Why is computational complexity theory important for understanding of the foundations of cryptography and cybersecurity?
Computational complexity theory provides the mathematical framework necessary to analyze the resources required for solving computational problems. In the context of cryptography and cybersecurity, the relevance of computational complexity theory is foundational; it informs both the design and the evaluation of cryptographic systems, and guides the understanding of what can be achieved securely with limited
How do practical implementations of QKD systems differ from their theoretical models, and what are the implications of these differences for security?
Quantum Key Distribution (QKD) represents a significant advancement in cryptographic techniques, leveraging the principles of quantum mechanics to facilitate secure communication. The theoretical models of QKD systems are founded on idealized assumptions about the behavior of quantum systems and the capabilities of potential adversaries. However, practical implementations often diverge from these theoretical models due to