What is regularization?
Regularization in the context of machine learning is a important technique used to enhance the generalization performance of models, particularly when dealing with high-dimensional data or complex models that are prone to overfitting. Overfitting occurs when a model learns not only the underlying patterns in the training data but also the noise, resulting in poor
- Published in Artificial Intelligence, EITC/AI/GCML Google Cloud Machine Learning, First steps in Machine Learning, The 7 steps of machine learning
What are algorithm’s hyperparameters?
In the field of machine learning, particularly within the context of Artificial Intelligence (AI) and cloud-based platforms such as Google Cloud Machine Learning, hyperparameters play a critical role in the performance and efficiency of algorithms. Hyperparameters are external configurations set before the training process begins, which govern the behavior of the learning algorithm and directly
What role does dropout play in preventing overfitting during the training of a deep learning model, and how is it implemented in Keras?
Dropout is a regularization technique used in the training of deep learning models to prevent overfitting. Overfitting occurs when a model learns the details and noise in the training data to the extent that it performs poorly on new, unseen data. Dropout addresses this issue by randomly "dropping out" a proportion of neurons during the
Will too long neural network training lead to overfitting?
The notion that prolonged training of neural networks inevitably leads to overfitting is a nuanced topic that warrants a comprehensive examination. Overfitting is a fundamental challenge in machine learning, particularly in deep learning, where a model performs well on training data but poorly on unseen data. This phenomenon occurs when the model learns not just
- Published in Artificial Intelligence, EITC/AI/DLPP Deep Learning with Python and PyTorch, Data, Datasets
How do regularization techniques like dropout, L2 regularization, and early stopping help mitigate overfitting in neural networks?
Regularization techniques such as dropout, L2 regularization, and early stopping are instrumental in mitigating overfitting in neural networks. Overfitting occurs when a model learns the noise in the training data rather than the underlying pattern, leading to poor generalization to new, unseen data. Each of these regularization methods addresses overfitting through different mechanisms, contributing to
- Published in Artificial Intelligence, EITC/AI/ADL Advanced Deep Learning, Neural networks, Neural networks foundations, Examination review
Does increasing of the number of neurons in an artificial neural network layer increase the risk of memorization leading to overfitting?
Increasing the number of neurons in an artificial neural network layer can indeed pose a higher risk of memorization, potentially leading to overfitting. Overfitting occurs when a model learns the details and noise in the training data to the extent that it negatively impacts the model's performance on unseen data. This is a common problem
- Published in Artificial Intelligence, EITC/AI/TFF TensorFlow Fundamentals, Overfitting and underfitting problems, Solving model’s overfitting and underfitting problems - part 1
Can A regular neural network be compared to a function of nearly 30 billion variables?
A regular neural network can indeed be compared to a function of nearly 30 billion variables. To understand this comparison, we need to consider the fundamental concepts of neural networks and the implications of having a vast number of parameters in a model. Neural networks are a class of machine learning models inspired by the
- Published in Artificial Intelligence, EITC/AI/DLPP Deep Learning with Python and PyTorch, Introduction, Introduction to deep learning with Python and Pytorch
How to recognize that model is overfitted?
To recognize if a model is overfitted, one must understand the concept of overfitting and its implications in machine learning. Overfitting occurs when a model performs exceptionally well on the training data but fails to generalize to new, unseen data. This phenomenon is detrimental to the model's predictive ability and can lead to poor performance
- Published in Artificial Intelligence, EITC/AI/GCML Google Cloud Machine Learning, First steps in Machine Learning, Deep neural networks and estimators
When does overfitting occur?
Overfitting occurs in the field of Artificial Intelligence, specifically in the domain of advanced deep learning, more specifically in neural networks, which are the foundations of this field. Overfitting is a phenomenon that arises when a machine learning model is trained too well on a particular dataset, to the extent that it becomes overly specialized
- Published in Artificial Intelligence, EITC/AI/ADL Advanced Deep Learning, Neural networks, Neural networks foundations
Why too long neural network training leads to overfitting and what are the countermeasures that can be taken?
Training Neural Network (NN), and specifically also a Convolutional Neural Network (CNN) for an extended period of time will indeed lead to a phenomenon known as overfitting. Overfitting occurs when a model learns not only the underlying patterns in the training data but also the noise and outliers. This results in a model that performs