left-hand side of the rules. Converting
a given grammar into Chomsky normal form is the first step in the algorithm.

In a derivation using a grammar in Chomsky normal form, the length of the sentential form grows by 1 at each
step. By applying this rule, we can determine that every derivation of a string with n symbols has exactly
27 (n-1) steps. This key observation allows us to generate all derivations that have a length of 27~ (n-1) steps.

Given a string W with a length of n, we can generate all derivations with 2°(n-1) steps. Since n is a finite
number, there are only finitely many derivations that can be generated. We then check each of these
derivations to see if they generate the desired string. If any derivation generates W, we accept it; otherwise, we
reject it. While this approach may not be the most efficient, it guarantees termination and works for any
grammar.

The above approach demonstrates that the acceptance problem for context-free grammars is decidable. By
generating all possible derivations and checking if any of them generate the desired string, we can determine
whether a context-free grammar generates a given string.

Another problem related to decidability is the emptiness problem for context-free grammars. This problem asks
whether a given grammar generates any strings at all or if the language is empty. Similar to the acceptance
problem, the emptiness problem is also decidable. An algorithm can be devised to determine if a grammar
generates any strings by checking if there are any derivations that lead to the empty string.

The study of decidability in the context of context-free languages is essential in the field of computational
complexity theory, particularly in cybersecurity. By utilizing Chomsky normal form and generating all possible
derivations, we can determine whether a context-free grammar accepts a given string or if the grammar
generates any strings at all.

In the field of cybersecurity, understanding computational complexity theory is important. One fundamental
concept in this theory is decidability, which deals with determining whether a problem can be solved
algorithmically. In the context of context-free languages, we can apply this concept to determine if a given
context-free grammar is capable of generating any strings.

To illustrate this concept, let's consider an example. Suppose we have a context-free grammar with non-
terminals S, A, B, C, and D, and terminal symbols W, X, Y, and Z. Our goal is to determine if the starting symbol
S can generate a string of terminal symbols. However, we will go a step further and determine which non-
terminals can generate a string of terminal characters.

To solve this problem, we can use a marking algorithm. The algorithm works as follows: we start by marking all
the terminal symbols in the grammar. In our example, we would mark W, X, Y, and Z. Next, we examine the
rules of the grammar and identify situations where all symbols on the right-hand side of a rule have been
marked. For instance, if we have a rule B goes to C A, and both C and A have been marked, we mark B as well.
We repeat this process until we can no longer mark anything else.

In our example, we would mark A because A goes to XYZ. Then, we would mark C because C goes to A. Finally,
we would mark B because B goes to CA. After marking all relevant symbols, we check if the start symbol S has
been marked. If it has, we conclude that the language generated by the grammar is not empty. However, if the
start symbol is not marked, we can determine that the language is empty.

The marking algorithm allows us to determine if a given context-free grammar can generate any strings of
terminal symbols. By marking all the relevant symbols and checking if the start symbol is marked, we can
determine if the language generated by the grammar is empty or not.

In the field of cybersecurity, understanding the fundamentals of computational complexity theory is important.
One important concept within this theory is decidability, which deals with the ability to determine whether a
given problem can be solved algorithmically.
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In the context of context-free languages, there are certain problems concerning their emptiness. To determine if
a context-free language is empty, we can use the concept of the start symbol. If the start symbol is not marked,
we accept that the language is empty. On the other hand, if the start symbol is marked, the language of the
grammar is not empty.

This distinction allows us to analyze and classify context-free languages based on their emptiness. By
examining the presence or absence of a marked start symbol, we can determine whether a given language is
empty or not.

To illustrate this concept further, let's consider an example. Suppose we have a context-free grammar G. We
can denote the language of this grammar as L sub G. If the start symbol of G is not marked, we conclude that L
sub G is empty. Conversely, if the start symbol is marked, L sub G is not empty.

By applying this methodology, we can systematically analyze context-free languages and decide whether they
are empty or not. This information is valuable in the field of cybersecurity as it helps us understand the
complexity of different languages and aids in developing effective security measures.

The concept of decidability plays a key role in understanding problems concerning context-free languages in the
realm of computational complexity theory. By examining the presence or absence of a marked start symbol, we
can determine the emptiness of a context-free language. This knowledge is invaluable in the field of
cybersecurity, where understanding the complexity of languages is essential for developing robust security
measures.
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LESSON: DECIDABILITY
TOPIC: UNIVERSAL TURING MACHINE

The acceptance problem for Turing machines is a fundamental concept in computational complexity theory. In
this context, we introduce the universal Turing machine, which plays a important role in understanding the
decidability of this problem.

The acceptance problem for Turing machines revolves around determining whether a given string is part of a
language. Specifically, we are interested in strings that describe both a Turing machine and a string accepted
by that Turing machine. This may seem confusing, as we have previously discussed the acceptance problem for
context-free grammars or regular languages. In those cases, we provided a Turing machine to decide the
problem. However, in the acceptance problem for Turing machines, we now have two Turing machines involved,
making it a bit more intricate.

Let's focus on the language related to the Turing machine, denoted as M. M is a representation of a Turing
machine, and if it is a valid representation and accepts a string W, then that string is considered part of the
language A TM. It is important to note that A TM is Turing recognizable but not decidable.

What does it mean for a language to be Turing recognizable but not decidable? It means that we can provide a
Turing machine to address this language. In this case, we have two Turing machines: M (the input) and another
Turing machine that determines whether M accepts W. This second Turing machine, known as the universal
Turing machine, is given the description of a Turing machine and an input string W. Its task is to determine
whether the Turing machine M would accept W.

To achieve this, the universal Turing machine simply needs to simulate M on W. If M accepts W, our algorithm
will halt and accept. If M rejects W, our algorithm will halt and reject. However, if M loops on W, our simulation
will run indefinitely, making it impossible for our algorithm to halt. This is why the acceptance problem for
Turing machines is not decidable.

The language A _TM, which deals with the acceptance problem for Turing machines, is Turing recognizable but
not decidable. We can provide a universal Turing machine that can determine whether a given Turing machine
M accepts a given string W. However, if M loops on W, our algorithm will run indefinitely, preventing us from
making a definitive decision.

A Turing machine is a theoretical model of a general-purpose computer. It consists of an infinite tape divided
into cells, a read/write head that can move along the tape, and a control unit that determines the machine's
behavior. The tape is initially blank, and the machine can read and write symbols on the tape.

The universal Turing machine is a special type of Turing machine that can simulate any other Turing machine. It
takes two inputs: the description of a target Turing machine (M) and an input string (W) for that target machine.
The universal Turing machine then runs the target machine on the input string.

If the target machine accepts the input, the universal Turing machine will also accept it. If the target machine
rejects the input, the universal Turing machine will reject it. And if the target machine enters an infinite loop,
the universal Turing machine will also enter an infinite loop.

It is important to note that there is a theoretical difference between the universal Turing machine and a
practical real-world computer. The universal Turing machine has an infinite tape, which represents unlimited
memory. In contrast, real physical computers have limited memory. While modern computers may have a large
amount of memory, it is still finite and not truly infinite.

From a practical perspective, a modern computer can be considered a universal Turing machine because it can
take an arbitrary program (the description of a Turing machine) and run it on any input. However, in a
theoretical sense, it is not exactly the same because its memory is not infinite.

In the context of decidability, the universal Turing machine is a recognizer but not a decider for the language we
are discussing. The language consists of strings that are made up of a representation of a Turing machine (the
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target machine) and an input to that target machine. The universal Turing machine runs the target machine on
the input and behaves accordingly.

If the target machine accepts the input, the universal Turing machine will accept it. If the target machine halts
and rejects the input, the universal Turing machine will also halt and accept it. And if the target machine enters
an infinite loop, the universal Turing machine will also enter an infinite loop.

Since the universal Turing machine does not always halt, it is not a decider. However, if the string MW is in the
language, the universal Turing machine will halt and accept it because the simulation of the target machine on
the input will also halt and accept it. Therefore, the universal Turing machine can recognize strings in the
language and can be considered a decider for this language.

The universal Turing machine is a theoretical model of a general-purpose computer that can simulate any other
Turing machine. It takes the description of a target machine and an input string and behaves like the target
machine would. While there is a difference between the universal Turing machine and a practical computer in
terms of memory, the practical computer can still be considered a universal Turing machine from a practical
perspective. The universal Turing machine is a recognizer but not a decider for the language we discussed, as it
does not always halt. However, it can recognize strings in the language and can be considered a decider for this
language.

** * %
. El'l'[: | © 2024 European I'I_' Certification InstlFute 107/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: DECIDABILITY
TOPIC: INFINITY - COUNTABLE AND UNCOUNTABLE

In the field of cybersecurity, understanding the concept of infinity is essential. There are two types of infinity:
countably infinite and uncountably infinite. Before delving into these types, it is important to review some basic
terminology about sets.

A set is considered finite if it has a finite size and we can easily determine the number of elements in the set.
For example, a set with 17 members is finite and we can count them. However, when dealing with sets that
have an infinite number of members, we need to be more cautious.

In the context of sets, we use the terms "domain" and "range" to refer to the sets involved in a function. If we
have a function f that maps elements from one set (the domain, denoted as set A) to another set (the range,
denoted as set B), we can say that set A is the domain and set B is the range.

Now, let's discuss the terms "one-to-one" and "onto" in relation to functions. A function is said to be one-to-one
if each element in set A is mapped to a different element in set B. In other words, there are no two different
elements in set A that are mapped to the same element in set B. On the other hand, a function is said to be
onto if every element in set B can be reached from an element in set A. This means that for every element in
set B, there is an element in set A that maps to it.

When a function is both one-to-one and onto, we have what is called a correspondence between the two sets. In
this case, every element in set A has a corresponding element in set B, and vice versa.

Now, let's move on to sets with infinite sizes. If a set has a finite size, we can simply count its elements and
conclude that it is finite. However, when dealing with sets that have an infinite number of elements, counting
becomes impossible.

Georg Cantor, a renowned mathematician, introduced the concept of comparing the sizes of infinite sets.
According to Cantor, two sets are said to have the same size if there exists a correspondence between them. In
other words, if we can find a function that establishes a correspondence between the elements of the two sets,
then we can say that they have the same size.

Additionally, we have the concept of countable sets. A set is considered countable if it either has a finite size or
if it is infinite and can be put into correspondence with the natural numbers (1, 2, 3, and so on). For example,
the set of odd numbers (1, 3, 5, 7, and so on) is countably infinite because we can establish a correspondence
between the odd numbers and the natural numbers.

To summarize, in the realm of cybersecurity and computational complexity theory, understanding the different
types of infinity and the concepts of countability and correspondence in sets is important. Countable sets can be
put into correspondence with the natural numbers, while uncountable sets have an infinite size that cannot be
counted. Establishing correspondences between sets is a fundamental tool for comparing the sizes of infinite
sets.

The concept of infinity plays a significant role in computational complexity theory, particularly when it comes to
understanding the countability of sets. In this didactic material, we will explore the concepts of countable and
uncountable sets, focusing on natural numbers, rational numbers, and irrational numbers.

Let's start by discussing the set of natural numbers. Natural numbers are the positive integers, including 1, 2, 3,
and so on. The even numbers, such as 2, 4, and so on, are not part of the set of odd numbers, but they are still
considered natural numbers. Therefore, we can have a situation where a set is both the same size as the natural
numbers and a proper subset of the natural numbers.

Moving on, let's examine the set of rational numbers. A rational number is a fraction that includes decimal
numbers that do not have repeating digits at the end. For example, 0.3 and 1/3 are rational numbers. Every
rational number can be expressed as a fraction, where both the numerator and denominator are natural
numbers. Although we should also include negative rational numbers, for simplicity, we will focus on positive
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rational numbers in this discussion. The set of rational numbers is countably infinite, and we will provide a proof
for this shortly.

Next, we will explore the set of irrational numbers. Irrational numbers include numbers like pi and the square
root of 2, whose decimal expansions contain an infinite sequence of non-repeating digits. Unlike rational
numbers, irrational numbers cannot be put into a correspondence with the set of natural numbers. Therefore,
the set of irrational numbers is uncountably infinite.

To prove that the set of rational numbers is countably infinite, we need to find a way to establish a
correspondence between the rational numbers and the natural numbers. In other words, we need to create a list
of every single rational number in such a way that every rational number is included. We will now present a
systematic way to list every rational number.

Consider an infinite table with rows and columns. Each cell in the table represents a rational number, and its
position in the table corresponds to the numerator and denominator of the fraction. For example, the cell in the
second row and third column represents the rational number 2/3. By traversing the table diagonally, we can hit
every element in the table, ensuring that every rational number is eventually included in the list.

Starting from the upper left-hand corner of the table, we move down and to the right, continuously expanding
the table. Although the table is infinite in both directions, we will never reach the right edge or the bottom edge.
However, we will hit every rational number in the process. Enumerating the rational numbers by following the
diagonal path, we can create a list that includes every rational number.

For instance, the first rational number in the list is 1/1, which is simply 1. The second rational number is 1/2,
followed by 2. We can skip duplicates by simplifying fractions. Continuing this process, we eventually list out
every rational number.

The set of natural numbers is countable, and the set of rational numbers is also countably infinite. On the other
hand, the set of irrational numbers is uncountably infinite. By understanding the countability of these sets, we
can gain insights into the computational complexity of various problems in cybersecurity.

In the field of cybersecurity and computational complexity theory, understanding the concepts of decidability,
infinity, and countable and uncountable sets is important. In this didactic material, we will explore these
fundamental concepts.

Let's begin by discussing the concept of countable infinity. Countable infinity refers to the idea that some
infinite sets can be put into a one-to-one correspondence with the set of natural numbers (1, 2, 3, ...). Asetis
said to be countably infinite if we can list its elements in a systematic way.

One example of a countably infinite set is the set of rational numbers. Rational numbers are numbers that can
be expressed as a fraction of two integers. To illustrate this, let's consider printing out the rational numbers in a
specific order. We start with 1/4, then 2/3, three halves, 4, and then 5 over 1/4 over 2. By continuing this
process, we can eventually print out every rational number. This demonstrates that the set of rational numbers
is countably infinite.

Now, let's shift our focus to the concept of uncountable infinity. Uncountable infinity refers to sets that cannot
be put into a one-to-one correspondence with the set of natural numbers. The set of irrational numbers is an
example of an uncountable infinite set. Irrational numbers cannot be expressed as fractions of two integers and
have infinite decimal expansions that never repeat.

Some familiar examples of irrational numbers include pi (approximately 3.14159) and the square root of 2.
These numbers have infinite decimal expansions without any repeating pattern. Other examples include the
constant e (approximately 2.7182) and various other irrational numbers.

To contrast irrational numbers with rational numbers, let's consider the decimal representation of 1/3, which is
0.3333... (with an infinite number of threes). We can express it as a fraction or indicate the repeating pattern by
drawing a line over the last digit. In contrast, irrational numbers cannot be expressed as fractions of whole
numbers.
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Between any two rational numbers, there exists an infinite number of irrational numbers. To illustrate this, we
can take the example of 1/3 and a rational number that is very close to it but differs at some point. By
introducing a small difference, we can create an infinite humber of irrational numbers between these two
rational numbers.

To prove that the set of irrational numbers is uncountably infinite, we can use a technique called proof by
contradiction. Assuming that there are countably infinitely many irrational numbers, we attempt to create a
correspondence between them and the set of natural numbers. However, by examining the diagonals in the
correspondence table, we can arrive at a contradiction. This technique is known as diagonalization.

Understanding the concepts of countable and uncountable infinity is essential in the field of cybersecurity and
computational complexity theory. The set of rational numbers is countably infinite, as we can list them out in a
systematic way. On the other hand, the set of irrational numbers is uncountably infinite, as there is no one-to-
one correspondence with the set of natural numbers. These concepts have significant implications in various
areas of cybersecurity and computational complexity theory.

In the study of cybersecurity and computational complexity theory, it is important to understand the concepts of
decidability, infinity, and countability of numbers. This didactic material aims to explain the fundamental
principles behind these concepts.

To begin, let's consider a scenario where we have a table of numbers. We want to determine whether the set of
irrational numbers in this table is countable or uncountable. In mathematics, a set is countable if its elements
can be put in a one-to-one correspondence with the natural numbers (1, 2, 3, ...). If not, the set is considered
uncountable.

To prove that the set of irrational numbers is uncountable, we can use a technique called diagonalization.
Diagonalization involves constructing a new number that is different from every number in the table. By doing
so, we can show that there are more numbers than can be listed in the table, thus proving the set is
uncountable.

Let's illustrate this with an example. Suppose we have a table of numbers where each row represents a different
number. We start by examining the first digit of the first number, the second digit of the second number, and so
on. Using this pattern, we can construct a new number by incrementing each digit by 1.

For instance, if the first number in the table is 3, we add 1 to it to get 4. If the second number is 4, we add 1 to
it to get 5. In the case of 9, we subtract 1 to get 8. We continue this process for each digit in the table.

The key idea here is that the new number we have constructed differs from each number in the table. It is not
equal to the first number because it differs in the first digit, nor is it equal to the second number because it
differs in the second digit, and so on. In fact, this constructed number, which has an infinite number of digits,
differs from every other number in the table.

Now, consider this constructed number. It is clearly not in the table, yet it is a valid irrational number. This
presents a contradiction because we initially assumed that we were listing all the irrational numbers in the
table. Therefore, we have proven that the set of irrational numbers is uncountable and infinite.

The concepts of decidability, infinity, and countability are fundamental in the field of cybersecurity and
computational complexity theory. By utilizing diagonalization, we can demonstrate that the set of irrational
numbers is uncountable, providing valuable insights into the nature of numbers and their properties.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: DECIDABILITY
TOPIC: LANGUAGES THAT ARE NOT TURING RECOGNIZABLE

In this material, we will discuss the concept of languages that are not Turing recognizable in the context of
computational complexity theory and cybersecurity. We have previously explored decidable languages and
languages that are Turing recognizable. However, it is important to note that there exist languages that are not
even Turing recognizable.

In the previous material, we discussed the different types of infinity, namely countably infinite and uncountably
infinite. We established that the number of Turing machines is countably infinite, which means that we can
enumerate the set of all Turing machines. In other words, we can create a list of all possible Turing machines by
generating them one after the other.

There are a couple of valid approaches to enumerating every Turing machine. One approach is to encode a
Turing machine into a string. These strings have finite lengths, and every string of ones and zeros can either
represent a valid Turing machine or be considered random garbage. By enumerating every string of ones and
zeros, we can list every possible Turing machine.

Another approach is to intelligently enumerate Turing machines by considering their specifications. A Turing
machine is defined by a set of parameters, such as the number of states, the tape alphabet, the input alphabet,
the transition function, the initial starting state, and the accept and reject states. Each of these parameters is
finite, which means that there are only finitely many possibilities for each parameter. By generating Turing
machines with different combinations of these parameters, we can enumerate all possible Turing machines.

In either case, we can conclude that the set of Turing machines is countably infinite.

Next, let's shift our focus to languages. We will consider the number of infinite length strings over zeros and
ones. It is important to note that our previous definition of strings only included finite length sequences.
However, we will now expand our definition to include infinite length strings of zeros and ones.

The set of infinite length strings over zeros and ones is uncountably infinite. This can be proven in a similar way
to proving the existence of uncountably infinite irrational numbers. We can consider an infinite length string of
zeros and ones as a number between 0 and 1. By representing this string as a binary fraction, we can establish
a one-to-one correspondence between the set of infinite length strings and the set of real numbers between 0
and 1.

Languages that are not Turing recognizable exist, and the set of Turing machines is countably infinite while the
set of infinite length strings over zeros and ones is uncountably infinite.

A binary point, or a decimal point, represents a number between zero and one. It is worth noting that a decimal
number with all nines is equal to one. In decimal representation, some rational numbers have two decimal
representations. This occurs when the number ends with a sequence of nines. Similarly, in binary
representation, if a binary number consists of all ones, it is equal to one point zero.

When considering infinite strings of binary numbers, there is an uncountably infinite number of these strings.
Each string can have an infinite length and consists of zeros and ones. To prove this, we can assume that the
set of infinite binary strings can be enumerated. In other words, we can list out every infinite length binary
string in a table. However, by running down the diagonal of this table and flipping the bits, we can create a new
binary string that differs from every other string in the table. This contradiction proves that the set of infinite
length strings over zeros and ones is uncountably infinite.

Now, let's discuss languages. If we restrict ourselves to an alphabet with only two symbols, such as 'a' and 'b’,
we can consider strings over this alphabet. Each string has a finite length and can be ordered systematically.
For example, we can list all strings of length 2 before strings of length 3 or greater and alphabetize them within
each length category. This results in a countably infinite set of strings of finite length.

A language is a subset of this countably infinite set of strings. It contains some strings and not others. By
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specifying a language with an infinite length binary string, we can fully describe the language. Each possible
string of 'a's and 'b's corresponds to a 1 or 0 in the binary string, indicating whether the string is in the language
or not.

Since there are uncountably many infinite length binary strings, the number of languages is also uncountably
infinite. This result contradicts the fact that the set of all Turing machines, and therefore the set of all Turing
recognizable languages, is countably infinite. This means that there are languages that are not Turing
recognizable.

There are an uncountably infinite number of infinite length strings over zeros and ones. Languages, which are
subsets of these strings, can be fully described by infinite length binary strings. The number of languages is
uncountably infinite, which contradicts the countably infinite set of Turing machines and Turing recognizable
languages.

In the field of computational complexity theory, one fundamental concept is the notion of decidability.
Decidability refers to the ability to determine whether a given language can be recognized by a Turing machine.
A Turing machine is a theoretical device that can simulate any algorithmic computation.

It is important to note that while there are infinitely many Turing machines, there are only countably infinitely
many Turing recognizable languages. This means that there are only a finite number of languages that can be
recognized by a Turing machine.

However, it has been proven that the set of all languages is uncountably infinite. This implies that there are
languages that cannot be recognized by any Turing machine. In other words, there exist languages that are not
Turing recognizable.

The existence of languages that are not Turing recognizable is quite remarkable. In fact, based on our
understanding of countable and uncountable infinities, it can be concluded that a vast majority of languages are
not Turing recognizable. It is important to note that making precise comparisons in terms of quantities when
dealing with uncountably infinite sets is challenging.

To summarize, there are languages that cannot be recognized by any Turing machine. These languages exist in
an uncountably infinite number. This finding highlights the limitations of Turing machines in terms of language
recognition.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: DECIDABILITY
TOPIC: UNDECIDABILITY OF THE HALTING PROBLEM

The halting problem is a fundamental concept in computational complexity theory that deals with the
decidability or undecidability of determining whether a given Turing machine will halt or not. In this didactic
material, we will provide a formal proof that the halting problem is undecidable.

To understand the halting problem, let's first define the language associated with it. The language, denoted as
ATM, consists of pairs of a Turing machine description (M) and a string (W). A string (M, W) is in ATM if M is a
valid Turing machine and if M would accept W if it were run on W. The goal is to determine whether a given
string is in this set or not.

Informally, the halting problem is undecidable because simulating a Turing machine on a given input may not
always terminate. However, we need a formal proof to establish the undecidability of the halting problem.

To prove the undecidability of the halting problem, we assume that it is decidable and then reach a
contradiction. If the halting problem is decidable, there must exist an algorithm or Turing machine, let's call it H,
that can decide it. H is a decider, meaning it will always terminate.

When applied to a specific string (M, W), H would either accept or reject it. If M accepts W, then H will accept. If
M does not accept W, it could be because M rejects W or because M loops indefinitely. In the latter case, H will
not loop and will reject.

Now, we use H to construct a new machine called D, which we refer to as the devil machine. D takes as input
the description of a Turing machine. It then calls H as a subroutine, passing the description of the Turing
machine to H. The purpose of D is to determine what the Turing machine would do if it were given a description
of itself as input.

Here comes the contradiction. If H exists and is a decider, then D should also exist. However, if we run D, we will
encounter a paradox or contradiction, indicating that D cannot exist. This contradiction leads us to conclude
that our assumption of the existence of H, the decider for the halting problem, is wrong. Therefore, the halting
problem is undecidable.

To better understand the important undecidability of the halting problem, let's again carefully consider two
machines: H and D. Machine H accepts a Turing machine and determines whether it would accept a given input.
Machine D, on the other hand, does the opposite of what H does. It applies H to a Turing machine and asks
whether that machine would accept if it were given a description of itself as input. Whatever H says, D does the
opposite.

D runs H when passed a machine and asks whether H, in turn, asks whether the machine would accept its own
description as input. If H says yes, D rejects, and if H says no, D accepts. This creates a paradox when we run D
on a description of itself. According to the definition of D, it should accept if it does not accept on input D, and it
should reject if it accepts. This contradiction arises due to the undecidability of the halting problem.

The paradox can be summarized as follows: D accepts if D does not accept on input D, and it rejects if D
accepts. This contradiction demonstrates the undecidability of the halting problem. It shows that there is no
algorithm that can determine whether a given program will halt or run forever in all cases.

This paradox highlights the limitations of computational complexity theory and the challenges in solving certain
problems. It emphasizes the importance of understanding the undecidability of the halting problem in the field
of cybersecurity.

The halting problem is a fundamental problem in computational complexity theory. It deals with determining
whether a given program will halt or run forever.

By restating this, the halting problem, which involves determining whether a given Turing machine will halt or
not, is undecidable. Our formal proof shows that there is no algorithm or Turing machine that can decide the
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halting problem. This result has significant implications in the field of cybersecurity and computational
complexity theory.

The undecidability of the halting problem demonstrates that there is no algorithm that can solve it for all
possible inputs. This has important implications for cybersecurity and highlights the limitations of computational
complexity theory.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: DECIDABILITY
TOPIC: LANGUAGE THAT IS NOT TURING RECOGNIZABLE

In the field of cybersecurity, one fundamental concept is the computational complexity theory, which involves
the study of the capabilities and limitations of computational systems. In particular, the notion of decidability
plays a important role in understanding the boundaries of what can be computed.

Decidability refers to the ability to determine whether a given input belongs to a language or not. A language is
a set of strings over a given alphabet. In the context of Turing machines, a language is said to be Turing
recognizable if there exists a Turing machine that can accept all strings in the language. On the other hand, a
language is decidable if there exists a Turing machine that can both accept strings in the language and reject
strings not in the language.

In this material, we will explore the concept of a language that is not Turing recognizable. Such a language is so
peculiar that we cannot even determine whether a given string is in the language or not. This example serves to
illustrate the limits of what can be computed.

Firstly, it is important to note that if a language is decidable, then it is Turing recognizable. This is because if we
can recognize both members of the language and also recognize a string that is not in the language, then we
can certainly recognize a string that is in the language and accept it. Additionally, we can also consider the
complement of a language, which consists of all strings that are not in the language. We can recognize the
complement language as well.

For a decidable language, when given a string, we can determine whether it is in the language (yes) or not in
the language (no). There exists a Turing machine for this language that will always halt and provide a definitive
answer. This means that we can recognize both the strings in the language and the strings in its complement.

Conversely, if a language is Turing recognizable and its complement is also Turing recognizable, then we can
conclude that the language is decidable. This means that there exists a Turing machine that can accept strings
in the language and another Turing machine that can accept strings in the complement of the language.

To illustrate the process of deciding a language, let's assume we have a Turing machine M1 that recognizes the
language L and a Turing machine M2 that recognizes the complement of L. To determine whether a given string
is in L or not, we can run M1 and M2 in parallel. If the string is in L, M1 will eventually halt and accept it. If the
string is not in L, M2 will eventually halt and accept it. In either case, one of the machines will halt and provide
an answer.

We have shown that a language is decidable if and only if it is Turing recognizable and its complement is Turing
recognizable. This means that a language is decidable if and only if both the language itself and its complement
are Turing recognizable.

In the field of cybersecurity and computational complexity theory, there is a fundamental concept called
decidability. Decidability refers to the ability to determine whether a given problem can be solved by an
algorithm or computational device. One important aspect of decidability is the notion of Turing recognizability.

Turing recognizability is a property of languages, which are sets of strings. A language is Turing recognizable if
there exists a Turing machine that, when given a string from the language as input, will eventually halt and
accept that string. In other words, a Turing recognizable language can be recognized by a Turing machine.

However, not all languages are Turing recognizable. One example is the acceptance problem for Turing
machines, also known as the halting problem. This problem asks whether a given Turing machine will halt on a
specific input. We have shown that the language of the halting problem is Turing recognizable, as there exists a
Turing machine that can recognize it.

On the other hand, we have also proven that the language of the halting problem is not decidable. A decidable
language is one for which there exists a Turing machine that can determine whether any given string is a
member of the language or not. Since we have shown that the halting problem is not decidable, it follows that it
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is also not Turing recognizable.

Now, let's consider the complement of the acceptance problem for Turing machines, denoted as ATM bar. The
complement of a language consists of all strings that are not members of the original language. Using the logic
we have just discussed, we can conclude that the complement of ATM, which is ATM bar, is not Turing
recognizable.

This means that there is no Turing machine that can always halt and accept if a given string is in ATM bar. If a
language and its complement are both Turing recognizable, then the language is decidable. However, since we
have already proven that ATM is not decidable, it follows that its complement, ATM bar, is not Turing
recognizable.

The language ATM bar is a very abstract and unusual set of strings. It is not only not decidable, but it is also not
Turing recognizable. It is difficult to imagine what this language looks like because it defies our conventional
understanding. This kind of complexity and abstractness is what makes the study of computational complexity
theory fascinating and intriguing.

It is important to note that there are infinitely many languages that fall into this category of being both
undecidable and not Turing recognizable. These languages represent a vast and diverse realm of computational
problems that cannot be solved by any algorithm or computational device.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: DECIDABILITY
TOPIC: REDUCIBILITY - A TECHNIQUE FOR PROVING UNDECIDABILITY

In this material, we will introduce a technique for proving the undecidability of certain problems in the field of
cybersecurity. This technique involves reducing one problem into another, allowing us to demonstrate that
some problems are undecidable. By reducing one problem into another, we can achieve remarkable results.

Consider two Turing machines. The question we want to answer is whether they do the same thing, i.e., if they
are equivalent and accept the same language. It turns out that this problem is undecidable. In this series of
materials, we will present the proof for this.

Another important question is whether a program always halts or if it might loop forever. This problem is also
undecidable in general. Similarly, given a particular Turing machine, determining if it accepts any string or if the
language defined by the Turing machine is empty or not is also undecidable.

To prove that a problem is undecidable, we will employ a technique known as reduction. This technique involves
reducing a hard problem into an easier problem. By solving the easier problem, we can use the solution to solve
the harder problem.

Let's illustrate this technique with an informal example. Imagine you want to fly from Portland, Oregon, on the
west coast, to Cairo, Egypt. Since there are no direct flights, this is a challenging problem. However, there are
direct flights from Portland to New York, which is an easier problem to solve. By finding a solution to the flight
from New York to Cairo, we can use the information about the direct flights from Portland to New York to solve
the harder problem.

Now, let's reverse the logic and show how we can use reduction to prove that some problems are unsolvable. If
the hard problem is known to be unsolvable, then the easier problem must also be unsolvable. If we could solve
the easy problem via reduction, we would be able to solve the harder problem. However, if we know that the
harder problem is itself unsolvable, it implies that there cannot be a solution to the easier problem.

To illustrate this reverse logic, let's assume the hard problem is to live forever, which we know to be impossible.
The easier problem might be to stop aging. If we could find a solution to stopping aging, we could solve the live
forever problem. However, since living forever is impossible, we can conclude that it is impossible to stop aging.

In our approach, we start with the known fact that the acceptance problem for Turing machines is undecidable.
This serves as our hard problem. We then consider another problem, P, and aim to prove its undecidability. We
will use a proof by contradiction to demonstrate that P is undecidable.

By employing the technique of reduction and using this proof by contradiction, we can establish the
undecidability of various problems in the field of cybersecurity. This technique allows us to tackle complex
problems by reducing them to easier problems and leveraging known results.

In the field of computational complexity theory, the concept of decidability plays a fundamental role.
Decidability refers to the ability to determine whether a given problem can be solved by an algorithm. In this
didactic material, we will explore a technique called reducibility, which is commonly used to prove the
undecidability of certain problems.

To begin, let's assume that problem P is decidable. Our objective is to prove that P is, in fact, undecidable. To do
this, we will employ a proof technique known as reduction. The first step is to identify a hard problem, which is a
problem that is already known to be undecidable. In this case, we will consider the acceptance problem for
Turing machines (ATM) as our hard problem.

The acceptance problem for Turing machines involves determining whether a given Turing machine, when
applied to a candidate string, accepts or rejects that input. It has been established that this problem is
undecidable. Our goal is to show that if we could solve problem P, we could also solve the acceptance problem
for Turing machines.
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To achieve this, we will reduce the acceptance problem for Turing machines to problem P. This means that we
will construct an algorithm that uses problem P as a subroutine to decide the acceptance problem. If problem P
were decidable, this would imply the existence of a Turing machine that can decide it.

Assuming that problem P is decidable, we can utilize its decidability to create an algorithm that decides the
acceptance problem for Turing machines. However, we know that the acceptance problem is undecidable,
leading us to a contradiction. This contradiction indicates that our initial assumption, that problem P is
decidable, is incorrect.

By following this proof technique, known as reduction, we can establish the undecidability of problem P. It is
important to note that this is the general logic behind proofs by reduction, which we will be utilizing in our study
of computational complexity theory.

The technique of reducibility is a powerful tool used to prove the undecidability of problems in computational
complexity theory. By assuming the decidability of problem P and reducing the acceptance problem for Turing
machines to P, we can demonstrate a contradiction, ultimately proving the undecidability of P.
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LESSON: DECIDABILITY
TOPIC: HALTING PROBLEM - A PROOF BY REDUCTION

The halting problem is a fundamental concept in computational complexity theory. It refers to the problem of
determining whether a given program will halt or loop forever when given a specific input. This problem can be
expressed as a language, where the language "halt TM" consists of pairs of descriptions of Turing machines and
potential inputs. A string is part of the language if the Turing machine halts on the input when run.

Recognizing elements of the language "halt TM" is undecidable, meaning that we cannot determine whether a
Turing machine will halt or loop when given a specific input. To prove this undecidability, we use the technique
of reduction. We assume that there is a Turing machine, called R, that can decide the language "halt TM". We
then use this hypothetical Turing machine to build another Turing machine, called S, that decides the
acceptance problem for Turing machines.

The acceptance problem for Turing machines is similar to the halting problem, but with the additional
requirement that the Turing machine must accept the input, not just halt. We assume that this language is
decidable, but we have already proven that it is not. If it were decidable, there would be a decider for the
acceptance problem, which we can call S. This decider works by accepting a string that consists of a description
of a Turing machine and an input. If the Turing machine, when run on the input, accepts it, the decider S will
accept the string. If the Turing machine rejects the input or loops infinitely, the decider S will reject the string.

On the other hand, we have the Turing machine R, which decides the language "halt TM". This language is
similar to the acceptance problem, but with the requirement that the Turing machine must halt, regardless of
whether it accepts or rejects the input. If a decider for this language exists, it would work by accepting a pair
consisting of a Turing machine and an input. The decider R would then determine whether the Turing machine
halts when run on the input. If it halts, the decider R accepts the pair. If it loops, the decider R rejects the pair.

Now, using the logic of our proof, we assume that the language "halt TM" is decidable. We use this assumption
to build the decider S for the acceptance problem. However, we have already proven that the acceptance
problem is undecidable. Therefore, we have reached a contradiction, and we can conclude that our initial
assumption was incorrect. The language "halt TM" is undecidable.

The halting problem is the problem of determining whether a given program will halt or loop forever when given
a specific input. This problem can be expressed as a language, and recognizing elements of this language is
undecidable. We have proven this undecidability by reducing the acceptance problem for Turing machines to
the halting problem. The acceptance problem is also undecidable, and therefore, we have reached a
contradiction, concluding that the language "halt TM" is undecidable.

In the field of computational complexity theory, one fundamental concept is the decidability of problems.
Decidability refers to the ability to determine whether a given input satisfies a specific property or condition.
One classic example of an undecidable problem is the halting problem.

The halting problem is concerned with determining whether a given Turing machine will halt (stop) or loop
indefinitely when provided with a specific input. In other words, it seeks to answer the question: "Will this Turing
machine eventually stop running?"

To prove that the halting problem is undecidable, we can use a technique called proof by contradiction. We
assume that there exists a decider for the halting problem, which we will refer to as "R." Our goal is to construct
an algorithm, which we will call "S," that can decide the acceptance problem for Turing machines.

The acceptance problem for Turing machines involves determining whether a given Turing machine accepts a
particular input. We know that a decider for the halting problem cannot exist, so if we can construct an
algorithm that assumes the existence of such a decider and leads to a contradiction, we can conclude that the
halting problem is undecidable.

The algorithm for S takes as input a pair (M, W), where M represents a Turing machine and W represents an
input. We start by using R as a subroutine and running it on the input (M, W). If R determines that M halts, S will
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accept; if R determines that M loops indefinitely, S will reject.

If R rejects and indicates that M loops, we can conclude that M does not accept the input W. This aligns with the
purpose of S as a decider. On the other hand, if R accepts, it means that M will halt on input W. Since R itself is a
decider, we don't need to worry about it looping indefinitely.

Having established that M will halt on input W based on R's response, we proceed to simulate M on W as part of
our algorithm S. We know that M will halt because R informed us of this, and when M halts, it will either accept
or reject the input. If M accepts W, S will accept; if M rejects, S will reject. In either case, we have effectively
built a decider for the acceptance problem of Turing machines.

However, we know that the acceptance problem for Turing machines is undecidable. Therefore, by constructing
algorithm S assuming the existence of a decider for the halting problem and reaching a contradiction, we have
proven that the halting problem itself is undecidable.

The halting problem, which involves determining whether a given Turing machine will halt or loop indefinitely, is
undecidable. This was demonstrated through a proof by contradiction, where we assumed the existence of a
decider for the halting problem and constructed an algorithm that led to a contradiction. This proof highlights
the limitations of computational systems and the challenges involved in determining the behavior of complex
algorithms.
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LESSON: DECIDABILITY
TOPIC: DOES A TM ACCEPT ANY STRING?

In the field of cybersecurity, one fundamental question is whether a Turing machine (TM) accepts any string at
all. This problem is known as the empty language problem, and determining its decidability is a challenging
task. In this didactic material, we will provide a proof of the undecidability of this problem using the technique of
reduction.

To formally define the problem, let's consider a TM called "empty TM." The objective is to determine whether
the language defined by this TM is empty. In other words, does the TM accept any strings? Our theorem states
that this problem is undecidable.

Now, let's outline the proof. We will assume that there exists a decider for the empty language problem, and
then use it to construct a decider for the acceptance problem of TMs. This construction involves a more complex
example of reduction. However, if we were able to construct a decider for the acceptance problem, it would lead
to a contradiction. Therefore, our assumption that the emptiness testing of TMs is decidable is false.

To better understand the proof, let's dive into the details. Our goal is to construct an algorithm that decides the
acceptance problem for TMs. This algorithm takes two inputs: a string and the description of a TM. If the TM,
when run on the input string, halts and accepts, our algorithm must also accept. Otherwise, it must reject.

The algorithm consists of two steps. First, we modify the given TM, which we'll call M, to create a modified
machine, M'. It's important to note that we are not running the TMs, but rather working with their descriptions.
The algorithm, denoted as S, takes M and W as inputs, where W is a fixed string.

In the construction of M', we introduce an input variable X. M' rejects all input strings X that do not exactly
match W. If the input to M' is not equal to W, it is immediately rejected. The only possibility for acceptance is
when the input X is equal to W. In this case, M' may or may not accept W.

If M' accepts W, the language defined by M' consists of only one string, which is W itself. On the other hand, if M
does not accept W, the language defined by M' is empty, meaning it does not accept any strings.

To summarize the algorithm for M', it first compares the input on the tape to W. If they are not equal, it rejects
the input. If they are equal, it includes M as a subroutine and proceeds accordingly.

The undecidability of the empty language problem has been proven using the technique of reduction. This
problem asks whether a TM accepts any strings at all, and our theorem states that it is undecidable. By
assuming the existence of a decider for the empty language problem and constructing a decider for the
acceptance problem, we arrive at a contradiction. Therefore, the assumption of the emptiness testing of TMs
being decidable is false.

In the field of computational complexity theory, there is a fundamental concept known as decidability.
Decidability refers to the ability to determine whether a given problem can be solved by an algorithm. In the
context of cybersecurity, one important problem is to determine whether a Turing machine (TM) accepts any
string.

To understand the concept of decidability, let's consider an algorithm called "s" that constructs a new Turing
machine, which we'll call M prime. The algorithm takes two inputs: the description of a Turing machine M and a
string X. The goal of algorithm s is to decide whether M accepts any string.

The algorithm works as follows: first, it checks if the input string X is equal to a predefined string W. If X is not
equal to W, the algorithm immediately rejects. However, if X is equal to W, the algorithm passes control to M by
simulating it on X. In other words, it constructs M prime by adding the states of M to it, along with some
additional states for the initial check.

If M accepts X, then M prime will also accept X because we are simply simulating M. Conversely, if M rejects X or
loops indefinitely, M prime will reject or loop as well. This is because M prime inherits the behavior of M.
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The algorithm s consists of two steps. In step one, it constructs M prime by adding the states of M to it and
performing an initial check. In step two, the algorithm uses a hypothetical decider, denoted as R, to determine
whether the language of M prime is empty or not. If R accepts, it means that the language of M prime is empty,
indicating that M does not accept any string. On the other hand, if R rejects, it means that the language of M
prime is not empty, implying that M accepts at least one string.

The important point here is that we assume the existence of the decider R, which can determine whether a
language is empty or not. However, it is known that such a decider cannot exist. This leads to a contradiction,
as we have shown that if R exists, we can decide whether a Turing machine accepts any string. Therefore, the
conclusion is that testing for emptiness of a Turing machine is undecidable.

The concept of decidability in cybersecurity involves determining whether a Turing machine accepts any string.
Through the analysis of algorithm s, we have shown that testing for emptiness of a Turing machine is
undecidable, meaning that there is no algorithm that can solve this problem in general.
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LESSON: DECIDABILITY
TOPIC: COMPUTABLE FUNCTIONS

A computable function is defined as any function that can be computed by a Turing machine. Turing machines
take a string of symbols as input and run until they halt, leaving a string of symbols on the tape. In other words,
computable functions map one string to another string. The domain of a computable function is a finite
sequence of symbols, and the range is also a finite sequence of symbols.

When a Turing machine is given an input X on the tape, it runs and always halts, leaving the result of the
function on the tape. The concept of acceptance or rejection is not of primary concern here. It is possible to
modify a Turing machine to always accept by making certain adjustments. The important aspect to note is that
there exists a Turing machine that will always halt if a function is computable.

If a function is computable, there is a Turing machine that can compute it. This Turing machine, when given an
input X on the tape, will run, always halt, and leave the output f(X) on its tape.
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LESSON: DECIDABILITY
TOPIC: EQUIVALENCE OF TURING MACHINES

In the field of cybersecurity, one fundamental concept is the computational complexity theory, which deals with
the analysis of the resources required to solve computational problems. One important aspect of this theory is
the concept of decidability, which refers to the ability to determine whether a given problem can be solved by
an algorithm. In this didactic material, we will focus on the decidability of the equivalence of Turing machines.

To begin, let's define the language that represents the equivalence of Turing machines. This language is
undecidable, meaning that there is no algorithm that can determine whether two Turing machines accept the
same set of strings. The equivalence of Turing machines is defined as follows: given the description of two
Turing machines, we want to determine if the language described by the first Turing machine is the same as the
language described by the second Turing machine.

The undecidability of this language can be understood by considering the process of running the two Turing
machines in parallel and trying all possible inputs. If we find an input that is accepted by one Turing machine
and rejected by the other, we can conclude that they are not equivalent. However, if every string is accepted or
if we cannot find any string that is rejected, we would have to continue searching indefinitely, as there is no
guarantee that we will ever find a counterexample. Therefore, the language of equivalence of Turing machines
is undecidable.

In simpler terms, this result implies that it is impossible to compare the functionality of two programs or
algorithms in general. While there may be cases where we can quickly determine that two programs are
different or prove that they are the same (e.q., if the descriptions of the Turing machines are identical), there is
no algorithm that can always decide whether two programs are equivalent. Any algorithm attempting to do so
may fail to halt, making it impractical.

To prove the undecidability of the equivalence of Turing machines, we can reduce the emptiness problem for
Turing machines (ETM) to the equivalence problem for Turing machines (EQ TM). In a previous video, we
showed that the emptiness problem for Turing machines is undecidable. By reducing ETM to EQ TM, we
establish the undecidability of EQ TM.

The reduction of one problem to another is denoted by the symbol "->", indicating that we can transform one
problem into another using a computable algorithm. A computable algorithm is one that can be executed by a
Turing machine and always halts. In this proof, we assume the existence of a decider algorithm R for the
equivalence of Turing machines and show that if R exists, we can construct a decider algorithm S for the
emptiness problem of Turing machines. However, since we know that the emptiness problem is undecidable, S
cannot exist.

The algorithm S takes as input the description of a Turing machine and determines whether the language
accepted by that Turing machine is empty or not. To test for emptiness, we can create a Turing machine, MO,
that always rejects any input. This Turing machine has only one state, which is also the initial state, and an
empty transition function. Therefore, whatever is on the tape, the Turing machine will always reject it.

By assuming the existence of a decider algorithm R for EQ TM, we can construct S, which would decide the
undecidable problem of ETM. However, since ETM is known to be undecidable, this contradicts the assumption
that R exists. Therefore, we conclude that EQ TM is undecidable.

The equivalence of Turing machines is an undecidable problem, meaning that there is no algorithm that can
determine whether two Turing machines accept the same set of strings. This result has significant implications
for the field of cybersecurity and computational complexity theory, as it highlights the limitations of comparing
the functionality of different programs or algorithms.

Decidability refers to the ability to determine whether a certain property holds for a given input or not. In the
context of Turing machines, decidability is closely related to the equivalence problem.

To carefully restate the equivalence problem, it asks whether two Turing machines are equivalent, meaning that
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they produce the same output for every input. To illustrate this problem in even more details, let's now consider
2 Turing machines, M and MO. MO is a simple Turing machine that rejects everything, and its language is the
empty set. Our goal is to design an algorithm, let's call it R, that can decide whether M and MO are equivalent.

To solve this problem, we assume that M is on the tape and then write a description of MO directly after that. We
then run algorithm R on the tape to determine if the two Turing machines are equal. However, it turns out that
the equivalence of Turing machines is an undecidable problem.

To prove this, we assume the existence of an equivalence tester called R. From R, we construct another
algorithm, let's call it S, to decide the emptiness test for Turing machines. However, we know that we cannot
have a decider for the emptiness test. Therefore, the existence of R is impossible.

It's important to note that algorithms R and S are represented by Turing machines themselves. This proof shows
that comparing two algorithms to see if they perform the same task is undecidable. This has implications in the
world of proving programs to be correct.

In software engineering, when writing a program, the first step is to have an idea of what the program should
do. Then, a specification is created to define the program's behavior. This specification can be informal,
requiring discussions and meetings to gather requirements. However, it can also be formal, using languages like
first-order predicate logic or other formal specification languages.

Once a formal specification is established, the next step is to translate it into code using a programming
language like Java or C. The code can be verified through checks and compilation. However, comparing the code
to the formal specification to ensure correctness is an undecidable problem in general.

Although formal verification can be done in specific cases, in general, it is undecidable to determine if the code
matches the formal specification. This means that automating the process of verifying code correctness is
challenging. Despite the undecidability of the equivalence problem for Turing machines, the practical problem of
writing programs and ensuring their proper functionality remains.

Understanding the decidability of problems in computational complexity theory, particularly the equivalence
problem for Turing machines, is essential in the field of cybersecurity. While comparing two algorithms to
determine equivalence is undecidable, it is still important to strive for correctness when writing programs.

In the field of cybersecurity, ensuring that programs work correctly is of utmost importance. One approach to
achieving this is by having two independent teams work on the same program. The first team looks at the
formal or informal specification of the program and writes code to implement the required functionality.
Simultaneously, the second team also examines the specification and develops their own implementation. The
purpose of this duplication of work is to compare the two implementations and verify that they are doing the
same thing.

Ideally, we would like to prove that these two algorithms are equivalent. However, as we have seen in
comparing algorithms, this problem is undecidable, meaning that it cannot be automated in all cases. Instead,
we aim to prove that the two implementations are identical and perform the same tasks. This introduces a
search problem, as we need to find a proof. There are proof systems that can assist in searching for proofs,
although they may not always be successful due to the undecidability of the problem.

Even though proving the equivalence of the two implementations may not always be possible, the process of
searching for a proof is valuable. If we can prove that the implementations are identical, it provides
reassurance. However, if we encounter difficulties in finding a proof, it may indicate that the implementations
are not identical. Additionally, the search process may uncover ambiguities or uncertainties in the specification.
This is particularly relevant when the specification is not formal, as it may reveal a lack of detail in the
specification itself.

The process of searching for a proof of equivalence between two implementations or between an
implementation and a formal specification is a useful exercise. It helps ensure that programs work correctly by
either confirming their equivalence or identifying potential issues in the specification. While the problem of
comparing algorithms is undecidable, the search for a proof can provide valuable insights.

** * %
. El'l'[: | © 2024 European I'I_' Certification InstlFute 125/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: DECIDABILITY
TOPIC: REDUCING ONE LANGUAGE TO ANOTHER

In the field of cybersecurity and computational complexity theory, one fundamental concept is the idea of
reducing one language to another. By using this technique, we can prove various properties and relationships
between problems. It is important to note that problems can be described as languages, and solving a problem
is equivalent to determining whether a given string is a member of a language or not.

To denote the reduction of one language, say A, to another language, say B, we use the notation A =m B. This
notation signifies that there exists a computable function, denoted as f, such that for every input X, if X is a
member of A, then f(X) is a member of B, and if X is not a member of A, then f(X) is not a member of B.

To better understand this concept, let's visualize it using a diagram. Imagine each dot represents a string, and
these dots can either belong to language A or not. Similarly, there are dots that belong to language B or not.
The reduction function, f, maps elements from A to B and elements not in A to elements not in B. In other words,
it transforms strings that are in A to strings that are in B, and strings not in A to strings not in B.

Using this technique, we can make several important conclusions. If A =m B and A is undecidable (cannot be
solved by an algorithm), then we can conclude that B is also undecidable. This result can be illustrated by
considering the acceptance problem for Turing machines and the emptiness problem for Turing machines. By
reducing the acceptance problem to the emptiness problem, we can show that if the acceptance problem is
undecidable, then the emptiness problem must also be undecidable.

Conversely, if A =m B and we know that B is decidable (can be solved by an algorithm), then we can conclude
that A is also decidable. This means that if we have an algorithm to decide B, we can create an algorithm to
decide A. We simply apply the reduction function to a potential candidate in A, and then check whether the
resulting string is in B or not.

This technique can also be applied to the concept of recognizability. If A =m B and B is Turing recognizable,
then A must also be Turing recognizable. This means that if we have an element and we want to determine if it
belongs to A, we can reduce it to an element in B and check if that element is in B. If B is Turing recognizable,
our algorithm will eventually accept the element, indicating that it was indeed a member of A.

Conversely, if A is not Turing recognizable and we find a reduction from A to B, we can conclude that B is also
not Turing recognizable. This demonstrates how reducibility can be used to prove properties such as decidability
or recognizability of languages.

The concept of reducing one language to another is a powerful tool in computational complexity theory. By
establishing reductions, we can prove properties such as decidability, undecidability, Turing recognizability, or
non-Turing recognizability for languages. This technique allows us to explore the relationships and
characteristics of different problems and languages in the field of cybersecurity.
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LESSON: DECIDABILITY
TOPIC: THE POST CORRESPONDENCE PROBLEM

The Post Correspondence Problem is a fundamental problem in computational complexity theory. In this
problem, we are given a set of tiles, each with a top and bottom string. The goal is to find a sequence of tiles
such that the top and bottom strings of the sequence are equal.

To better understand the problem, let's consider an example. Suppose we have four different types of tiles: A
over B, B over C, C over A, and C. We can use each tile as many times as we want. The goal is to find a
sequence of tiles where the top and bottom strings are the same.

For instance, we can use the A over B tile twice, the B over C tile once, the C over A tile once, and the C tile at
the end. The top string reads "ABCaaaaABC" and the bottom string reads "ABCaaaaABC". Therefore, this is a
solution to the problem.

The interesting aspect of the Post Correspondence Problem is that it is undecidable. This means that there is no
algorithm that can determine whether a solution exists for any given set of tiles. This is surprising because the
problem seems simple, and one might expect that trying all possible combinations of tiles would eventually lead
to a solution. However, it turns out that this is not the case.

Here's another example of the Post Correspondence Problem. This time, we have three tiles: Tile 1 with a top
string of "1" and a bottom string of "111", Tile 2 with a top string of "10111" and a bottom string of "10", and
Tile 3 with a top string of "101" and a bottom string of "01". Our goal is to find a sequence of tiles where the top
and bottom strings match.

By examining different sequences, we can find that the sequence "211" is a solution. This sequence consists of
Tile 2, Tile 1, and Tile 3. The top string reads "101111011" and the bottom string reads "101". Therefore, this is
a solution to this instance of the problem.

The Post Correspondence Problem is a fascinating problem because it is undecidable despite its seemingly
simple nature. It highlights the limitations of algorithms in solving certain types of problems.

In the field of cybersecurity, one fundamental concept is computational complexity theory, which deals with the
study of the resources required to solve computational problems. One important aspect of computational
complexity theory is decidability, which refers to the ability to determine whether a given problem has a
solution or not.

The Post Correspondence Problem (PCP) is a classic example in computational complexity theory that illustrates
the concept of decidability. The PCP involves a set of tiles, each containing a string on the top and a string on
the bottom. The goal is to arrange the tiles in a sequence such that the concatenation of the top strings
matches the concatenation of the bottom strings.

To better understand the PCP, let's consider an example. Suppose we have three tiles labeled as tile 1, tile 2,
and tile 3. Tile 1 has the string "110101" on the top and "101" on the bottom. Tile 2 has the string "101" on the
top and "011" on the bottom. Tile 3 has the string "101" on the top and "011" on the bottom.

To determine if a solution exists for this instance of the PCP, we need to analyze the possible sequences of tiles.
Starting with tile 1, we can follow it with either tile 1, tile 2, or tile 3. Let's examine each possibility.

If we start with tile 1 and then follow it with tile 1, we can see that the strings match up to the fourth position,
but then we have a mismatch. Therefore, a solution cannot start with tile 1 followed by tile 1.

Next, let's consider starting with tile 1 and then following it with tile 2. In this case, the strings do not match at
the third position, so a solution cannot exist that starts with tile 1 and tile 2.

Finally, if we start with tile 1 and follow it with tile 3, we find that the strings match perfectly. This suggests that
a solution, if it exists, must begin with tile 1 followed by tile 3.
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Continuing with tile 3, we observe that it matches the current string. However, if we keep using tile 3, we would
end up with an infinite sequence. Therefore, using tile 3 indefinitely is not a valid solution.

Now, let's consider the possibility of using tile 2 in the sequence. We can see that tile 2 starts with a zero, which
does not match the current string. Hence, tile 2 cannot be used in this instance.

Similarly, if we consider using tile 1 after tile 3, we encounter a mismatch between the top and bottom strings.

By analyzing all the possibilities, we can conclude that only tile 3 can be used from this point onwards. However,
using tile 3 indefinitely would result in an infinite sequence, which is not a valid solution. Therefore, we can
deduce that there is no finite sequence of tiles that can solve this instance of the PCP.

This instance serves as an example to demonstrate that the Post Correspondence Problem is undecidable in
general. Although we were able to prove that this particular instance has no solution, in general, it is impossible
to determine whether a given instance of the PCP has a solution or not.

The Post Correspondence Problem is a fundamental problem in computational complexity theory that illustrates
the concept of decidability. While we were able to prove that a specific instance of the PCP has no solution, in
general, it is undecidable. This highlights the complexity and challenges involved in solving computational
problems.
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LESSON: DECIDABILITY
TOPIC: UNDECIDABILITY OF THE PCP

In the previous material, we discussed the Post Correspondence Problem (PCP) and its undecidability. In this
material, we will present a proof to support the claim that the PCP is indeed undecidable. Before we begin, let's
establish a few definitions.

Firstly, we need to understand the concept of a configuration in a Turing machine. A configuration represents
the state of a Turing machine during its computation. At any given point in time, the Turing machine is in a
specific state, such as q7. Additionally, the non-blank portion of the tape contains symbols, and the tape head is
positioned over one of the cells or symbols. This entire state can be represented by a configuration string,
where the symbols on the tape are listed, and the state is inserted directly before the symbol where the tape
head is positioned.

During a computation, the Turing machine moves from one configuration to the next. Each configuration
represents a step in the computation. At the end of the computation, the Turing machine halts in either an
accepting state or a rejecting state. An accepting computation history is a sequence of configurations, starting
from the initial configuration and ending with the Turing machine in an accepting state. Each step in the
computation follows the rules of the Turing machine operation. Similarly, a rejecting computation history follows
the same idea, but the last configuration shows a rejecting state instead of an accepting state. A computation
history is a finite sequence of configurations. If the Turing machine does not halt, the sequence of configurations
would be infinite, and we say that there is no computation history.

For deterministic Turing machines, there is at most one history for a given input. However, for non-deterministic
Turing machines, there can be multiple histories corresponding to different branches in the computation. The
non-deterministic choices can lead to different configurations and computation histories. In this material, we will
assume that our Turing machine is deterministic, meaning that for a particular input, there is either an
accepting history, a rejecting history, or no history if the machine loops.

Now, let's focus on the main theorem we are trying to prove - the undecidability of the Post Correspondence
Problem (PCP). This proof involves a reduction from the acceptance problem for Turing machines to the PCP. We
will demonstrate how we can use Turing machines and the acceptance problem to prove the undecidability of a
problem that seems different from a Turing machine.

Recall that if a string is an element of the acceptance problem for a Turing machine, it means that when the
Turing machine computes on that string, it accepts. Given a specific instance of the acceptance problem,
represented by a Turing machine M and a string W, if that instance is part of the language (meaning it is
accepted by the Turing machine), it implies that there exists a computation history that describes the
computation of M on W. This computation history is a finite sequence of configurations.

To prove the undecidability of the PCP, we will encode a given instance of the acceptance problem (Turing
machine M and string W) into an instance of the PCP. The encoding will be done in such a way that there is a
solution to the PCP instance if and only if there is an accepting computation history for the given instance of the
acceptance problem. The concept of computation histories will play a important role throughout this proof.

This material has introduced the concept of configurations in Turing machines and discussed the idea of
computation histories. We have also outlined the proof strategy for showing the undecidability of the PCP by
reducing it to the acceptance problem for Turing machines. By encoding a given instance of the acceptance
problem into an instance of the PCP, we aim to establish a relationship between the existence of an accepting
computation history and a solution to the PCP instance.

The undecidability of the Post Correspondence Problem (PCP) can be proven through a reduction from the
acceptance problem for Turing machines. In order to understand this proof, let's first review the details of the
PCP and Turing machine configurations.

The PCP involves a collection of tiles or dominoes, which can be represented in different ways. One
representation is similar to a traditional domino, with symbols on the top and bottom. Another representation
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uses brackets, with symbols in columns. The goal is to find a solution where the symbols on the top, when
strung together, form the same string as the symbols on the bottom.

On the other hand, Turing machine configurations consist of tape symbols with an embedded state, where the
head position is assumed to be directly to the right of the state. A computation history is represented as a
sequence of configurations, separated by a special symbol (in this case, the pound sign). The acceptance
problem aims to find an accepting history, where the last configuration contains the accepting state.

To prove the undecidability of the PCP, we need to reduce the acceptance problem for Turing machines into an
instance of the PCP. This means that given a Turing machine M and an input string W, we must show how to
construct a collection of tiles that represents an instance of the PCP.

In our example, let's assume the input string W is "101". We start by creating a collection of tiles, with one
special starting tile that represents the initial configuration. This starting tile has a pound sign on the top and a
pound sign followed by the input string W on the bottom.

Next, we create additional tiles based on the Turing machine M and the input string W. Each tile corresponds to
a possible configuration of the Turing machine, with the symbols on the top and bottom representing the tape
symbols and states. The symbols on the top of each tile must match the symbols on the bottom of the previous
tile, ensuring that the computation history is valid.

By constructing this collection of tiles, if we can find a solution to the PCP instance, we have also found an
accepting computation history for the Turing machine M with input string W. This proves that M will accept W.

The undecidability of the PCP can be proven through a reduction from the acceptance problem for Turing
machines. By constructing a collection of tiles that represents an instance of the PCP based on a given Turing
machine and input string, we can show that finding a solution to the PCP instance is equivalent to finding an
accepting computation history for the Turing machine. This establishes the undecidability of the PCP.

In computational complexity theory, the study of the decidability and undecidability of problems is important.
One problem that falls into this category is the Post Correspondence Problem (PCP). The PCP involves finding a
solution to a specific type of string matching problem.

To understand the PCP, let's first examine the concept of computation histories. In a computation history, a
number of configurations are separated by pound signs (#). Each configuration consists of a state and a tape
content. For example, a configuration might indicate that we are in state qO0 with the tape content being 101.

Now, let's assume we have a Turing machine with a transition that moves from state q0 to g4 when it reads al,
replaces it with al, and moves the tape head to the right. To represent this transition, we create a tile that looks
like this:

1. |q0 1
2. |q4 1

In this tile, the top part represents the previous configuration, and the bottom part represents the next
configuration. The tile indicates that if the machine is in state g0 and reads al, it should transition to state g4,
move to the right, and write al.

To construct the next configuration, we align the bottom of the tile with the corresponding part of the string. By
using tiles that copy over the symbols from the previous configuration, we can build the next configuration. This
process continues until we reach the desired configuration.

Now, let's consider a Turing machine with states g4, g5, and g7, and a few transitions. We want to construct an
instance of the PCP using this Turing machine. To do so, we create tiles that represent each transition. For
example, if a transition reads a 0, replaces it with a 1, and moves to the right, we create a tile like this:

1. jg4 O
2. /g5 1
* X %
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Similarly, if a transition reads a 1, replaces it with a 0, and moves to the left, we create a tile like this:

1. /g5 1
2. 194 0

By using these tiles, we can construct the computation history from one configuration to another. Each tile
matches the previous configuration and adds new information to the next configuration.

To create an instance of the PCP, we generate a set of tiles based on the transitions in the Turing machine and
the initial input string. Additionally, we create a special starting tile that represents the initial state and string.
This starting tile is important for solving the PCP.

The PCP involves finding a solution to a string matching problem by constructing a computation history using
tiles that represent transitions in a Turing machine. By matching the previous configuration and adding new
information, we can build the next configuration. The PCP is an example of a problem in computational
complexity theory that falls into the category of undecidable problems.

Let's again carefully explore the undecidability of the Post Correspondence Problem (PCP). As mentioned, the
PCP involves a set of tiles, each containing two strings, a "top" string and a "bottom" string. The goal is to
arrange these tiles in such a way that the concatenation of the top strings matches the concatenation of the
bottom strings. However, determining whether a solution exists for a given set of tiles is undecidable.

To better understand this, let's examine the process of transforming a Turing machine into a set of tiles. Each
transition in the Turing machine corresponds to a tile. For transitions that move the tape head to the right, we
create a tile that replaces a symbol with another symbol and moves to the right. Similarly, for transitions that
move the tape head to the left, we create a tile that replaces a symbol and moves to the left.

In order to cover all possible symbols in the tape alphabet, we create a tile for each symbol. Additionally, we
need tiles to copy the rest of the tape, including the pound signs. These tiles ensure that the Turing machine
can properly transition from one configuration to the next.

To illustrate the usage of these tiles, let's consider a specific example. Suppose we have a Turing machine with
transitions from state g4 to g5 and then to q7. We can use the corresponding tiles to change the symbols on the
tape and move the tape head accordingly. By following a sequence of configurations, we can observe the legal
and correct computation history.

However, simply going from one configuration to the next is not sufficient for an accepting computation history.
We also need to ensure that the top string and the bottom string of the tiles match. To achieve this, we
introduce special tiles that allow the accept state to "eat" the symbols on the tape. These special tiles are
designed to eliminate all symbols except for the accept state.

For the accept state, we create specific tiles for each symbol in the alphabet. These tiles effectively remove all
other symbols on the tape, leaving only the accept state. By carefully arranging these tiles, we can achieve the
desired accept state.

The undecidability of the PCP in computational complexity theory is a significant concept in cybersecurity. By
transforming a Turing machine into a set of tiles, we can understand how the computation history progresses.
However, achieving an accepting computation history requires additional special tiles to ensure that the top and
bottom strings of the tiles match.

In the field of computational complexity theory, an important concept to understand is the decidability and
undecidability of problems. One such problem is the Post Correspondence Problem (PCP). The PCP asks whether
a given set of string pairs can be arranged in a sequence such that the concatenation of the first strings
matches the concatenation of the second strings.

To demonstrate the undecidability of the PCP, we will show a reduction from the acceptance problem for Turing
machines. The acceptance problem for Turing machines is the problem of determining whether a given Turing
machine accepts a given input string.
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Let's assume we have a Turing machine M and an input string W. We want to determine whether M accepts W.
To do this, we will encode the Turing machine and the input string into an instance of the PCP.

We start by creating a set of tiles, each representing a configuration of the Turing machine. Each tile consists of
three parts: a symbol to the left of the accept state, the accept state itself, and a symbol to the right of the
accept state.

We can use these tiles to represent the computation history of the Turing machine. For example, if the tape
contains "1 0 accept state 1 1", we can use a tile with a "1" to the right of the accept state. This tile allows the
accept state to "eat" the symbol to its right, eliminating it from the configuration.

Similarly, we can use other tiles to allow the accept state to "eat" symbols to its left and right. By applying these
tiles repeatedly, we can eventually eliminate all symbols except the accept state itself.

In the final step, we have a configuration with only the accept state and a single symbol to its left. We use a
special tile, represented as "q accept # # over #", to copy the "#" symbol to the right. This creates a
configuration that contains only the accept state between two "#" symbols.

Finally, we add one more tile, represented as "# # over #", to complete the match. This tile ensures that the
accept state is matched with the "#" symbols on both sides.

If we can reach this final configuration using the PCP, it means that there exists a legal accepting computation
history for the Turing machine M on input string W. Therefore, M accepts W.

On the other hand, if there is no solution to the PCP instance, it means that there is no accepting computation
history for M on W. In other words, M does not accept W.

However, it is important to note that the acceptance problem for Turing machines is undecidable. This means
that there is no algorithm that can always determine whether a Turing machine accepts a given input string.
Therefore, we have proven that the problem of finding a solution to the PCP is also undecidable in general.

The undecidability of the PCP demonstrates the limitations of computation and the existence of problems that
cannot be solved algorithmically. While we can find solutions to specific instances of the PCP, the general
problem remains undecidable.
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TOPIC: LINEAR BOUND AUTOMATA

Linear Bounded Automata (LBAs) are a type of computational model that is similar to Turing machines but with
a small constraint on the tape. The tape in LBAs is limited to the size of the input, meaning that the tape head is
not allowed to move off the end of the tape. In contrast, Turing machines have an unlimited tape in one
direction.

LBAs are not as powerful as Turing machines, but they are still quite powerful. Despite the limitation on the tape
size, LBAs can compute a wide range of problems. In fact, LBAs can be more powerful than they initially appear.
One important aspect to note is that the tape alphabet in LBAs can be larger than the input alphabet. This
means that there can be additional symbols in the tape alphabet that are not part of the input. These additional
symbols can be used to store more information on the tape, even though the tape is limited in length.

For example, if the input alphabet consists of just zeros and ones, the tape alphabet can have additional
characters that allow for storing more information. By increasing the tape alphabet, the amount of information
that can be stored in each cell of the tape is increased. Alternatively, instead of increasing the tape alphabet,
the machine can be restricted to using only a small portion of the tape. This restriction is where the name
"linear bounded automaton" comes from.

The size of the tape in LBAs can be limited to a linear function of the input size. For example, if the input size is
two symbols, the tape size can be limited to six symbols. This limitation is referred to as the "working memory"
and is linear in the size of the input. Changing the definition of LBAs to restrict the tape size to a linear function
of the input size does not add any more power to the model.

Similar to Turing machines, LBAs have an acceptance problem. Given a machine description and a string, we
want to determine if the machine accepts the string. This problem is decidable for LBAs, which means that there
is an algorithm that can determine whether a given LBA accepts a given string. This is in contrast to Turing
machines, where the acceptance problem is undecidable.

Linear bounded automata are computational models that are similar to Turing machines but with a limitation on
the tape size. Despite this limitation, LBAs are still powerful and can compute a wide range of problems. The
tape alphabet in LBAs can be larger than the input alphabet, allowing for more information to be stored on the
tape. The size of the tape can be limited to a linear function of the input size, which does not add any more
power to the model. The acceptance problem for LBAs is decidable, meaning that there is an algorithm to
determine whether a given LBA accepts a given string.

Linear bounded automata are a type of computational model that are less powerful than Turing machines but
still highly capable. In order to understand the concept of decidability for linear bounded automata, we need to
consider the number of distinct configurations that can be created with these machines.

A linear bounded automaton consists of a finite number of states, a tape alphabet, and a tape of finite length.
The number of states is represented by Q, the size of the tape alphabet is represented by G, and the length of
the tape is represented by N. With these parameters, we can determine the number of distinct configurations
that can be created.

The formula for calculating the number of distinct configurations is Q times N times G to the N. This means that
there are Q different states, N possible positions for the head on the tape, and G possible symbols that can be
written on each cell of the tape. By multiplying these values together, we obtain the total number of distinct
configurations.

Although this number may be extremely large, it is still finite. For example, if we have a tape alphabet with 26
symbols (such as the English alphabet) and a tape limited to 1000 cells, the number of distinct configurations
would be 26 to the power of 1000. This number is so incredibly large that it is beyond any practical realization in
the real world. However, it is still a finite number.

The important point to note is that there is a finite number of distinct possible configurations for a linear
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bounded automaton. Unlike Turing machines, where the tape can grow infinitely, the tape of a linear bounded
automaton is limited to a linear function of the length of the input. This limitation allows us to bound the size of
the tape and, consequently, the number of distinct possible configurations that the machine can be in during
any computation.

Now, let's discuss the decidability of the acceptance problem for linear bounded automata. The acceptance
problem refers to determining whether a given linear bounded automaton, when run on a specific input, will
accept that input.

To show that the acceptance problem for linear bounded automata is decidable, we can sketch out a proof. The
language associated with the acceptance problem is defined as a set of strings, where each string consists of
two parts: the description of a linear bounded automaton and an input to that automaton. The linear bounded
automaton, when run on the input, should accept it.

To decide whether a string is a member of this language, we can simulate the linear bounded automaton
described in the string on the given input. Unlike Turing machines, linear bounded automata do not necessarily
terminate. They can accept, reject, or loop indefinitely.

To address the problem of looping, we can observe that if the machine ever enters a configuration that it has
been in before, it will loop forever. Each configuration describes the entire state of the machine. If the machine
enters a configuration that it has already encountered in a previous computation, it will repeat the same actions
as before and continue looping.

Since there are only finitely many possible configurations, if the simulation goes on for a long enough time, it
will eventually reenter a configuration it has been in before. This implies that if the simulation continues for a
certain number of steps (Q times N times G to the N), it must be looping. At this point, we can stop the
simulation and conclude that the linear bounded automaton will never accept the input. Therefore, we can
reject the string.

By running the simulation for a finite number of steps, we can determine whether the linear bounded automaton
will accept or reject the input. This shows that the acceptance problem for linear bounded automata is
decidable.

Linear bounded automata are powerful computational models that have a finite number of distinct
configurations. The acceptance problem for linear bounded automata is decidable, meaning we can determine
whether a given linear bounded automaton will accept a specific input. Linear bounded automata are not as
powerful as Turing machines, but they still have significant computational capabilities.

To summarize, in the field of computational complexity theory, there are certain problems that can be decided
not only by a Turing machine but also by a linear bounded automaton. A linear bounded automaton is a
computational model that has a limited amount of memory and is more restricted than a Turing machine.

One of the problems that can be decided by a linear bounded automaton is the acceptance problem for
deterministic finite state automata. This problem involves determining whether a given deterministic finite state
automaton accepts any input string. Similarly, the acceptance problem for context-free grammars can also be
decided by a linear bounded automaton. This problem involves determining whether a given context-free
grammar accepts any input string.

Another problem that can be decided by a linear bounded automaton is the parsing problem. This problem
involves determining whether a given grammar accepts a given input string. In other words, given a grammar
and a string, we need to determine if the grammar accepts the string. This computation does not require the full
power of a Turing machine and can be done using a linear bounded automaton.

These are just a few examples of problems that can be decided by a linear bounded automaton. It is important
to note that while these problems can also be decided by a Turing machine, they do not require the full power
of a Turing machine. A linear bounded automaton is sufficient to decide these problems.

The field of computational complexity theory encompasses various problems that can be decided by a linear
bounded automaton. These problems include the acceptance problem for deterministic finite state automata,
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the acceptance problem for context-free grammars, and the parsing problem. By understanding the capabilities
of a linear bounded automaton, we can gain insights into the complexity of these problems.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: RECURSION
TOPIC: PROGRAM THAT PRINTS ITSELF

In this didactic material, we will discuss the concept of recursion in the context of computational complexity
theory and its application to cybersecurity. Specifically, we will explore the idea of a program that can print
itself, highlighting the limitations and possibilities of such a program.

To begin, let's consider the question of whether we can truly know ourselves, specifically in terms of the human
brain. The human brain consists of approximately 10 billion neurons, and the question arises as to whether it is
possible to know and store all the details about each neuron and their interconnections. However, given that we
have less than one neuron per neuron to store information about neurons, it becomes apparent that it is not
feasible to represent all this information within the brain itself. Additionally, many neurons are already occupied
with other functions such as basic bodily functions and learned knowledge. Therefore, it is clear that we cannot
fully know the intricate details of our own brains.

Similarly, we can ask whether a program can know itself or internally represent itself. The answer to this
question is quite remarkable and will be explored further in this material. We will discover that programs indeed
have the capability to know and operate on themselves.

To better understand this concept, let's examine the analogy of biological reproduction. In the early days of
biology, it was observed that animals are born as copies of their parents. This posed a conundrum: how can a
parent create an accurate copy of itself? One theory suggested that every parent contains a tiny version of
itself, which grows into a full-sized individual after birth. However, this theory proved to be inadequate as it did
not explain how a whole lineage of individuals could exist without an infinite regression of "little people" inside
each parent. Thus, it became clear that this theory was not a viable solution.

We can draw a parallel to the domain of computer viruses, which are programs that copy themselves from one
computer to another. In order to accomplish this, viruses must be capable of creating copies of their executable
code. Simplifying the problem, we can consider a program that is capable of printing itself. One approach to
achieving this is by using a pointer variable that points to the address of the first byte of the code. The program
then iterates through the code, fetching each byte from memory using the pointer and printing it. This process
is repeated for the entire program. Interestingly, this approach mirrors the solution that biology employs. In
biological life, DNA serves as the code that contains information about building proteins, which are essential for
cellular functions.

Recursion in computational models involves a program accessing and executing its own code. In a subsequent
part of this didactic material, we will explore the idea of a program that prints itself using recursion.

To better understand this concept, let's first consider the role of DNA in biological life. DNA can be thought of as
a set of instructions, much like code in a computer. It is executed to produce proteins, similar to how code is
executed in a computer. Additionally, DNA is used as data during cell replication, where a copy of the DNA
strand is made. In this case, the DNA is simply used as data.

Now, let's shift our focus to computer viruses and countermeasures that operating systems can employ.
Operating systems often flag files or memory in the computer's main memory as either executable or readable
and writeable. This is similar to the way executable files are flagged in UNIX-based systems. The purpose of this
flag is to prevent a virus from reading itself. By flagging executables as executable only, the virus is unable to
access and read its own code.

However, viruses can still operate using recursion. The recursion theorem allows a program to access and
execute its own code in an interesting way. To illustrate this concept, let's try to write a program that is capable
of printing itself without directly accessing its code as data. We can achieve this by creating a simple
programming language with variables, assignment statements, strings, and a print statement. This minimal
programming language provides us with the necessary tools to write a program that can print itself.

In this programming language, variables function as memory, similar to how Turing machines use tape as
memory. By utilizing variables to store data, we can create algorithms that are as powerful as Turing machines.
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To simplify our program, we can ignore the problem of printing new lines and handle line breaks manually.
Additionally, we can assume that quotes within strings do not need to be escaped.

Now, let's dive into writing our program. We'll start with a simple program that prints out a string like "hello". To
create a program that prints itself, we need to modify our initial program. The modified program will include a
print statement that outputs the original program, including the print statement itself. This results in a program
that prints a simpler version of itself. By repeating this process, the program can eventually print itself.

Programs that print themselves are often referred to as Quines, named after the philosopher Willard Van Orman
Quine. Quines are an interesting concept in computational complexity theory and can help us understand the
power and limitations of recursion.

Recursion allows a program to access and execute its own code. By using a minimal programming language and
the recursion theorem, we can create a program that prints itself. This concept, known as a Quine, provides
insights into computational complexity theory and the capabilities of recursive programs.

To understand how a Quine program works, let's first examine a general approach that does not lead to a
solution. If we try to print a program by simply adding print statements in front of it, we will encounter a
problem. Each time we add a print statement, we would need to add another print statement to print the
previous print statements, resulting in an infinite loop. This approach does not allow us to print out the program
itself with a finite string.

However, there is a different approach that can successfully create a program that prints itself. In this approach,
we utilize assignment statements and print statements in our programming language. Let's imagine that we
have an assignment statement in our program, followed by a print statement. The specific string assigned to
the variable does not matter for now.

To print the program itself, we need to add additional code. First, we add code that will print the assignment
statement. This is done by using the print statement to print the string "X gets quote," followed by the value
stored in the variable X. Finally, we print the closing quote.

Next, we add one more print statement to the program. The purpose of this print statement is to print out the
remaining code that is not part of the assignment statement. As long as the code between the quotes matches
the code surrounded by the dashed green line, we can print it out. We take all the characters between the
quotes and place them where the green is.

By executing this program, we can see the desired output. The assignment statement is printed first, followed
by the value of X, the closing quote, and the value of X again. As long as the code between the quotes matches
the code surrounded by the dashed green line, it will be printed.

A Quine program is a program that can print itself. By utilizing recursion and carefully manipulating assignment
statements and print statements, we can create a program that prints its own code. This concept is an
interesting demonstration of the power of recursion and the intricacies of program execution.

Please note that the specific programming language used in this example is not mentioned, as the focus is on
the concept itself rather than the language implementation.

Recursion is a powerful technique that allows for the solution of complex problems by breaking them down into
smaller, more manageable subproblems.

Let's examine the program that prints itself in more details. The program uses the C programming language and
utilizes a variable called X, which is a string variable represented as a character pointer. The program consists
of a single print statement that needs to print X twice.

To handle the presence of double quotes within the string X, the program includes code for escaping these
characters. The program substitutes the necessary characters into the string, which is then printed.

The green part of the program represents the characters that need to be printed. It includes the characters
"main(", "care star X =", and so on. These characters are enclosed within double quotes to form a string.
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To print out the program, the program uses the printf function with the appropriate formatting codes. The
formatting codes include "%c" for a character, "%s" for a string, and "%d" for an integer. By using these
formatting codes, the program is able to print the desired output, including the double quotes and the program
itself.

To summarize, the program utilizes recursion to print itself. By employing the concept of recursion, the program
is able to break down the problem into smaller subproblems and solve it iteratively. This program serves as an
example of the power and versatility of recursion in computational complexity theory.

We have explored the concept of recursion in the context of computational complexity theory. Specifically, we
have discussed the idea of a program that can print itself, highlighting the limitations and possibilities of such a
program. Through the analogy of biological reproduction and computer viruses, we have gained insights into the
potential of programs to know and operate on themselves.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: RECURSION
TOPIC: TURING MACHINE THAT WRITES A DESCRIPTION OF ITSELF

A Turing machine is a theoretical device that can manipulate symbols on a tape according to a set of rules. In
this material, we will describe a specific Turing machine that prints its own description on the tape.

In the previous material, we discussed two approaches to creating a program that prints a copy of itself. The
first approach involved accessing the memory containing the instructions as data. The second approach used a
Quine program that contained the characters representing itself as data.

To represent a Turing machine, we need a list of states, an input alphabet, a tape alphabet, a transition
function, a starting state, an accept state, and a reject state. These components can be translated into bits and
bytes and stored on a tape.

Our goal is to create a Turing machine program that ignores the initial content of the tape, executes for a while,
and then terminates. When it halts, it should leave on the tape a description of the Turing machine itself.

Since the Turing machine cannot access itself as data, we cannot use the first approach. Instead, we will use the
second approach to implement a Quine on a Turing machine. We will break the problem into two steps.

In the first step, we will store a long string of zeros and ones somewhere. This string contains some information.
The Turing machine will write this string onto the tape and then pass control to the second part of the Turing
machine.

The Turing machine will have two phases or parts: step A and step B. Step A will execute a set of states, and
then it will transition to step B, where another set of states will execute. Finally, the Turing machine will
terminate.

Step B's task is to print out the descriptions of both step A and step B. The description of the Turing machine is
effectively divided into two parts: step A and step B. Step B will find the string stored on the tape and print out
the descriptions of both step A and step B.

We will use a variable X to accomplish this task. Our goal is to leave on the tape a description of step A followed
by a description of step B. Each step can be thought of as a Turing machine in its own right or as a subroutine.
We execute step A, followed by step B.

To better understand this concept, let's consider a simple string of ones and zeros, such as 10110. We can
imagine a Turing machine, called P sub W, that outputs this string onto the tape. The representation of this
Turing machine can be denoted as <P sub W>.

Our overall goal is to write the representation of step A and step B. By using the variable X, we can achieve this
task.

We have described a Turing machine that prints its own description on the tape. This is accomplished by
breaking the problem into two steps: storing a string and executing step A, followed by executing step B. Step B
will print out the descriptions of both step A and step B.

A Turing machine is a theoretical device that can perform various computations. In the context of cybersecurity
and computational complexity theory, understanding the fundamentals of recursion and Turing machines is
essential.

Recursion is a concept where a function calls itself during its execution. In the case of a Turing machine that
writes a description of itself, the process involves creating a representation of the machine that can write a
given string.

To create a Turing machine that writes a specific string, let's say "W," we can imagine a linear sequence of
states representing each character in the string. For example, if the string is "10110," we would have states 1,

** * %
. El'l'[: | © 2024 European I'I_' Certification InstlFute 139/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/lessons/recursion/
https://eitca.org/programmes/eitc-is-cctf-computational-complexity-theory-fundamentals/lessons/recursion/topic/turing-machine-that-writes-a-description-of-itself/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

0, 1, 1, and 0. Each state would have a transition that writes the corresponding character.

If the string has "n" characters, the Turing machine would have "n+1" states, organized as a simple chain.
Creating the machine representation for a given string is relatively straightforward. We can imagine an
algorithm that takes the string as input and generates the corresponding Turing machine's description.

The task of creating this Turing machine, or more precisely, its representation, given a string, is computable. For
example, if we provide the string "10110," it is possible to produce the description of a Turing machine that
writes that string on the tape.

This process can be accomplished by a function, let's call it Q. Function Q takes a string, such as "W," as input
and writes onto the tape a description of a Turing machine that would write the given string. Although Q is more
complex, as it needs to analyze the length of the string, create state names, and define the transition function,
it is still a computable function.

The Turing machine that writes a description of itself consists of two steps, labeled as "a" and "B." In step "a,"
the machine writes a long string of symbols on the tape, which we'll call X. This string will eventually represent
the description of step "B," but since we don't know what step "B" is yet, we cannot complete the coding for
step "a."

However, we can use function Q to create step "a" once we know the value of X. Function Q, which generates
the representation of a Turing machine for a given string, can be applied to X, producing a representation of
step "a."

Moving on to step "B," after step "a" finishes, the tape contains the string X. The first action of step "B" is to
make a copy of X. Turing machines can be designed to copy strings, so now the tape contains X and X.

Next, step "B" uses function Q as a subroutine and applies it to the part of the string X. This call to Q computes
the description of a Turing machine that would write the string X. If this description is longer than X, we can
apply it to the second X and replace the first X with the description of step "a." This can be achieved by
swapping the positions of the two parts.

By letting X be a description of step "B" itself, the tape ends up with a representation of step "a" followed by a
representation of step "B." This completes the coding of step "B."

Now that we know the code for step "B," we can go back and finish coding step "a" since we now know the
value of X. The final result is a Turing machine that writes a description of itself, with step "a" followed by step
IIB.II

Understanding the concept of a Turing machine that writes a description of itself is important in the field of
cybersecurity and computational complexity theory. It demonstrates the power of recursion and the
computability of tasks like creating Turing machines for specific purposes.

A Turing machine is a theoretical device that can simulate any computer algorithm. In the field of computational
complexity theory, there is a fascinating concept known as the Turing machine that writes a description of itself.
This concept involves creating a Turing machine that can leave a description of itself on its tape.

To better understand this concept, let's first discuss recursion. Recursion is a fundamental concept in computer
science where a function calls itself during its execution. It allows for solving complex problems by breaking
them down into smaller, more manageable subproblems.

Now, let's consider the Turing machine that writes a description of itself. The idea behind this concept is to
create a Turing machine that, during its computation, writes down a description of its own structure and
behavior on its tape. This self-description can include the states, transitions, and symbols used by the Turing
machine.

By implementing this self-description capability, we can create a Turing machine that essentially "describes
itself" as it operates. This concept is intriguing because it blurs the line between the machine and its
description, raising questions about self-reference and the limits of computation.
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The recursion theorem plays a important role in understanding the Turing machine that writes a description of
itself. This theorem states that any computable function can be computed by a Turing machine that calls itself
as a subroutine. In other words, it provides a formal foundation for the concept of recursion in computation.

Exploring the implications of the Turing machine that writes a description of itself can lead to profound insights
into the nature of computation and the limits of what can be computed. It raises questions about self-referential
systems and the potential for machines to understand and describe their own structure and behavior.

In the next material, we will dive deeper into the recursion theorem and its implications. We will explore how
recursion can be used to solve complex problems and the theoretical foundations behind it.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: RECURSION
TOPIC: RECURSION THEOREM

In the field of computational complexity theory, one fundamental concept is the recursion theorem. This
theorem addresses the operations that can be performed on a Turing machine, which is a theoretical model of a
computer. These operations include counting the number of states in the machine, checking if the machine can
reach an accept state from the initial state, and verifying if the machine accepts a given string.

To perform these operations, a description of the Turing machine is required. Additionally, other properties,
such as simulating the machine or printing it out in a user-friendly way, may also be desired. To achieve these
functions, an algorithm can be created and implemented on a Turing machine. This algorithm, denoted as T,
takes as input the description of a Turing machine and potentially other information, such as a string to be
tested for acceptance.

Interestingly, the recursion theorem allows for the creation of a Turing machine, denoted as R, that can operate
on its own description. In other words, R computes its own description instead of requiring it as an input. This
means that R can perform the same operations as T, but with the added ability to work on itself.

Formally, the recursion theorem states that if there exists a Turing machine T that computes a function t, then
there will always exist another Turing machine R that computes a function r. The function r takes one parameter
and behaves exactly as t would when applied to a description of the Turing machine R itself.

To summarize, the recursion theorem in computational complexity theory asserts that for any operation that
can be performed on a Turing machine, there exists another Turing machine that can perform the same
operation while computing its own description. This theorem has significant implications and will be further
explored in the next material.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: RECURSION
TOPIC: RESULTS FROM THE RECURSION THEOREM

The recursion theorem is a fundamental concept in computational complexity theory that allows us to obtain a
description of a program itself within the program. This means that we can write an algorithm that obtains a
description of itself and performs operations on it. This is a legal statement in any program and is a result of the
recursion theorem.

Using the recursion theorem, we can create a program called a Quine program that prints itself. The program is
simply defined as X gets self print X. The recursion theorem guarantees that this program is entirely legal and
computable. It states that there exists a Turing machine that can implement this algorithm.

Now, let's explore the application of the recursion theorem to the acceptance problem for Turing machines. The
acceptance problem involves determining whether a given Turing machine accepts a given input string. We
previously showed that this problem is undecidable, meaning that there is no algorithm that can always provide
a correct answer.

However, with the recursion theorem, we can provide a new and shorter proof of the undecidability of the
acceptance problem. We assume the existence of an algorithm, let's call it H, that decides the acceptance
problem for Turing machines. We then construct a machine B that takes an input string W and obtains a
description of itself via the recursion theorem. We assign this description to the variable X.

Next, we run the algorithm H on the description of B and W. If H says that B should accept W, we make B reject
W. Conversely, if H says that B should reject W, we make B accept W. By doing the opposite of what H says B
should do, we create a contradiction. This contradiction proves that H cannot be a decider for the acceptance
problem, and thus the acceptance problem is undecidable.

In addition to exploring the recursion theorem, let's define the size of a Turing machine. We can define the size
of a Turing machine in various ways, such as the number of states or the number of transitions. One way to
define the size is by counting the number of symbols in any description of the Turing machine. Therefore, the
size of a Turing machine is essentially the number of symbols in its description.

With the notion of size, we can define a minimal Turing machine. A Turing machine is minimal if there is no
other Turing machine that is equivalent to it and has a shorter description. Equivalence means that the Turing
machines perform the same operations. The set of minimal Turing machines is denoted as min TM and consists
of the descriptions of Turing machines that are minimal.

Interestingly, the set of minimal Turing machines is not Turing recognizable. Turing recognizable means that
there exists an enumerator that can list out all the elements of the set. In this case, we assume the existence of
an enumerator Il for the set of minimal Turing machines. However, we can prove that this assumption leads to a
contradiction, showing that the set is not Turing recognizable.

The proof of this statement makes use of the recursion theorem. By assuming the set is Turing recognizable, we
can show that there is a contradiction, which implies that the set of minimal Turing machines is not Turing
recognizable.

The recursion theorem is a powerful tool in computational complexity theory that allows us to obtain a
description of a program itself within the program. It has applications in creating self-referential algorithms and
providing shorter proofs for undecidable problems like the acceptance problem for Turing machines.
Additionally, the concept of size and minimal Turing machines helps us understand the complexity of Turing
machines and the limitations of Turing recognizability.

In computational complexity theory, the recursion theorem plays a important role in understanding the concept
of Turing machines and their capabilities. The theorem states that any Turing machine can obtain a description
of itself via recursion. This allows us to construct new Turing machines based on this self-description.

To illustrate this concept, let's consider a Turing machine C. This machine has an input W and its first step is to
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obtain a description of itself, denoted as [C], using the recursion theorem. Additionally, C has an enumerator
built into it, which enumerates the set of all minimal Turing machines. The enumerator runs until it prints out a
machine D that has a longer description than C.

Once C obtains D, it simulates D on the input string W. In other words, C behaves exactly as D would when
given input W. It is important to note that we assume the set of minimal Turing machines is infinite, as there are
an infinite number of Turing machines and functions.

However, here comes the contradiction. We know that D is longer than C because it was listed as one of the
minimal Turing machines by the enumerator. Yet, C, which is equivalent to D in terms of behavior, is not able to
simulate D due to this contradiction. Therefore, we have proven that the set of minimal Turing machines is not
Turing recognizable.

This result highlights the limitations of Turing machines in recognizing certain sets. While Turing machines are
powerful computational models, they have their boundaries when it comes to recognizing certain types of
languages or sets.

The recursion theorem allows us to construct new Turing machines based on self-description. However, the set
of minimal Turing machines is not Turing recognizable, as demonstrated by the contradiction between C and D
in our example.
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LESSON: RECURSION
TOPIC: THE FIXED POINT THEOREM

A fixed point in the context of computational complexity theory refers to a value that remains unchanged when
a function is repeatedly applied to it. In other words, if we have a function f that maps values from a domain to
a range, a fixed point is a value x in the domain such that f(x) = x.

To better understand this concept, let's consider an example. Suppose we have a function f that maps integers
to integers. We can represent this function using arrows, where each arrow represents the mapping of a value
from the domain to the range. For instance, if fmaps 1 to 5, 2 to 4, 3 to 6, 4 to itself, 5 to 2, and 6 to 4, we can
visualize it as follows:

1->5
2->4
3->6
4->14
5->2
6->4

In this example, the value 4 is a fixed point of the function f because when we repeatedly apply the function to
it, it remains unchanged. Starting with 1 and applying the function gives us 5, then 2, and finally 4. If we start
with 3 and apply the function, we get 6, then 4, and again, we end up at 4. So, regardless of the starting point,
we are stuck at 4.

Fixed points can also be understood in terms of attractors. An attractor is a point or set of points that a function
tends to draw values towards. In the case of fixed points, they can be seen as simple attractors. When a
function is applied to a point that is a fixed point, it remains unchanged.

When discussing fixed points in the context of computational complexity theory, it is assumed that the functions
being considered are computable functions, meaning they can be effectively computed by an algorithm or a
Turing machine. Additionally, the domain and range of these functions are typically the same set.

We can also consider transformations on Turing machine descriptions as functions. In this case, the domain and
range are sets of Turing machine descriptions. The recursion theorem states that for any transformation
function on Turing machines, there will always exist a Turing machine that remains unchanged under the
transformation. In other words, there will always be a fixed point for this function.

To illustrate this, let's consider a computable function T that takes a description of a Turing machine and
transforms it into another description. The recursion theorem guarantees the existence of a Turing machine F
that, when T is applied to it, remains equivalent to F. This equivalence is achieved by having F simulate the
behavior of the Turing machine obtained by applying T to the description of F.

Fixed points are values that remain unchanged when a function is repeatedly applied. In the context of
computational complexity theory, fixed points are important in understanding the behavior of computable
functions and transformations on Turing machines. The recursion theorem guarantees the existence of fixed
points for certain types of functions.
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LESSON: LOGIC
TOPIC: FIRST-ORDER PREDICATE LOGIC - OVERVIEW

First-order predicate logic, also known as predicate calculus or simply predicate logic, is a type of logic that is
commonly used in formal reasoning. In this form of logic, we use variables, quantifiers, and logical connectives
to express statements and their relationships.

One of the key aspects of predicate logic is the use of quantifiers. The universal quantifier, denoted by the
upside-down "A" symbol (V), is used to express that a statement holds for all elements in a given set. The
existential quantifier, denoted by the backwards "E" symbol (3), is used to express that there exists at least one
element in a set for which a statement holds.

Logical connectives, such as conjunction (denoted by the upside-down "V" symbol (A)) and implication (often
shown as a double arrow (=)), are used to combine statements and express relationships between them.

Let's look at some examples to better understand how predicate logic works.

The first example statement is a formal representation of the theorem that there are infinitely many prime
numbers. It states that for every number you give (denoted by the variable Q), there exists a larger prime
number (denoted by the variable P) such that for all pairs of numbers X and Y, if both X and Y are greater than
1, then the product of X and Y is not equal to P. This statement captures the essence of the theorem that there
are infinitely many prime numbers.

Another example is Fermat's Last Theorem, which states that the equation a”n + b”~n = c”™n has no integer
solutions for n greater than 2. The formal representation of this statement in predicate logic is that for all
variables a, b, ¢, and n, if a, b, and c are greater than zero and n is greater than 2, then the sum of a”n and
b~n is not equal to c™n. This statement asserts that there is no integer solution to the equation for n greater
than 2.

Lastly, let's consider the twin prime conjecture, which suggests that there are infinitely many pairs of prime
numbers that are separated by 1. The formal representation of this conjecture in predicate logic states that for
every number Q, there exists a larger prime number P such that for all pairs of numbers X and Y, if both X and Y
are greater than 1, then neither X nor Y is equal to P or P+2. This statement captures the idea that there are
infinitely many pairs of prime numbers that are separated by 1.

It is important to note that these statements have different truth values and proof status. The theorem that
there are infinitely many prime numbers has been known to be true since ancient times. Fermat's Last Theorem
was an unproved theorem for many years, but it was recently proven by a mathematician. The twin prime
conjecture, on the other hand, seems to be true based on extensive computer testing, but it has not been
proven.

In addition to the use of quantifiers and logical connectives, formulas in predicate logic have a specific syntax.
For example, the universal quantifier must be followed by a variable, and brackets must match. These formulas
are strings of symbols that follow a certain syntax.

Furthermore, in predicate logic, we consider a universe of objects, such as numbers, to which the formulas
refer. The symbols used in the formulas, such as greater than and less than, represent relationships between
these objects within the universe. When we establish a connection or association between the symbols in the
formula and the objects and relations in the universe, we have a model for the formula.

First-order predicate logic is a powerful tool for expressing statements and their relationships. It involves the
use of quantifiers, logical connectives, and a specific syntax for formulas. By applying these concepts, we can
formalize and reason about various mathematical and logical concepts.

First-order predicate logic is a fundamental concept in computational complexity theory and cybersecurity. In
this overview, we will discuss the syntax of formulas and the process of proving their truth or falsity using logic
and mathematics.
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Formulas in first-order predicate logic are sequences of symbols that have both syntax and meaning. Without a
connection to objects and relations in the universe, a formula is merely a string of symbols with no significance.
However, when there is a universe and a model for the formula, we can determine if the formula is true or false.

To establish the truth of a formula, we employ logic and math, aiming for rigorous and mathematically sound
proofs. A proof consists of steps that start from known or assumed true statements, called axioms. Using rules
of inference or logical deduction, we progress from these known truths to proven truths. While we naturally
provide mathematical proofs, in logic, we follow a more formal and precise approach with rigorously defined
rules of inference. Ideally, we would like to automate this process.

Certain formulas are true, and we can identify the set of true formulas. This raises the question of whether we
can determine if a given formula belongs to the set of true formulas. To address this, we transform the problem
into a language and ask if the set of true formulas is decidable, meaning we can find a computable function that
determines the truth value of a formula.

Before delving further, it is essential to define the syntax of formulas. Formulas are strings of symbols derived
from an alphabet that includes quantifiers (V and 3), parentheses, logical symbols (AND, OR, implies, NOT),
variables, and relation symbols. The upside-down V (A) represents AND, the V (V) represents OR, the symbol for
NOT is —, and the arrow (=) signifies implication. The upside-down A (V) represents the universal quantifier, and
the backward E (3) represents the existential quantifier. Variables, such as X, Y, and Z, are used in formulas,
and we assume an infinite supply of variable names.

It is important to note that these symbols have no meaning until we define their semantics relative to a model.
For now, we focus solely on the syntax of formulas.

First-order predicate logic is a powerful tool in cybersecurity and computational complexity theory. By
understanding the syntax of formulas and employing logic and mathematics, we can prove the truth or falsity of
formulas. The process involves starting from known or assumed true statements, using rules of inference, and
progressing towards proven truths. The goal is to determine if a given formula belongs to the set of true
formulas, which can be transformed into a decidable problem.

In first-order predicate logic, it is important to understand the distinction between symbol variables and other
types of symbols. Symbol variables are represented by an infinite supply of variable names. Additionally,
relation symbols are used to represent relations in formulas. In its simplest form, relation symbols are denoted
as R1, R2, R3, and so on, depending on the number of relations needed. However, to enhance readability, it is
preferable to use symbols that are related to the model being discussed. For example, if the universe consists of
numbers and relations such as addition and subtraction, it is more intuitive to use the traditional symbols for
plus and minus in formulas.

The use of more natural symbols makes the connection between the relation symbols and the relations in the
universe explicit and transparent. While using symbols like plus, times, and equals may make formulas easier to
read, a more formal version would only utilize relation symbols (e.g., R) and variables (e.g., X). Each relation
symbol has an arity, which indicates the number of arguments it takes. To ensure syntactic correctness, relation
symbols must be followed by parentheses and the appropriate number of arguments separated by commas.

A syntactically correct formula can be either an atomic formula or a compound formula made up of other
symbols. An atomic formula must be a relation symbol with the correct number of arguments. Compound
formulas can be created by combining smaller formulas using logical connectives (4, implies, not) and
quantifiers (for all, existential). The proper syntax for quantifiers involves a single variable name followed by a
bracket and a smaller formula containing the variable, followed by a closing bracket. Parentheses can also be
used to group elements within a formula.

It is important to note that there are variations in the representation of logical symbols. For example, the
negation symbol may be represented as a tilde (~) or a bar over the formula. Universal and existential
quantifiers may be represented with a dot and optional parentheses. The use of parentheses is important to
clarify the intended meaning and to establish the order of operations, similar to mathematical expressions.

When constructing logical formulas, it is necessary to adhere to proper syntax and use parentheses as
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necessary to ensure clarity. Precedence rules, such as conjunction binding more tightly than disjunction, may
also apply. However, at this level, we are solely concerned with the syntactic correctness of the logical formulas,
without attaching any meaning to them. The interpretation of the symbols and their relation to a specific
universe or model will be addressed later.

In the field of logic, specifically in the context of first-order predicate logic, it is important to understand the
concept of well-formed formulas. A well-formed formula is a syntactically correct sequence of symbols that
represents objects or relations in the universe. To determine whether a given string is a well-formed formula in
first-order predicate logic, we can employ a simple parsing technique. By examining the sequence of symboils,
we can check if the formula satisfies certain criteria.

One important criterion is the correctness of the relationship symbols, ensuring that they are used
appropriately. Additionally, we need to ensure that the parentheses are matched and that every quantifier is
followed by a variable. By checking these conditions, we can determine if a formula is well-formed.

However, there is another aspect to consider when analyzing formulas in first-order predicate logic - the
variables. Let's consider the following formula: "for all X." In this case, X is quantified, meaning it is bound within
the formula. Thus, we can interpret X as representing a statement that holds true for all instances of X in our
universe. Conversely, variables such as Y and Z are not quantified, making them free or unbound variables. The
meaning of free variables is ambiguous, as we cannot determine what they represent without further context.

To define a statement, we require that it be a syntactically correct formula with no free variables. In other
words, all variables must be quantified. A valid statement is one that adheres to this criterion. For example, the
formula "for all X, there exists a Y such that the relationship R holds between X and Y" is a valid statement as it
contains no free variables.

On the other hand, a formula like "there exists a Y" is not a valid statement since Y occurs freely without being
bound. In this case, we cannot determine its meaning or evaluate its truth value.

Understanding the distinction between well-formed formulas and statements is important in the study of first-
order predicate logic. By ensuring that formulas are well-formed and statements have no free variables, we can
accurately analyze and evaluate logical statements.
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LESSON: LOGIC
TOPIC: TRUTH, MEANING, AND PROOF

In this material, we will continue our discussion on first-order predicate logic and explore the concept of truth
and proof in logical formulas. We will also examine some algebraic manipulations that can be applied to
formulas.

One important rule we will discuss is the negation of quantifiers. When we negate the statement "there exists
an X that satisfies condition P," it is equivalent to saying "for all X, P is not true." Similarly, negating the
statement "for all X, P is true" is equivalent to saying "there exists an X that does not satisfy P." These rules
allow us to change the quantifier from "there exists" to "for all" and vice versa when we move a negation sign
past a quantifier.

We will also explore De Morgan's laws, which state that negating a conjunction turns it into a disjunction, and
negating a disjunction turns it into a conjunction. These laws hold true in both directions. Additionally, we will
discuss the implication connective, where P implies Q is equivalent to saying "not P or Q."

These algebraic manipulations do not change the meaning of the formulas. Regardless of the model or the
universe of objects, these manipulations preserve the truth or falsity of the formulas. In other words, the truth
formulas remain true, and the false formulas remain false.

We will introduce the concept of "Preneks form," where a formula is in Preneks form if all the quantifiers are
placed at the front, outside of everything else. The body of the formula contains no quantifiers but may include
variables. We can use algebraic manipulations to transform any formula into Preneks form without altering its
truth.

To interpret a logical formula, we need a universe of objects and interpretations for the symbols. The universe is
a set of objects, such as numbers or integers. The relation symbols in the formula must appear correctly with
the appropriate number of arguments. Additionally, the universe may contain relations, such as less than or
equal or addition, which have meanings separate from the formula.

It is important to distinguish between relation symbols in the alphabet and relations with meanings in the
universe. Often, we prefer to use symbols from the universe in our formula to enhance clarity and
understanding.

We have discussed the rules for negating quantifiers, De Morgan's laws, and the implication connective. These
algebraic manipulations do not change the meaning of the formulas. We have also introduced Preneks form,
where all quantifiers are placed at the front of the formula. To interpret a logical formula, we require a universe
of objects and interpretations for the symbols.

A fundamental concept in computational complexity theory is the idea of models. Models consist of a universe
and a connection between the relations symbols in a logical formula and the relations in the universe. The
relations symbols are syntactic symbols, while the relations in the universe are something different. In order to
establish this connection, we assume an ordering for the relation symbols, such as R1, R2, R3, and so on. We
then specify corresponding relations in the universe, represented by P1, P2, and so on, with a connection
between P1 and R1, P2 and R2, and so forth.

A model provides a universe of objects and meanings for each symbol in the formula. For each symbol in the
formula, we need a relation in the universe. The meaning of a relation symbol in the formula is determined by
the relation it represents in the universe.

When evaluating the truth of a logical formula with no free variables, we need to specify the model we are
considering. For example, if the formula is about prime numbers, we need to clarify that the universe consists of
integers and the relation symbols correspond to multiplication.

Some statements may be true in a given model, while others may be false. There are also statements for which
we may not know their truth value. For example, the twin prime conjecture is a theorem that is currently
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unknown. It is either true or false, but we are still awaiting a proof.

The interpretation of a statement depends on the model and the universe we are considering. It is important to
understand the model in order to determine the truth value of a particular statement.

To illustrate this, let's consider the statement "For all X, Y, and Z, R(X, Y) and R(Y, Z) implies R(X, Z)." Without
specifying the model, it is difficult to interpret this statement. So, let's examine two possible interpretations:

In the first interpretation, we assume the universe is the set of natural numbers, and R represents the less than
relation. In this case, the statement can be rewritten as "For all numbers X, Y, and Z, if X is less than Y and Y is
less than Z, then X is less than Z." We know that this statement is always true in this interpretation.

In the second interpretation, we still consider the universe as the set of natural numbers, but now R represents
the successor function (X+1). The statement becomes "For all X, Y, and Z, if X+1 equals Y and Y+1 equals Z,
then X+1 equals Z." This statement is false; it is not true for any numbers.

From these examples, we can see that the truth of a statement depends on the model and the interpretation of
the relation symbols. Some statements, known as tautologies, are true in any model. These statements are not
affected by the specific interpretation of the relation symbols.

A tautology is a logical statement that is always true, regardless of the model or interpretation. In other words,
it is a statement that is true in every possible circumstance. Tautologies are an important concept in logic and
play a significant role in various fields, including cybersecurity.

A tautology is formed by combining logical propositions using logical connectives such as "and" (conjunction),
"or" (disjunction), and "not" (negation). Regardless of the truth values of the individual propositions, a tautology
will always evaluate to true.

For example, consider the statement "p or not p." This statement is a tautology because it is always true. If p is
true, then the statement is true because one of the disjuncts is true. If p is false, then the negation of p is true,
and again the statement is true. Thus, "p or not p" is a tautology.

Tautologies are often used in cybersecurity to ensure the validity and integrity of logical systems. By identifying
tautologies, we can verify the consistency and correctness of logical statements and reasoning processes. This
is important in the design and implementation of secure systems, where logical errors can lead to vulnerabilities
and potential breaches.

Understanding tautologies is also essential in computational complexity theory, which deals with the study of
the resources required to solve computational problems. Tautologies provide insights into the complexity of
logical systems and can help analyze the efficiency and feasibility of algorithms.

A tautology is a logical statement that is always true, regardless of the model or interpretation. It is an
important concept in logic and plays a significant role in fields such as cybersecurity and computational
complexity theory. By understanding and utilizing tautologies, we can ensure the validity and integrity of logical
systems, leading to more secure and efficient computational processes.
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LESSON: LOGIC
TOPIC: TRUE STATEMENTS AND PROVABLE STATEMENTS

Formal Proofs and the Distinction between True and Provable Statements

Proofs in mathematics are constructed using rules of inference and deduction. The process begins with a set of
axioms, which are assumed to be true without proof. These axioms serve as the starting point for the proof.
Rules of inference are then applied to transform one statement into another, while preserving the truth of the
statement. Each rule is a computable algebraic procedure that can be performed automatically with a
computer.

A proof is a sequence of statements, starting with the axioms and using only the rules of inference. The
sequence of statements ends with the theorem that is being proven. Importantly, each statement in the
sequence is true. Finding proofs is a challenging task that often requires a creative search process.
Mathematicians dedicate their careers to searching for proofs. Once a proof is found, each step can be verified,
either by a computer or by another mathematician, to ensure its correctness.

In formal proving, each step in the proof is a formal statement in predicate logic. These statements can be
verified using a computer to confirm the correctness of the algebraic manipulation performed. Finding a proof
involves a search process guided by the intuition and understanding of the model underlying the formal
statements. However, it is also possible to conduct the search automatically, treating the statements and
inference steps as syntactically correct logical formulas and algebraic manipulations, respectively.

Automated theorem provers can conduct the search for a proof without any understanding of the model. The
symbols in the statements are treated as meaningless symbols, and the proof is found solely based on correct
algebraic manipulations. This raises the question of whether a proof found without understanding the model is
valid. The answer is yes, as long as the agreed-upon rules of inference are followed. If the rules of inference are
established as the definition of proofs, then any proof found using those rules is considered a proof of a true
statement.

The Twin Prime Conjecture serves as an example of a statement that is either true or false. It states that there
are an infinite number of pairs of twin primes, which are prime numbers separated by two. Currently, we do not
have a proof for or against this conjecture. However, the statement itself is either true or false. The absence of a
proof does not change the nature of the statement.

Proofs in mathematics are constructed using rules of inference and deduction. A proof is a sequence of true
statements, starting with axioms and using only the rules of inference. Finding proofs can be a creative search
process, guided by intuition and understanding of the underlying model. However, proofs can also be found
automatically without any understanding of the model, treating the statements and inference steps as symbolic
manipulations. The validity of a proof relies on following the agreed-upon rules of inference. The absence of a
proof does not determine the truth or falsehood of a statement.

In the field of cybersecurity, understanding computational complexity theory is important. One fundamental
aspect of this theory is logic, specifically the concepts of true statements and provable statements. To delve
deeper into this topic, let's first establish a fixed universe and interpretation of symbols. In this case, we will
focus on the universe of natural numbers, starting with zero, and the familiar algebraic relations such as
addition, subtraction, multiplication, and less than or equal to.

This framework is commonly referred to as number theory. Any statement that can be formulated using these
relations, following their conventional meanings, and with the assumption that variables range over natural
numbers, is considered a statement in number theory. For example, the Twin Prime Conjecture can be
expressed within number theory.

Now, let's consider the set of true statements that can be made within this fixed model. This set represents the
collection of formulas that are deemed true, while others may not hold true. Determining which statements are
true and which are not poses an interesting question. To simplify matters, let's focus on a specific model
consisting of numbers and the addition and multiplication operations. Within this model, we can discuss the set
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of statements that are true in relation to it, which we refer to as the theory of M, where M represents the model.

For instance, let's narrow our focus to number theory, where the universe is the set of natural numbers, and the
operations of addition and multiplication are of interest. The set of true statements that can be made using
these operations also includes the equals relation. This set of true statements is referred to as the theory of this
model.

It is important to note that the theory of a model does not necessarily correspond to the set of provable
statements. Provable statements are those that can be proven using axioms and rules of inference. Therefore,
we must distinguish between true statements and provable statements. This leads us to explore the relationship
between the two.

Interestingly, if we restrict ourselves to making statements in number theory using only addition and exclude
multiplication, the set of true statements becomes decidable. In other words, we can determine whether a
statement is true or false. This can be expressed as the theory of numbers using addition being decidable. While
we won't provide a proof here, it is worth noting that given a statement formulated using addition, there exists a
procedure to ascertain its truth value.

To illustrate this concept, consider the following example statement: "Forall X, Y, Z, A,B,C,if X+ Y =27, X+ X
=A Y+Y=B,and D + C = C, then A + B = C." We can utilize algebraic reasoning to verify the truth of this
statement. By examining the given equations, we can deduce that if they hold true, the final equation must also
be true. Therefore, a procedure exists to determine the truth or falsehood of statements like this, and the set of
true statements is decidable.

In the next stage, we will expand our exploration to encompass number theory in its entirety, including
multiplication. This broader scope will yield different results and insights.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: LOGIC
TOPIC: GODEL'S INCOMPLETENESS THEOREM

Number theory is a branch of mathematics that focuses on the properties and relationships of natural numbers,
specifically integers, and the operations of addition and multiplication. In this didactic material, we will explore
the undecidability of number theory and consider Godel's incompleteness theorem, which states that number
theory is incomplete.

Undecidability refers to the inability to determine whether a given statement is true or false using a computable
procedure. When it comes to number theory, the set of true statements is undecidable. This means that for any
statement in number theory using addition and multiplication, there is no algorithmic method to ascertain its
truth value. While we may search for a proof or disproof, the undecidability of number theory means that there
are true statements that cannot be proven and false statements that cannot be disproven.

To understand the undecidability of number theory, we can reduce the acceptance problem for Turing machines
to the problem of deciding whether a statement is true or false in number theory. Since the acceptance problem
for Turing machines is undecidable, we can conclude that number theory itself is undecidable.

In 1931, Kurt Godel introduced his incompleteness theorem, which further reinforces the idea of number
theory's incompleteness. Before delving into the theorem, let's review what a formal proof entails. A formal
proof is a sequence of statements that begins with axioms, follows precise rules of inference, and concludes
with a theorem. Each statement in the proof is a logical formula, symbolized as a sequence of statements in
predicate logic. A proof can be checked and verified for correctness.

We assume that proofs are correct and can be validated. Given a statement and its proof, we can
computationally determine whether the proof is legitimate and correct. Additionally, we assume soundness,
meaning that we can only prove statements that are true. In other words, if a proof exists for a statement, that
statement must be true. These assumptions ensure the correctness and reliability of the proof system.

The set of provable statements in number theory is Turing recognizable, meaning that we can enumerate all the
provable statements using first-order predicate logic and operations like addition and multiplication. This
enumeration is possible because we have a finite set of axioms and rules of inference, and every proof and
formula is finite in length. By listing all possible proofs, we can eventually find the proof for any provable
statement.

However, Godel's incompleteness theorem reveals that there exist true statements in number theory that are
not provable. In other words, there are statements in number theory that are true, but we cannot find a proof
for them. This statement, which we can denote as 'sigh,' represents a truth in number theory that is
inaccessible through proofs. Essentially, even simple arithmetic contains truths that cannot be proven. The
existence of such statements highlights the incompleteness of number theory.

Number theory is undecidable, meaning that there is no algorithmic method to determine the truth value of
statements using addition and multiplication. Godel's incompleteness theorem further emphasizes the
incompleteness of number theory, revealing the existence of true statements that cannot be proven. This notion
challenges our understanding of arithmetic and highlights the limitations of formal proof systems.

To better understand this theorem, let's now have look at the proof. The proof is done by contradiction. We
assume that all true statements are provable, and then we search for a proof of a statement and its negation
simultaneously. If all true statements are provable, then either the statement or its negation must have a proof.
However, we already know that number theory is undecidable, meaning we cannot decide the truth of certain
statements. This leads to a contradiction, as we have assumed that all true statements are provable.

This result tells us that there are statements out there that are true but cannot be proven. One example of such
a statement is the sentence "This sentence is not provable." If we could prove this statement, it would not be
true. On the other hand, if we cannot prove it, then the sentence is false. This shows that there are statements
that are true but not provable.
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Godel figured out how to encode such statements into number theory. By doing so, he showed that there are
statements in number theory that are true but cannot be proven. This encoding involves a clever use of self-
reference, which is allowed by the recursion theorem. The recursion theorem states that it is permissible for a
sentence to refer to itself.

Godel's Incompleteness Theorem is a significant result in computational complexity theory. It demonstrates that
there are statements in number theory that are true but cannot be proven. This theorem has profound
implications for logic and the foundations of mathematics.

* X x
* © 2024 European IT Certification Institute
* EIT ; . 154/176
* Cl, Brussels, Belgium, European Union

* 4 *


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: COMPLEXITY
TOPIC: TIME COMPLEXITY AND BIG-O NOTATION

Time complexity is a fundamental concept in computational complexity theory that measures how long it takes
programs to run. It allows us to analyze and compare the efficiency of different algorithms. One way to
represent time complexity is through Big O notation, which provides a shorthand notation for describing the
running time of programs.

In the context of time complexity, we only consider computable functions, which are functions that can be
decided by a Turing machine. It is important to note that computable functions always terminate or halt. This is
because we cannot measure the running time of programs that do not halt. Therefore, we restrict our attention
to decidable functions and deterministic machines.

When analyzing the running time of programs, we consider the number of transitions it takes for a Turing
machine to halt. Each program is run on a specific input, and we measure the time it takes to run that program
on that input. The running time of a Turing machine is simply the count of transitions it takes to halt.

To analyze the efficiency of algorithms, we also consider the running time on inputs of different sizes. The size
of an input is measured by the number of cells it takes to represent the input string on the tape of a Turing
machine. We are interested in the maximum running time that Turing machines take on inputs of a particular
size. Some inputs may be easier to process than others, even if they have the same size.

Our goal is to find a function that describes the maximum running time of a Turing machine as a function of the
input size, denoted as 'n'. For each value of 'n', this function describes the maximum time a Turing machine
might take to run on an input of that size. This function can be complex and ugly, with multiple terms and
various operations.

To simplify the analysis, we focus on the running time for large inputs. We care about the behavior of the
function when 'n' gets really large. Many terms in the function become irrelevant, and one term may dominate.
For example, in a function with terms like '17n"3" and '5n"2', the '17n"3' term may dominate at large values
of 'n".

To express the asymptotic behavior of a function when 'n' gets large, we use Big O notation. This notation
represents the order of the function. In our example, the '17n"3' term dominates, so we write it as O(n"3). The
Big O notation allows us to simplify the representation of the function and focus on its behavior for large inputs.

It is important to note that Big O notation is a notation system rather than a direct function. It helps us express
the asymptotic behavior of a function in terms of the dominant term. By using Big O notation, we can compare
and analyze the efficiency of different algorithms based on their time complexity.

In computational complexity theory, understanding the time complexity of algorithms is important. Time
complexity refers to the amount of time an algorithm takes to run as a function of its input size. One way to
analyze time complexity is through big-O notation, which allows us to focus on the dominant term in the
algorithm's running time.

When analyzing time complexity, we often encounter functions that exhibit different behaviors for small and
large input sizes. As the input size grows, certain terms in the function begin to dominate the overall running
time. For example, in the function discussed, the term n”3 becomes the dominant factor as n gets larger. This
is the term we care about the most, as it determines the overall behavior of the function.

In big-O notation, we ignore constant factors and focus solely on the dominant term. In the given function, there
was a factor of 17 in front of the n~3 term, but we disregard it. What matters is that the function behaves
cubically in relation to its input. So, we can represent the time complexity of this function as O(n"3).

To formally define time complexity, let's consider a deterministic Turing machine, denoted as M, that always
halts. The size of the input to this Turing machine is denoted as n. We can define the time complexity of M as
the running time of M, which can be represented as a function f. This function f represents the maximum
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number of steps that M takes on any input of size n.

It's important to note that when dealing with Turing machines, the input size refers to the number of cells on the
tape. However, in general, the size of n can represent the length of the input for other algorithms expressed in
different ways. For example, in graph problems, we might be interested in the number of nodes or edges in the
graph. Similarly, in programs that parse input strings based on context-free grammars, we might focus on the
number of rules in the grammar.

Although the length of the input is closely related to these aspects, it's not always an exact measure.
Nevertheless, it provides a good approximation. For instance, if we double the number of nodes in a graph, the
representation of the graph will likely double as well. This correlation allows us to use the length of the input as
a parameter in our time complexity function f.

Many time complexity functions can be expressed as polynomials. To determine the order of the polynomial, we
look at the highest order term. In the given function, we have terms of linear, quadratic, and cubic order. The
highest order term is n”3, and we ignore the coefficient. Therefore, the time complexity function f can be
written as f(n) = O(n"3).

It's important to note that other functions may have different orders, such as n”~4 or n”~2. In this case, the
function f is not of order n™2, but it is of order n~3. Additionally, exponential terms may also be present in
some functions, but they are considered to be of higher order than polynomial terms.

Time complexity analysis allows us to understand how the running time of an algorithm grows as the input size
increases. Big-O notation helps us focus on the dominant term in the algorithm's running time, disregarding
constant factors. By determining the highest order term, we can express the time complexity function using
proper notation. In the given example, the time complexity of the function is O(n"3).

In the field of computational complexity theory, it is important to understand the concept of time complexity
and how it is represented using big-O notation. Time complexity refers to the amount of time it takes for an
algorithm to run as a function of the input size. Big-O notation is used to describe the upper bound or worst-case
scenario of the time complexity.

To begin, let's define the order notation. We say that a function f is of order O(g) if there exists some constant C
and some value n0 such that f(n) is less than or equal to C times g(n) for all values of n greater than n0. In other
words, f(n) behaves like g(n) as n gets larger, disregarding constant factors.

Now, let's look at some common complexity classes. A linear function, denoted as O(n), represents an algorithm
with a time complexity that grows linearly with the input size. For example, if the input size is three times as
long, the algorithm will take approximately three times as long to run.

Another common complexity class is logarithmic, denoted as O(log n). Algorithms in this class have a time
complexity that grows slower than linear. They are often more efficient than linear algorithms.

Polynomial time algorithms have a time complexity of O(n"k), where k is a positive integer. Examples include
O(n”2) and O(n"3). These algorithms have a time complexity that grows at a faster rate than linear algorithms,
but they are still considered efficient.

Exponential time algorithms, denoted as O(27n), have a time complexity that grows much faster than
polynomial time algorithms. For example, an algorithm with a time complexity of O(n”3) will run in a
reasonable amount of time for an input size of 1000, but an algorithm with a time complexity of O(2"n) will be
infeasible for the same input size.

In the graph below, we can visualize the different running times and functions of interest:
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It is important to note that exponential functions grow much faster than polynomial functions. While polynomial
algorithms may take a long time to run, they are still feasible for practical purposes. On the other hand,
exponential algorithms are rarely usable, except for very small input sizes.

There are also algorithms that run in O(log n) time, but they are not very common or useful. This is because just
reading the input itself requires an algorithm of at least O(n) time complexity. Therefore, algorithms with O(log
n) time complexity do not have enough time to even read the input, making them less interesting.

Understanding time complexity and big-O notation is important in analyzing and comparing the efficiency of
algorithms. By classifying algorithms into different complexity classes, we can determine the feasibility and
efficiency of solving problems within a given amount of time.

In the field of computational complexity theory, it is important to understand the concept of time complexity
and how it relates to the efficiency of algorithms. Time complexity refers to the amount of time it takes for an
algorithm to run as a function of the size of the input.

There are different classes of problems based on their time complexity. These classes help us categorize
problems and understand their computational requirements. In this context, we are specifically talking about
decidable problems, which are problems that can be solved by algorithms that will halt.

One such class is denoted as "time," which represents the set of all languages or problems that can be decided
in linear time. An example of a problem in this class is regular languages, which can be decided using a finite
state machine. The running time of such algorithms is directly proportional to the length of the input.

There are other classes of problems as well. For example, the class "time N squared" represents problems that
can be decided in n squared time. Similarly, the class "time N cubed" represents problems that can be decided
in n cubed time. Context-free languages, a larger class of problems, can be decided in n cubed time.

It is worth noting that there is also a class called "time log N," which contains problems that can be decided in
logarithmic time. This class should be placed before "time N squared" because all n log n algorithms are also n
squared. However, there are n squared algorithms that are not in log n.

In general, we can say that the time complexity classes can be ordered as follows: linear, log n, n squared, n
cubed, and so on. Exponential time complexity is a class that encompasses problems that require an
exponential amount of time to be solved.

It is important to highlight that all linear algorithms are also in log n. However, there are some n log n
algorithms that are not linear. Similarly, there are n squared algorithms that are not in log n. The class of
problems that can be solved in polynomial time, regardless of the exponent, is called the set of all polynomial
solvable problems.

Above all these classes, we have the class of exponential time, which includes problems that can only be solved
in exponential time. These problems cannot be solved in polynomial time.

It is worth mentioning that there are some algorithms that seemingly run only in exponential time, but this is
not always the case. The analysis of such algorithms and their complexity will be discussed in subsequent
materials.

Time complexity and the use of big-O notation allow us to analyze and categorize problems based on their
computational requirements. Understanding these concepts is important in the field of cybersecurity and
computational complexity theory.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: COMPLEXITY
TOPIC: COMPUTING AN ALGORITHM'S RUNTIME

In this material, we will analyze the time complexity of a specific algorithm used to determine if a given string of
zeros and ones follows a specific pattern. The algorithm uses a Turing machine to scan the input tape and count
the number of zeros and ones in order to check if they are equal. Let's break down the algorithm and analyze its
running time.

First, the Turing machine scans the input tape from left to right to ensure that the string consists of zeros
followed by ones. This initial scan takes n steps, where n represents the size of the input.

Next, the machine goes back to the beginning of the tape and enters a loop. In each iteration of the loop, the
machine scans across the tape and changes the first zero it encounters into an X, and does the same for the
first one it encounters. After each scan, the machine returns to the left end of the tape. This scanning and
changing process continues until there are no more zeros or ones left on the tape. The loop terminates when
either all the zeros or all the ones have been crossed off. The time complexity of this loop is order n, as it takes
n steps to scan the tape and change the symbols.

The number of times the loop is executed depends on the number of characters in the input string. Since we are
crossing off two characters in each iteration and there are n characters to start with, the loop will repeat n/2
times. Therefore, the overall time complexity of the loop is order n squared.

Finally, after the loop terminates, the algorithm verifies that all the zeros and ones have been crossed off by
making one more pass across the tape. This step takes n steps.

The algorithm's time complexity can be expressed as order n + order n squared + order n, which simplifies to
order n squared. This means that the running time of the algorithm grows quadratically with the size of the
input.

By analyzing the time complexity of this algorithm, we can gain insights into its efficiency and understand how
it scales with larger inputs.

As previously discussed, the complexity of an algorithm is often represented using Big O notation, which
describes the upper bound of the algorithm's runtime as a function of the input size.

One way to analyze the runtime of an algorithm is by considering the order of operations. By combining the
orders of individual operations, we can determine the overall complexity of the algorithm. For example, if an
algorithm has an order of N for one operation, an order of N squared for another operation, and an order of N for
a third operation, the dominant term is N squared. Therefore, the algorithm runs in order N squared time, and
we can say that the complexity of this algorithm is N squared.

However, it is possible to have multiple algorithms that solve the same problem with different runtimes. In the
case of the algorithm we just discussed, it turns out that there is a better algorithm that is faster in solving the
same problem.

Let's take a look at this better algorithm and analyze its runtime. The algorithm begins by scanning the input to
ensure that it is in the form of a sequence of zeros followed by a sequence of ones without any out-of-order
elements. Then, it enters a repeat loop that continues as long as the tape contains at least one occurrence of
"010" and at least one occurrence of "1".

The body of this loop is different from the previous algorithm. It scans the tape to determine whether the total
number of zeros and ones is odd or even. It checks if the length of the string is an even number, which should
be the case if the string is a member of the set we are interested in. If the length is odd, the algorithm rejects
the string. Otherwise, it proceeds to cross off every other zero and every other one on the tape, changing them
into "X".

After crossing off the zeros and ones, the algorithm scans the tape once again to ensure that no zeros or ones
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remain. If this condition is met, the algorithm accepts the string; otherwise, it rejects it.

Now, let's analyze the time complexity of this algorithm. The first step, which involves scanning the input, runs
in linear time, as it scans all the input characters and returns to the starting position. This step has an order of
N.

The next step, which scans the tape to determine if the total number of zeros and ones is odd or even, can be
done using a deterministic finite state automaton. This step has an order of N or in other words, linear time.

The step that checks if the number is odd and rejects immediately has a constant time complexity, as it does
not depend on the size of the input.

The final step, which involves crossing off every other zero and every other one, requires scanning the entire
tape once and returning to the beginning. This step also has an order of N, or linear time.

Therefore, the entire body of the loop has a linear time complexity. The number of iterations of the loop
depends on the specific input, but the overall complexity is still linear.

We have analyzed the runtime of this algorithm and determined that it runs in linear time. This means that the
algorithm is more efficient than the previous algorithm, which had a runtime of N squared. By providing a faster
algorithm to solve the same problem, we have shown that this problem is a member of the set of linear time
problems.

In the previous material, we discussed an algorithm for solving a specific problem and analyzed its runtime
complexity. The problem involved crossing off zeros and ones in a sequence until no elements remained. The
algorithm followed a specific pattern: in each pass, we crossed off every other element starting with the first
one. This process was repeated until no elements were left.

To analyze the runtime of this algorithm, we focused on the number of times we changed an element into an
"X". This number was represented by the variable "X" in the material. We observed that the number of "X"s
doubled with each pass. For example, if we started with one "X" in the first pass, we would have two "X"s in the
second pass, four "X"s in the third pass, and so on. This exponential growth in the number of "X"s was due to
the fact that we were reducing the number of elements by half in each pass.

To determine the number of steps required to reduce every other element, we looked at the reverse direction -
from the number of zeros to the number of steps. We found that the number of steps required was a logarithmic
function of the number of zeros. Specifically, it was the logarithm base 2 of the number of zeros.

Therefore, the number of repetitions of the algorithm was calculated as 1 plus the logarithm base 2 of the
number of elements (n). This logarithmic function represented the number of steps required to execute the
algorithm.

In each iteration of the algorithm, the body of the loop took O(n) time. Since we had log(n) repetitions, the total
number of steps required to execute the entire loop was O(n log(n)).

Finally, we had the last step where we scanned for zeros and ones to ensure that no elements remained. This
step had a runtime complexity of O(n).

We have found an algorithm that solves the given problem in O(n log(n)) time complexity. This means that the
problem belongs to a more restrictive complexity class - the time complexity class O(n log(n)). Previously, we
had an algorithm with a time complexity of O(n”~2), which placed the problem in a less restrictive complexity
class. However, with the new algorithm, we can demonstrate that the problem is in the O(n log(n)) complexity
class.
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LESSON: COMPLEXITY
TOPIC: TIME COMPLEXITY WITH DIFFERENT COMPUTATIONAL MODELS

In the field of cybersecurity, understanding computational complexity theory is essential. One aspect of this
theory is time complexity, which refers to the amount of time it takes for an algorithm to run. In this didactic
material, we will explore how different computational models can affect the time complexity of algorithms.

Let's start by considering a Turing machine with multiple tapes. This model allows for faster computation
compared to a Turing machine with a single tape. For example, if we have an algorithm that determines
whether an input consists of a string of zeros followed by an equal number of ones, the time complexity can be
improved using a Turing machine with two tapes.

To illustrate this, let's sketch out the algorithm. Initially, the input is placed on the first tape, and the second
tape is left blank. The algorithm starts by scanning the first tape and copying all the zeros to the second tape.
Once the first one is encountered, the tape head is repositioned to the left end of the second tape. Then, both
tapes are scanned simultaneously, ensuring that the first tape head sees a one and the second tape head sees
a zero. If this is a valid input, both tape heads will reach the last symbol at the same time. Finally, it is
necessary to ensure that both tape heads hit the blank symbol simultaneously.

Analyzing the running time of this algorithm, we find that copying all the zeros takes O(n/2) time, where n is the
length of the input. Repositioning the tape heads takes O(n/2) time. Scanning both tapes simultaneously
requires going through O(n/2) transitions. The time complexity of this algorithm is O(n).

Comparing this to the time complexity of the same algorithm implemented on a single tape Turing machine, we
find that it would take O(n log n) time. Therefore, using a multi-tape Turing machine allows for a faster
execution of this algorithm.

However, it is important to note that a multi-tape Turing machine can be simulated on a single tape Turing
machine. This simulation would take O(T"2) time, where T is the time complexity of the multi-tape Turing
machine algorithm. This means that although the same algorithm can be executed on a single tape machine, it
would take longer.

The model of computation used can have a significant impact on the running time of algorithms. Having a multi-
tape Turing machine can lead to faster execution in many cases. However, it is possible to simulate a multi-tape
Turing machine on a single tape machine, albeit with a longer execution time.

It is important to understand that while the choice of computer or computational model can make a difference,
the variations between different machines are relatively small. Additionally, it is important to note that the
complexity of an algorithm remains the same regardless of the details of the computational model. An algorithm
that takes polynomial time will continue to take polynomial time, regardless of the specific model of
computation.

In the study of computational complexity theory, it is important to understand the concept of time complexity
with different computational models. When analyzing the efficiency of algorithms, we often consider how the
running time of an algorithm grows with the size of the input.

In the case of deterministic machines, such as single tape Turing machines or multi-tape Turing machines, the
time complexity can be expressed as a polynomial function of the input size. For example, moving from a single
tape Turing machine to a multi-tape Turing machine might result in a speed-up of N squared, where N
represents the input size. Despite these differences, all deterministic models of computation fall within the class
of polynomial time algorithms. This class is robust and well-defined, as the actual details of the computational
model do not significantly impact the time complexity.

However, when we move into the realm of non-deterministic machines, the concept of running time needs to be
redefined. For deterministic Turing machines, the running time is simply the number of steps taken by the
machine. For non-deterministic Turing machines, we define the running time as the number of steps used on
the longest branch of computation. It is important to note that we are considering decidable algorithms, where
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all branches of computation terminate. The running time is measured based on the length of the longest branch
in the computation history.

Non-deterministic Turing machines can be simulated on deterministic Turing machines, but this simulation
generally requires exponentially more steps. To illustrate this, let's consider an example. If a non-deterministic
Turing machine takes 419 steps on a given input, the deterministic simulation can be done, but it would require
2 to the power of 419 steps. This exponential growth occurs because at each step of the computation, there are
two non-deterministic choices. As a result, the tree of possible branches grows exponentially.

In general, if a non-deterministic Turing machine can perform an algorithm in N squared time, the deterministic
simulation would require exponentially more steps, specifically 2 to the power of N squared. This exponential
increase in the number of steps highlights the significant difference between non-deterministic and
deterministic machines in terms of time complexity.

Understanding time complexity with different computational models is important in the field of computational
complexity theory. While deterministic models fall within the class of polynomial time algorithms, non-
deterministic models introduce exponential growth in the number of steps required for simulation. This
distinction emphasizes the importance of considering the computational model when analyzing the efficiency of
algorithms.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: COMPLEXITY
TOPIC: TIME COMPLEXITY CLASSES P AND NP

The class P is an important complexity class in computational complexity theory. It consists of languages that
can be decided in polynomial time on a deterministic Turing machine. In other words, it includes problems that
can be solved by deterministic Turing machines in polynomial time. This class encompasses problems that can
be solved in polynomial time, such as the path problem.

The path problem is an example of a problem in class P. It involves determining whether there is a path from
one node to another in a directed graph. For example, given a graph with nodes labeled as s and T, the path
problem asks if there is a path from node s to node T. To solve this problem, we can use a marking algorithm.
Starting from the given node, we mark it and then proceed to mark the nodes that can be reached from it. By
repeating this process, we can determine if there is a path between the two nodes. The running time of this
algorithm is polynomial, specifically O(N~2), where N is the number of nodes in the graph.

Another example of a problem in class P is parsing a context-free grammar. Although most context-free
grammars can be parsed more efficiently, there is an algorithm that can parse any context-free grammar in
O(N~3) time, where N is the size of the input. This algorithm is an example of a dynamic programming
algorithm, where partial results are stored in a table to avoid recomputation. By solving smaller subproblems
and combining their solutions, we can parse larger context-free grammars efficiently.

It is worth mentioning that every context-free language is in class P. This is because there exists an algorithm to
parse any context-free grammar in polynomial time, even though the worst-case running time is O(N”3). This
algorithm utilizes dynamic programming techniques to build a table of partial results, which can be consulted to
avoid redundant computations.

The Hamiltonian path problem is another interesting problem that is similar to the path problem. However,
there is an important difference between these two problems. The Hamiltonian path problem asks if there is a
path that goes through every node in a directed graph exactly once. This problem is not in class P and belongs
to a different complexity class called NP. The distinction between P and NP is a fundamental concept in
computational complexity theory.

The class P consists of problems that can be solved in polynomial time on a deterministic Turing machine. It
includes problems such as the path problem and parsing context-free grammars. On the other hand, the
Hamiltonian path problem is an example of a problem that is not in class P and belongs to the complexity class
NP.

In computational complexity theory, the study of time complexity classes P and NP is important. In this context,
we consider the problem of finding a Hamiltonian path in a directed graph. A Hamiltonian path is a path that
visits each node exactly once and starts from a specified starting node and ends at a specified ending node. The
question is whether there exists a Hamiltonian path from a given starting node to a specified ending node,
passing through all nodes exactly once.

To illustrate this problem, let's consider an example graph. We want to determine if there is a path from node 1
to node 8 that goes through every possible node. We can visualize this graph with arrows connecting the nodes.
Let's outline a possible path: 1 ->3->5->4->2->6->7 -> 8. Thispath, 1 354 2 6 7 8, is a Hamiltonian
path. The number of digits in this path corresponds to the number of nodes in the graph, which in this case is 8.
Finding this path and announcing its existence is the goal of the Hamiltonian path problem.

It is important to note that the Hamiltonian path problem is different from the previous path problem we
discussed, which was in class P. The previous problem had a polynomial time algorithm to find a path. However,
the Hamiltonian path problem is an exponential problem. Although we can provide an algorithm that solves it in
exponential time, the question of whether it can be solved in polynomial time remains unanswered.

In the case of a graph with n nodes, a solution or path is represented as a string of node names. One approach
to solving the Hamiltonian path problem is to generate all possible paths, which is an exponential number of
paths. Then, we can test each path to determine if it is a legal path. This testing can be done in polynomial
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time. For example, we can check if we can go from node 1 to node 2, then from node 2 to node 3, and so on. By
testing each possible path, we can find a path through the graph if one exists.

The challenge lies in the fact that there are exponentially many possible paths, making it difficult to find an
efficient algorithm. The best algorithm we have for this problem requires exponential time. Therefore, it seems
that the Hamiltonian path problem requires exponential time, despite its similarity to the previous path
problem, which only required polynomial time.

The Hamiltonian path problem is an example of a problem that falls into the complexity class NP. Problems in
NP seem to require exponential time, as they have exponential time solutions. However, it is important to note
that we cannot find a polynomial time solution for these problems, nor can we prove that one does not exist.
Thus, it remains unclear whether these problems are also in class P.

The Hamiltonian path problem is a fundamental problem in computational complexity theory. It involves finding
a path in a directed graph that visits each node exactly once. Although it requires exponential time to solve, we
can verify a given path in polynomial time. This problem falls into the complexity class NP, which consists of
problems that seem to require exponential time but for which we cannot prove the non-existence of a
polynomial time solution.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: COMPLEXITY
TOPIC: DEFINITION OF NP AND POLYNOMIAL VERIFIABILITY

In the field of cybersecurity and computational complexity theory, it is important to understand the fundamental
concepts related to complexity and the definition of NP (Non-deterministic Polynomial Time). In this didactic
material, we will explore the concept of polynomial verifiability, the relationship between the classes P and NP,
and provide a formal definition of NP.

Polynomial verifiability is a concept that plays a significant role in defining the class NP. A verifier is an
algorithm that is provided with additional information denoted as 'C'. This verifier algorithm uses this extra
information along with the input string 'W' to check and verify if 'W' belongs to a specific language 'A'.
Essentially, the verifier algorithm confirms whether the solution to a given problem is correct or not. For
example, in the Hamiltonian path problem, the verifier algorithm can verify if a given path is a Hamiltonian path
by checking its legality and ensuring that all nodes in the graph are included in the path.

The formal definition of a verifier states that a language 'A' is defined as the set of all strings 'W' for which there
exists a string 'C' such that the verifier algorithm accepts 'W' when provided with 'C'. The string 'C' is referred to
as the certificate or proof. A verifier algorithm is considered polynomial time if it runs in polynomial time with
respect to the length of the string 'W'. Therefore, a language is said to be polynomial verifiable if it has a
polynomial time verifier.

Now, let's consider the definition of the class NP. There are two equivalent definitions for NP, and we will present
one as the definition and the other as a theorem. NP is the class of languages that have polynomial time
verifiers. This means that if a language has a verifier algorithm that runs in polynomial time, it belongs to the
class NP. The Hamiltonian path problem, for instance, has a polynomial time verifier, making it a member of the
class NP.

The alternative definition of NP involves non-deterministic Turing machines. A language is in the class NP if and
only if it can be decided by a non-deterministic polynomial time Turing machine. In other words, if a problem
can be solved by a Turing machine that allows non-determinism and runs in polynomial time with respect to the
input length, it falls into the class NP. It is important to note that non-deterministic Turing machines have more
computational power compared to deterministic ones.

To summarize, polynomial verifiability is a important concept in defining the class NP. A verifier algorithm uses
additional information to verify if an input string belongs to a specific language. NP is the class of languages
that have polynomial time verifiers or can be decided by non-deterministic polynomial time Turing machines.
Understanding these concepts is essential in the field of cybersecurity and computational complexity theory.

A Turing machine can have a computation history that forms a tree with multiple branches, but all branches
eventually terminate. The longest branch in this tree is polynomial in length with respect to the input length.
These properties define the class NP. One definition states that NP is the set of problems that can be decided in
polynomial time on a non-deterministic Turing machine. The other definition presents NP as the class of
languages that have polynomial time verifiers. A verifier algorithm can determine the correctness of a given
input and hint (such as a solution) in polynomial time.

To prove the equivalence of these two definitions, we need to show two directions. In the first direction, given a
polynomial time verifier, we need to demonstrate the existence of an equivalent polynomial time non-
deterministic Turing machine. Conversely, in the second direction, assuming a polynomial time non-
deterministic Turing machine, we must construct a polynomial time verifier.

For the first direction, we can convert a polynomial time verifier into an equivalent polynomial time non-
deterministic Turing machine. We achieve this by non-deterministically guessing a string, C, which is at most
polynomial in length with respect to the input. Then, we run the verifier algorithm as a subroutine on the input
and the guessed string. If the verifier accepts, we accept; otherwise, we reject. Since we can guess the
certificate in polynomial time, this process can be completed in polynomial time.

In the second direction, given a polynomial time non-deterministic Turing machine, we need to construct a
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polynomial time verifier. The verifier takes an input, W, and a certificate, C. We simulate the non-deterministic
Turing machine by following a specific path determined by the certificate C. The certificate provides guidance
on which choices to make at each step of the computation. If the simulation on this branch of the computation
accepts, the verifier accepts; otherwise, it rejects.

We have proven that the two definitions of the class NP are equivalent. NP can be defined as the class of
languages that have polynomial time verifiers, where an algorithm can determine the correctness of an input
and hint in polynomial time. Alternatively, NP can be defined as the class of languages that can be decided in
polynomial time by a non-deterministic Turing machine.

The class P in computational complexity theory refers to the class of languages for which membership can be
decided quickly. By quickly, we mean in polynomial time with respect to the length of the input. On the other
hand, the class NP refers to the class of languages for which membership can be verified quickly. Verification in
this context means that given some extra information, which we call the certificate, we can quickly confirm that
a particular input is in the language.

To understand this concept better, let's consider the example of the Hamiltonian path problem. If we are given
just a graph and the starting and ending nodes, we need to decide whether a Hamiltonian path exists. This is a
difficult question to answer unless we have additional information, such as the actual path itself. In this case,
the path itself serves as the certificate or proof that the graph contains a Hamiltonian path. Thus, membership
in the class P can be decided quickly with no other information, while membership in the class NP can be
verified quickly with additional information.

In computational complexity theory, we define classes of languages that can be decided by deterministic and
non-deterministic Turing machines. For example, the class of languages that can be decided by a deterministic
Turing machine in O(N"™2) time refers to the set of languages that can be decided by a deterministic Turing
machine in quadratic time. Similarly, we can define classes of languages that can be decided by non-
deterministic Turing machines in various time complexities.

To formalize this notation, we use the notation "in time T" where T is some function. This refers to the set of all
languages that can be decided by a non-deterministic Turing machine algorithm in order T time. For example,
the class NP can be defined as the union of all problems that can be decided in polynomial time for any
polynomial by a non-deterministic Turing machine.

Let's consider another example of a problem in NP called the clique problem. In this problem, we are given an
undirected graph and we need to determine if it contains a clique of a certain size. A clique is a set of nodes in
which every node is connected to every other node in the set. For example, a 5-clique refers to a set of nodes in
which every node is connected to the other four nodes.

To solve the clique problem, we are given a graph and a number, and we need to determine if the graph
contains a clique of that size. For example, if we are given a graph and the number 5, we need to determine if
the graph contains a 5-clique. If it does, the answer is yes, and if it doesn't, the answer is no.

It is worth noting that the clique problem is in the class NP, which means that membership in this problem can
be verified quickly with a certificate. In this case, the certificate would be a set of nodes that form a clique in the
graph.

Computational complexity theory defines classes of languages based on the time complexity required to decide
or verify membership in those languages. The class P refers to languages that can be decided quickly, while the
class NP refers to languages that can be verified quickly with additional information. We can define these
classes using deterministic and non-deterministic Turing machines and analyze specific problems, such as the
cliqgue problem, within these classes.

The class NP (Nondeterministic Polynomial time) is a class of problems that can be proven to belong to NP in
two ways. One way is by providing a polynomial time verifier, and the other way is by providing a polynomial
time non-deterministic Turing machine that can decide the problem. This approach applies to not only the clique
problem but also many other problems in NP.

To understand the definitions of P and NP, we need to know that P is the class of all languages that can be

** * %
. El'l'[: | © 2024 European I'I_' Certification InstlFute 165/176
* EITCI, Brussels, Belgium, European Union

* p K


https://eitca.org
https://eitca.org/certification/eitc-is-cctf-computational-complexity-theory-fundamentals/
https://eitci.org

EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS [

OE(TE

EUROPEAN IT CERTIFICATION CURRICULUM SELF-LEARNING PREPARATORY MATERIALS

decided in polynomial time on a deterministic Turing machine. On the other hand, NP is the class of all
languages that can be decided in polynomial time on a non-deterministic Turing machine. In simpler terms, P
represents problems that can be solved efficiently using a deterministic algorithm, while NP represents
problems that can be solved efficiently using a non-deterministic algorithm.

The question of whether P equals NP or not is an unsolved problem in computer science. It is considered the
most well-known unsolved question in the field. There are two possibilities: either the set of problems in P is
equal to the set of problems in NP, or the set P is a proper subset of NP, meaning there are problems in NP that
are not in P. It seems that the latter condition holds, as there are problems in NP for which we only have
exponential time algorithms, while we lack polynomial time algorithms to solve them. However, it is surprising
that we still don't have a definitive proof for either case.

There are many problems known to be in NP, such as the clique problem and the Hamiltonian path problem, but
we have not found polynomial time solutions for these problems on a deterministic Turing machine. These
problems seem to require exponential time to solve, but we cannot be certain. It is still unknown whether
problems like the Hamiltonian path problem, clique problem, or the satisfiability problem are in P or not.

Currently, there is a million-dollar prize offered to anyone who can prove either that P equals NP or that P is not
equal to NP. It is possible that the reason we haven't solved this problem yet is because we might not be
approaching it in the right way. Sometimes, unknown problems get solved later on when the understanding of
the field increases or changes. It is also possible that the question itself is ill-formed or doesn't make sense, and
we might have overlooked something.

The consensus among experts is that the sets P and NP are different, and problems like the Hamiltonian path
problem and the clique problem require exponential time to solve unless we allow the use of a non-deterministic
Turing machine. However, we cannot definitively say that these problems require exponential time. There is still
ongoing research and exploration in the field to better understand these complex problems.

In the field of cybersecurity, understanding computational complexity theory is important. One fundamental
concept in this theory is the definition of NP and polynomial verifiability.

NP refers to the set of problems that can be solved in polynomial time. On the other hand, polynomial
verifiability refers to the set of all problems that can be solved in exponential time on a deterministic Turing
machine.

It is important to note that P is a subset of NP, but the question remains whether it is a proper subset or not.
This is because every deterministic machine is also a non-deterministic machine. Additionally, problems in NP
can be solved by simulating a non-deterministic Turing machine in exponential time.

There are two possibilities regarding the relationship between P and NP. The first is that these two classes are
equal, but everything in NP requires exponential time on a deterministic Turing machine. The second possibility
is that problems in NP can be solved in polynomial time on a deterministic Turing machine, without requiring
exponential time.

At present, there is no proof for either of these cases. However, it is leaning towards the first case being true.

To better understand these concepts, let's look at the language onion. At the bottom, we have regular
languages, which can be decided in linear time. Moving up, we have context-free languages, which can be
decided in order n cubed time. These are proper subsets of each other.

In the context of complexity theory, we have the class P, which represents problems that can be solved in
polynomial time on a deterministic Turing machine. On the other hand, we have the class X time, which
represents problems that can be decided in exponential time on a deterministic Turing machine.

Lastly, we have the class NP, which is not clearly defined yet. It is likely that NP represents the set of problems
that require exponential time on a polynomial Turing machine, but this has not been proven. Hence, the
question mark.

The concept of NP and polynomial verifiability is essential in computational complexity theory. Understanding
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the relationship between P and NP and the different classes of languages helps us analyze the complexity of
problems in the field of cybersecurity.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: COMPLEXITY
TOPIC: NP-COMPLETENESS

The topic of this didactic material is computational complexity theory, specifically focusing on the fundamentals
of complexity and NP-completeness. In computational complexity theory, there is a class of problems called NP-
complete problems, which are distinct from NP problems. NP-complete problems are a subset of NP problems.

To define the set of NP-complete problems, we look for polynomial time algorithms on deterministic machines. If
a polynomial time algorithm is found for any problem in the NP-complete subset, it implies that P (polynomial
time) equals NP. However, it is widely believed that P does not equal NP. Therefore, it is unlikely that a
polynomial time algorithm will be found for any NP-complete problem.

If P does equal NP, it would mean that polynomial time algorithms exist for all problems in NP. However, many
problems in NP are considered difficult or even impossible to solve efficiently. These problems typically require
exponential time to solve. Researchers have searched for polynomial time algorithms for these problems, but
none have been found so far.

Now, let's focus on NP-complete problems specifically. If a polynomial time algorithm is discovered for an NP-
complete problem, it not only solves that problem efficiently, but it also proves the existence of a polynomial
time algorithm for all problems in NP. Therefore, classifying a problem as NP-complete implies that it truly
belongs to the NP class and finding a polynomial time algorithm for it would have significant implications.

Many interesting problems, such as the Hamiltonian path problem and the clique problem, are classified as NP-
complete. These problems are believed to require exponential time to solve on a deterministic machine. If a
polynomial time algorithm is found for any of these problems, it would not only solve the specific problem
efficiently, but also prove that P equals NP. This would be a groundbreaking result and would earn the
discoverer a million-dollar prize.

Before discussing the relationship between NP-complete problems and the entire class of NP, it is important to
understand the satisfiability problem, also known as SAT. In the context of propositional logic, a boolean formula
consists of boolean variables, boolean operations (AND, OR, NOT), and constants (true and false). The
satisfiability problem asks whether there exists an assignment of true and false values to the variables that
makes the entire formula true.

For example, consider the formula "not x AND y OR not y AND z". To determine if this formula is satisfiable, we
need to find assignments of true and false to the variables x, y, and z that make the formula true. In this case,
we can assign Y as true, X as false, and Z as true, which satisfies the formula.

NP-complete problems are a subset of NP problems and are believed to be difficult to solve efficiently. If a
polynomial time algorithm is found for any NP-complete problem, it would imply that P equals NP. Many
interesting problems fall into the NP-complete category, and finding a polynomial time algorithm for any of
these problems would have significant implications. The satisfiability problem is an important concept in
computational complexity theory, as it helps us understand the nature of NP-complete problems.

The problem we are discussing is the satisfiability problem (SAT), which deals with determining if a given
boolean formula is satisfiable. In other words, we want to know if there exists an assignment of truth values to
the variables in the formula that makes the formula evaluate to true. This problem is known to be in the
complexity class NP.

To understand why SAT is in NP, we can use a non-deterministic polynomial time machine. We can guess a
potential solution, which is an assignment of truth values to the variables, and then verify if this assignment
satisfies the given boolean formula. The verification process can be done in polynomial time. Therefore, SAT is
in NP.

On the other hand, it is believed that if we can solve SAT in polynomial time on a deterministic Turing machine,
it would imply that the complexity classes P and NP are equal. This is known as the P versus NP problem, which
remains an unsolved question in computer science.
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If we can prove that P equals NP, it means that all problems in NP have polynomial time algorithms. This would
have significant implications, as it would imply that many problems that currently require exponential time to
solve actually have polynomial time solutions. This would revolutionize the field of computer science and make
the person who solves it instantly famous.

It is worth noting that SAT is an NP-complete problem, which means that if we can find a polynomial time
solution for SAT, it would prove that P equals NP. The concept of NP-completeness was introduced with the
study of SAT, and it has had a profound impact on the field of computational complexity theory.

The satisfiability problem (SAT) is a fundamental problem in computational complexity theory. It is in the
complexity class NP, and if we can solve it in polynomial time, it would prove that P equals NP. This would have
far-reaching implications for the field of computer science.
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EITC/IS/CCTF COMPUTATIONAL COMPLEXITY THEORY FUNDAMENTALS DIDACTIC MATERIALS
LESSON: COMPLEXITY
TOPIC: PROOF THAT SAT IS NP COMPLETE

In this material, we will present the proof that the satisfiability problem is NP-complete. Before we consider the
complex proof, let's briefly review how we established the undecidability of the post correspondence problem
using reduction.

To demonstrate the undecidability of the post correspondence problem, we employed reduction from the Turing
machine acceptance problem (ATM). We knew that ATM was undecidable, and by reducing ATM to an instance
of the post correspondence problem, we proved the undecidability of the latter. This reduction involved
simulating the execution of a Turing machine with tiles in the post correspondence problem. The computation
history, which represents the sequence of configurations of the Turing machine, was transformed into a
sequence of tiles. Solving the post correspondence problem was equivalent to finding an accepting computation
history.

Now, let's focus on proving that the satisfiability problem is NP-complete. Our objective is to demonstrate that
satisfiability can be solved in polynomial time if and only if P equals NP. To understand NP, we define a problem
to be in the class NP if there exists a non-deterministic Turing machine that can solve it in polynomial time.

To convert a problem in NP into an instance of the satisfiability problem, we need to transform the non-
deterministic Turing machine and its input into a boolean formula. The satisfiability problem involves finding an
assignment of true and false values to the variables in the formula that makes the entire formula true. This
conversion can be done in polynomial time, resulting in a large boolean formula that is still polynomial in length.

The key idea is to create a branch in the non-deterministic computation that accepts if and only if the boolean
formula is satisfiable. By solving the satisfiability problem in polynomial time, we can solve any problem in NP in
polynomial time. If we have a problem in NP, it means we have a non-deterministic Turing machine that runs in
polynomial time and an input that represents the nature of the problem. The goal is to determine whether the
non-deterministic Turing machine accepts the input, and this can be accomplished by solving the converted
boolean formula in polynomial time.

To summarize, the theorem states that the satisfiability problem is NP-complete, also known as the Cook-Levin
theorem. It asserts that any problem in NP can be reduced to the satisfiability problem, and this reduction can
be performed in polynomial time. If the satisfiability problem can be solved in polynomial time on a
deterministic machine, it implies that any problem in NP can be solved on a deterministic Turing machine in
polynomial time, thus establishing P equals NP.

Given a problem in NP, we need to convert it into a boolean formula. This involves taking a non-deterministic
Turing machine, denoted as 'n', and an input, denoted as 'W'. Our goal is to create a boolean formula, denoted
as 'g', such that '@' is satisfiable if and only if the non-deterministic Turing machine accepts the input 'W'. In
other words, if 'n' accepts 'W', then '¢' is satisfiable, and if '@’ is satisfiable, then 'n' accepts 'W'.

The length of the input 'W' is characterized by 'n', while the non-deterministic Turing machine 'n' can take at
most polynomial steps, denoted as 'K'. Additionally, the tape size of the accepting computation history in 'n' is
limited to 'n~K' tape cells.

To convert the problem into a boolean formula, we create a tableau, which is essentially a large table. This
tableau has 'n”K' rows and 'n”K' columns, making it 'n”~K' by 'n”~K' cells. Each cell in the table represents a
potential value and will be filled with a boolean variable.

The next step is to create a formula that expresses the constraints on the table and the values in the cells. This
formula ensures that the table will model a legal accepting computation history. We create boolean variables to
represent the potential values in each cell and use these variables to define the constraints.

The tableau represents the accepting computation history and consists of cells that can contain a pound sign
(#), a state, or a symbol from the tape alphabet. Each row in the table corresponds to a configuration of the
tape. The first row represents the initial configuration, where the Turing machine starts in state 'q0' and the first
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'n' cells of the tape contain the input 'W'. The remaining cells are blank.

Since we are only considering one branch in the non-deterministic history of computation, we only need 'n"~K'
cells on the tape. This is because in any one branch, we can only move a polynomial number of cells to the
right. Hence, the tape size is limited to 'n~K' cells, plus the pound sign to mark the end of the tape, the pound
sign to mark the left end of the tape, and a single cell to hold the state. Therefore, we need 'n~K + 3' cells in
total.

The goal is to determine whether an accepting computation history exists and whether we can find it in
polynomial time. This involves checking if there is a table that satisfies the constraints.

To convert a problem in NP into a boolean formula, we create a tableau representing the accepting computation
history. Each cell in the tableau is filled with a boolean variable representing a potential value. We then create a
formula that expresses the constraints on the table and the values in the cells. This formula ensures that the
table will model a legal accepting computation history. By checking if there is a satisfying assignment for the
boolean formula, we can determine if an accepting computation history exists.

In the field of computational complexity theory, one fundamental concept is the proof that the Boolean
satisfiability problem (SAT) is NP-complete. This proof is essential in understanding the complexity of various
computational problems and forms the basis for many other important results in the field.

To understand the proof, we first need to introduce the notion of a computation history. In the context of a
Turing machine, a computation history represents the sequence of configurations that the machine goes
through during its computation. Each configuration consists of the state of the machine, the symbols on the
tape, and the position of the tape head.

To prove that SAT is NP-complete, we construct a logical formula that expresses constraints on a hypothetical
computation history. The formula is designed in such a way that if it is satisfiable, it means that a valid
computation history exists. This means that there is a table that describes a legal computation history that ends
with an acceptance state.

To build the logical formula, we create boolean variables for each cell in the table. These variables represent the
possible symbols that can be present in each cell, such as 0, 1, blank, pound sign, or a state symbol. For
example, for the cell at position (5, 8), we would have variables like x58 0, x58_1, x58_blank, x58 pound, and
x58_qg4.

We then impose four types of constraints on the formula. The first type ensures that each cell contains exactly
one symbol. This is achieved by making sure that only one of the variables corresponding to a cell is true. The
second type of constraint specifies the starting configuration of the Turing machine, where the initial state is q0
and the tape consists of the input followed by blanks. The third type of constraint guarantees that there is an
accepting configuration in the computation history, meaning that at some point, a cell contains the symbol
g_accept. Finally, the fourth type of constraint ensures that each row in the computation history can legally
follow the row above it according to the transitions of the non-deterministic Turing machine being modeled.

By constructing the logical formula with these constraints, we can determine whether a valid computation
history exists. If the formula is satisfiable, it means that the constraints can be met and a table can exist that
describes a legal computation history. On the other hand, if the formula is unsatisfiable, it implies that no such
table exists, and therefore, no valid computation history can be achieved.

This proof that SAT is NP-complete is of great significance in computational complexity theory. It demonstrates
the inherent difficulty of solving the SAT problem and establishes a connection between SAT and other NP-
complete problems. Understanding this proof is important for researchers and practitioners in the field of
cybersecurity, as it provides insights into the computational complexity of various security-related problems.

The proof that the Boolean formula SAT is NP-complete lies in constructing a formula called fee, which
represents the constraints of a non-deterministic Turing machine. Fee is composed of several parts, including
fee cell, fee start, fee accept, and fee move.

The fee cell constraint ensures that every cell in the table contains exactly one symbol. The fee start constraint
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ensures that the first row represents a valid starting configuration. The fee accept constraint ensures that the
configuration reaches an accept state. Finally, the fee move constraint ensures that each configuration follows
the previous configuration according to the rules of the Turing machine.

The entire formula fee is a conjunction of these constraints, represented by the logical AND symbol. Although
fee can be quite large, it is polynomial in size relative to the input W.

If the Boolean formula fee has a solution, it means there exists an accepting computation history for the non-
deterministic Turing machine. Conversely, if there is an accepting computation history, then fee has a solution.

By determining whether fee has a solution in polynomial time, we can determine whether a non-deterministic
Turing machine will accept the input W. This means that if we can solve the satisfiability problem in polynomial
time, it implies that P equals NP.

To complete the proof, we need to show how to construct the boolean formula fee. Each piece of fee, namely
cell, start, accept, and move, describes the requirements for a table to be a legal computation history.

The first constraint, fee cell, ensures that every cell contains exactly one symbol. This is necessary due to the
representation of cells in the table.

The second constraint, fee start, ensures that the first row represents a valid starting configuration.
The third constraint, fee accept, ensures that the configuration reaches an accept state.

The final constraint, fee move, ensures that each row in the configuration table is a legal configuration that
follows from the previous configuration according to the rules of the Turing machine.

Each of these constraints is conjoined together with the + sign in the formula fee.

The proof that SAT is NP-complete involves constructing a boolean formula fee that represents the constraints
of a non-deterministic Turing machine. By determining whether fee has a solution in polynomial time, we can
determine whether a non-deterministic Turing machine will accept a given input. If we can solve the
satisfiability problem in polynomial time, it implies that P equals NP.

In the field of computational complexity theory, the concept of complexity is of utmost importance. One
fundamental problem in this field is the proof that the Boolean satisfiability problem (SAT) is NP-complete. In
order to understand this proof, we need to introduce some notation.

Let's consider a table with cells indexed by | and J, where each cell can contain a state symbol, a tape symbol,
or the pound sign. We can express the fact that at least one of these symbols is true using a summation
notation. For each symbol S, ranging over all possible symbols, we have a constraint that either S is false or not
S is false.

Now, for every pair of variables in a given cell, at least one of them must be false. This means that a cell cannot
contain two symbols at the same time. This constraint can be expressed by combining the two pieces of
information with an "and" operator. We need to apply this constraint to all cells in the table.

Additionally, we have a constraint that the first row of the table must describe the initial configuration. This
means that the top row of the table should have a pound sign and the initial state symbol. We also need to
ensure that the input string occurs at the beginning of the tape, followed by blank symbols. This can be
expressed by stating that the appropriate symbols should be present in the corresponding cells.

Finally, we have a constraint that the accept state must be reached in the computation history. This can be
expressed by stating that at least one cell in the table contains the accept state symbol.

To summarize, the proof that SAT is NP-complete involves expressing several constraints using a boolean
formula. These constraints ensure that each cell in the table contains exactly one symbol, the initial
configuration is correctly represented, the input string is at the beginning of the tape, and the accept state is
reached in the computation history.
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A non-deterministic Turing machine can have several possible next configurations from any given configuration.
In order to determine if a configuration is legal, we need to ensure that it is one of the possibilities that can
follow the previous row. Each row in the table describes a configuration, and we want to make sure that given
one row, the row directly after it is possible. This means that it is a legal configuration that could be reached by
following one of the transitions in the non-deterministic Turing machine's transition function.

To illustrate this concept, let's consider an example transition in the non-deterministic Turing machine's
transition function. In this example, we are going from state gl to another state, 98, while reading a symbol and
writing a symbol. We are also moving to the right. The table that represents the legal configurations will have
the area around the tape head looking the same, while the rest of the tape can vary. The top and bottom of the
tape will remain unchanged.

If we have a row that contains the characters indicating the transition, such as moving from q7 to g8, changing
a B toan A, and possibly other characters, then this row is considered legal. The specific characters that change
below the row can be any of the symbols in the tape alphabet. The same applies when moving to the left. The
configuration will change the symbol at the tape head and possibly other characters, while the rest of the tape
remains the same. The symbol that was showing the state will become the symbol that shows the tape cell
containing the symbol that was moved.

Regardless of the specific symbols involved, these transitions are legal for any symbol C on the tape. This
means that the transitions can apply to any symbol C that is present on the tape. In both cases, we are looking
at a state Q and an area of the tape that contains the characters to the left and right of that state. The
characters that change below the row can be any of the symbols in the tape alphabet. These transitions define
a window that is centered on a specific cell, which we will call cell IJ. The transition function tells us what is legal
to find in the cells surrounding cell 1.

For a configuration to legally follow another configuration, we have certain constraints about what might appear
in the window centered on cell I). These constraints are determined by the transition function. In the example
given, any table that contains a window centered on q7 that looks like either the first or second configuration
would be considered legal. Since the Turing machine is non-deterministic, either of these configurations could
be a legal way to reach g8.

The proof that SAT is NP complete involves analyzing the possible legal configurations that can follow each
other in a non-deterministic Turing machine. By looking at the transitions in the transition function, we can
determine the constraints on the symbols that can appear in the windows centered on specific cells. This
analysis allows us to understand the complexity of the problem and establish its NP completeness.

In the field of computational complexity theory, an important concept is the notion of NP-completeness. NP-
completeness refers to a class of problems that are believed to be computationally difficult to solve efficiently.
In this didactic material, we will focus on the proof that the Boolean satisfiability problem (SAT) is NP-complete.

To understand this proof, let's first define some key terms. The SAT problem involves determining whether a
given Boolean formula can be satisfied by assigning truth values to its variables. A non-deterministic Turing
machine is a theoretical model of computation that can explore multiple possible paths simultaneously.

The proof begins by considering a non-deterministic Turing machine and its possible computation histories.
Each computation history can be represented as a table, where each cell contains a symbol from the tape
alphabet. The goal is to construct a Boolean formula that captures the constraints on the movement of the
Turing machine's transition function.

To do this, we consider all possible windows in the table. A window represents a specific configuration of cells in
the table. For each transition in the Turing machine, there are multiple valid windows that can be described.
Each window can be represented using variables and constraints.

For example, let's consider a window where the symbol 'B' is copied down. We can represent this window using
variables and constraints. The variables correspond to the cells in the window, and the constraints specify the
symbols that should appear in each cell.
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By considering all possible transitions and their corresponding windows, we can express the requirement that
every position in the table must match one of the valid windows. This can be done using a disjunction, where
each disjunct corresponds to a valid window centered on a specific position in the table.

Finally, we construct a Boolean formula that captures all the constraints on the movement of the transition
function. This formula includes terms for every possible cell in the table, as well as a disjunction over all possible
valid windows. The formula is polynomial in size with respect to the input string.

If we can find an assignment of truth values to the variables that satisfies this formula, it means that there is a
table that describes an accepting computation history for the non-deterministic Turing machine. This implies
that the Turing machine accepts the input string.

Therefore, if we can solve the Boolean satisfiability problem in polynomial time, we can determine whether
there is an accepting computation for any non-deterministic Turing machine in polynomial time. This establishes
the NP-completeness of the satisfiability problem.

To summarize, the proof shows that if we can efficiently solve the Boolean satisfiability problem, we can solve
any problem in the class NP in polynomial time. This result has significant implications for the field of
computational complexity theory.
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LESSON: COMPLEXITY
TOPIC: SPACE COMPLEXITY CLASSES

Space complexity is an important concept in computational complexity theory. While we have previously
discussed time complexity, which measures the time it takes for a program to run, space complexity focuses on
the number of cells on a Turing machine's tape that are visited or used during the execution of an algorithm.

When we analyze space complexity, we can divide the tape into two portions: the portion that was visited or
modified, and the portion that was not visited at all. The class P space represents algorithms that only visit a
polynomial number of cells on the tape. In other words, the number of cells visited is a polynomial function of
the length of the input.

The relationship between P (problems that can be solved in polynomial time) and P space (problems that only
visit a polynomial number of cells on the tape) can be understood by considering that an algorithm using, for
example, 30 tape cells, must use at least 30 time steps. However, it may use more steps than that. Therefore,
we can say that P is a subset of P space.

While most problems fall into the class NP, there are some problems that belong to the class P space but do not
have a known NP algorithm. This means that these problems seem to require exponential time on any machine,
and non-determinism does not significantly improve the search time.

To illustrate this concept, let's consider a game that two players might play during a long car trip. The game
involves players taking turns naming geographic places, such as cities, with each name starting with the last
letter of the previous name. For example, if player one says "Portland," player two must come up with a city
name starting with "d," such as "Denver." The game continues until one player gets stuck and cannot think of a
valid city name.

To formalize this game for a computer, we need a list or dictionary of valid city names. The problem then
becomes whether the first player can win if they choose their first word correctly. This problem falls into the
class P space but does not have a known NP algorithm.

These types of problems, including the game we just described, seem to require exponential time to solve, and
non-determinism does not significantly aid in reducing the search time. In fact, the min max search problem,
which is related to this game, is used in game theory to determine the best moves in games like chess or
checkers. The nature of this problem involves searching through all possible moves and counter moves, and non-
determinism does not provide a significant advantage in reducing the search time.

Space complexity is an important aspect of computational complexity theory. It focuses on the number of cells
visited or used on a Turing machine's tape during the execution of an algorithm. P space represents algorithms
that only visit a polynomial number of cells, and P is a subset of P space. Some problems fall into the class P
space but do not have a known NP algorithm, indicating that they require exponential time to solve. Non-
determinism does not significantly aid in reducing the search time for these types of problems.

In computational complexity theory, one important aspect is the study of space complexity classes. Space
complexity refers to the amount of memory or tape space required by an algorithm to solve a problem. In this
didactic material, we will explore the fundamentals of space complexity classes.

One example that illustrates the need for space complexity analysis is the game tree problem. Imagine a game
where players take turns making moves. Each move leads to a new state, creating a tree-like structure. To
determine the best move, one needs to explore all possible paths in the tree. However, storing the entire tree
may not be feasible due to its exponential size. Instead, a depth-first search algorithm is used to traverse the
tree and find the optimal move. The time taken to search this tree is also exponential, highlighting the
complexity of the problem.

Another interesting problem is the graph isomorphism problem. Given two graphs, the goal is to determine if
they are structurally identical. This problem falls within the class NP, which stands for non-deterministic
polynomial time. A solution to this problem can be represented as a correspondence between the nodes of the
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two graphs. By comparing the correspondence, we can verify if the graphs are isomorphic. However,
determining if two graphs are not isomorphic is a more challenging problem. It requires checking all possible
correspondences, which leads to an exponential number of combinations. Non-determinism does not provide an
advantage in this case, and exponential time is needed to solve the problem.

To better understand these complexity classes, let's define them formally. P is the class of problems that can be
solved in polynomial time on a deterministic Turing machine. NP is the class of problems that can be solved in
polynomial time on a non-deterministic Turing machine. P space is the set of problems that can be solved using
a polynomial amount of tape space relative to the input size. Exponential time refers to problems that can be
solved by a deterministic Turing machine in exponential time. Lastly, exponential space represents problems
that require an exponential amount of space on the tape.

Based on our current knowledge, we know that P is possibly a subset of NP, but this relationship is yet to be
proven. We also know that NP is a subset of P space, and P space is a subset of exponential time. Additionally,
exponential time is a subset of problems that require exponential space on the Turing machine. It is important
to note that P is a proper subset of exponential time, indicating that there are problems that can be solved in
exponential time but not in polynomial time. However, we do not have conclusive evidence to determine if P
equals NP or if NP equals exponential time. Furthermore, P space is a proper subset of exponential space.

The study of space complexity classes is important in understanding the computational complexity of problems.
By analyzing the amount of memory or tape space required, we can gain insights into the efficiency and
feasibility of algorithms. While there are still unresolved questions in this field, the knowledge we have acquired
so far provides a foundation for further exploration.

Computational Complexity Theory is a fundamental concept in the field of Cybersecurity. In this didactic
material, we will focus on the topic of Space Complexity Classes within Computational Complexity Theory.

Space complexity refers to the amount of memory or space required by an algorithm to solve a problem. It
measures the maximum amount of memory used by an algorithm as a function of the input size. Space
complexity is an important factor to consider when analyzing the efficiency and feasibility of algorithms.

One of the commonly used measures of space complexity is Big O notation. It provides an upper bound on the
growth rate of an algorithm's space usage. For example, if an algorithm has a space complexity of O(n), it
means that the space required by the algorithm grows linearly with the input size.

Space complexity classes categorize algorithms based on their space requirements. The most well-known space
complexity classes are PSPACE and NPSPACE. PSPACE represents the class of problems that can be solved in
polynomial space, while NPSPACE represents the class of problems that can be verified in polynomial space.

Another important space complexity class is EXPSPACE, which represents the class of problems that can be
solved in exponential space. EXPSPACE is a superset of PSPACE and NPSPACE, meaning that any problem in
PSPACE or NPSPACE can also be solved in EXPSPACE.

To better understand these concepts, let's consider an example. Suppose we have a problem that requires
checking whether a given graph has a Hamiltonian cycle, which is a cycle that visits each vertex exactly once.
The problem of finding a Hamiltonian cycle is known to be NP-complete, meaning that it is unlikely to have a
polynomial-time algorithm to solve it.

However, we can use a nondeterministic algorithm to verify whether a given graph has a Hamiltonian cycle in
polynomial space. This means that the problem belongs to the NPSPACE complexity class. On the other hand, if
we have a deterministic algorithm that can solve the problem in polynomial space, it would belong to the
PSPACE complexity class.

Space complexity classes provide a framework for analyzing and categorizing algorithms based on their space
requirements. Understanding these complexity classes is important in the field of Cybersecurity, as it helps in
assessing the efficiency and feasibility of algorithms used in various security applications.
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