×
1 Choose EITC/EITCA Certificates
2 Learn and take online exams
3 Get your IT skills certified

Confirm your IT skills and competencies under the European IT Certification framework from anywhere in the world fully online.

EITCA Academy

Digital skills attestation standard by the European IT Certification Institute aiming to support Digital Society development

LOG IN TO YOUR ACCOUNT

CREATE AN ACCOUNT FORGOT YOUR PASSWORD?

FORGOT YOUR PASSWORD?

AAH, WAIT, I REMEMBER NOW!

CREATE AN ACCOUNT

ALREADY HAVE AN ACCOUNT?
EUROPEAN INFORMATION TECHNOLOGIES CERTIFICATION ACADEMY - ATTESTING YOUR PROFESSIONAL DIGITAL SKILLS
  • SIGN UP
  • LOGIN
  • INFO

EITCA Academy

EITCA Academy

The European Information Technologies Certification Institute - EITCI ASBL

Certification Provider

EITCI Institute ASBL

Brussels, European Union

Governing European IT Certification (EITC) framework in support of the IT professionalism and Digital Society

  • CERTIFICATES
    • EITCA ACADEMIES
      • EITCA ACADEMIES CATALOGUE<
      • EITCA/CG COMPUTER GRAPHICS
      • EITCA/IS INFORMATION SECURITY
      • EITCA/BI BUSINESS INFORMATION
      • EITCA/KC KEY COMPETENCIES
      • EITCA/EG E-GOVERNMENT
      • EITCA/WD WEB DEVELOPMENT
      • EITCA/AI ARTIFICIAL INTELLIGENCE
    • EITC CERTIFICATES
      • EITC CERTIFICATES CATALOGUE<
      • COMPUTER GRAPHICS CERTIFICATES
      • WEB DESIGN CERTIFICATES
      • 3D DESIGN CERTIFICATES
      • OFFICE IT CERTIFICATES
      • BITCOIN BLOCKCHAIN CERTIFICATE
      • WORDPRESS CERTIFICATE
      • CLOUD PLATFORM CERTIFICATENEW
    • EITC CERTIFICATES
      • INTERNET CERTIFICATES
      • CRYPTOGRAPHY CERTIFICATES
      • BUSINESS IT CERTIFICATES
      • TELEWORK CERTIFICATES
      • PROGRAMMING CERTIFICATES
      • DIGITAL PORTRAIT CERTIFICATE
      • WEB DEVELOPMENT CERTIFICATES
      • DEEP LEARNING CERTIFICATESNEW
    • CERTIFICATES FOR
      • EU PUBLIC ADMINISTRATION
      • TEACHERS AND EDUCATORS
      • IT SECURITY PROFESSIONALS
      • GRAPHICS DESIGNERS & ARTISTS
      • BUSINESSMEN AND MANAGERS
      • BLOCKCHAIN DEVELOPERS
      • WEB DEVELOPERS
      • CLOUD AI EXPERTSNEW
  • FEATURED
  • SUBSIDY
  • HOW IT WORKS
  •   IT ID
  • ABOUT
  • CONTACT
  • MY ORDER
    Your current order is empty.
EITCIINSTITUTE
CERTIFIED

Does a machine learning model need supevision during its training?

by Lucas Laurent / Thursday, 04 April 2024 / Published in Artificial Intelligence, EITC/AI/GCML Google Cloud Machine Learning, Introduction, What is machine learning

The process of training a machine learning model involves exposing it to vast amounts of data to enable it to learn patterns and make predictions or decisions without being explicitly programmed for each scenario. During the training phase, the machine learning model undergoes a series of iterations where it adjusts its internal parameters to minimize errors and improve its performance on the given task.

Supervision during training refers to the level of human intervention required to guide the learning process of the model. The need for supervision can vary depending on the type of machine learning algorithm being used, the complexity of the task, and the quality of the data provided for training.

In supervised learning, which is a type of machine learning where the model is trained on labeled data, supervision is essential. Labeled data means that each input data point is paired with the correct output, allowing the model to learn the mapping between inputs and outputs. During supervised training, human supervision is required to provide the correct labels for the training data, evaluate the model's predictions, and adjust the model's parameters based on feedback.

For example, in a supervised image recognition task, if the goal is to train a model to classify images of cats and dogs, a human supervisor would need to label each image as either a cat or a dog. The model would then learn from these labeled examples to make predictions on new, unseen images. The supervisor would evaluate the model's predictions and provide feedback to improve its accuracy.

On the other hand, unsupervised learning algorithms do not require labeled data for training. These algorithms learn patterns and structures from the input data without explicit guidance. Unsupervised learning is often used for tasks such as clustering, anomaly detection, and dimensionality reduction. In unsupervised learning, the machine can learn independently without the need for human supervision during training.

Semi-supervised learning is a hybrid approach that combines elements of both supervised and unsupervised learning. In this approach, the model is trained on a combination of labeled and unlabeled data. The labeled data provides some supervision to guide the learning process, while the unlabeled data allows the model to discover additional patterns and relationships in the data.

Reinforcement learning is another paradigm of machine learning where an agent learns to make sequential decisions by interacting with an environment. In reinforcement learning, the agent receives feedback in the form of rewards or penalties based on its actions. The agent learns to maximize its cumulative reward over time through trial and error. While reinforcement learning does not require explicit supervision in the traditional sense, human supervision may be needed to design the reward structure, set the learning objectives, or fine-tune the learning process.

The need for supervision during machine learning training depends on the learning paradigm being used, the availability of labeled data, and the complexity of the task. Supervised learning requires human supervision to provide labeled data and evaluate the model's performance. Unsupervised learning does not require supervision, as the model learns independently from unlabeled data. Semi-supervised learning combines elements of both supervised and unsupervised learning, while reinforcement learning involves learning through interaction with an environment.

Other recent questions and answers regarding EITC/AI/GCML Google Cloud Machine Learning:

  • What are some common AI/ML algorithms to be used on the processed data?
  • How Keras models replace TensorFlow estimators?
  • How to configure specific Python environment with Jupyter notebook?
  • How to use TensorFlow Serving?
  • What is Classifier.export_saved_model and how to use it?
  • Why is regression frequently used as a predictor?
  • Are Lagrange multipliers and quadratic programming techniques relevant for machine learning?
  • Can more than one model be applied during the machine learning process?
  • Can Machine Learning adapt which algorithm to use depending on a scenario?
  • What is the simplest route to most basic didactic AI model training and deployment on Google AI Platform using a free tier/trial using a GUI console in a step-by-step manner for an absolute begginer with no programming background?

View more questions and answers in EITC/AI/GCML Google Cloud Machine Learning

More questions and answers:

  • Field: Artificial Intelligence
  • Programme: EITC/AI/GCML Google Cloud Machine Learning (go to the certification programme)
  • Lesson: Introduction (go to related lesson)
  • Topic: What is machine learning (go to related topic)
Tagged under: AI, Artificial Intelligence, Machine Learning, Reinforcement Learning, Supervised Learning, Unsupervised Learning
Home » Artificial Intelligence / EITC/AI/GCML Google Cloud Machine Learning / Introduction / What is machine learning » Does a machine learning model need supevision during its training?

Certification Center

USER MENU

  • My Account

CERTIFICATE CATEGORY

  • EITC Certification (105)
  • EITCA Certification (9)

What are you looking for?

  • Introduction
  • How it works?
  • EITCA Academies
  • EITCI DSJC Subsidy
  • Full EITC catalogue
  • Your order
  • Featured
  •   IT ID
  • EITCA reviews (Medium publ.)
  • About
  • Contact

EITCA Academy is a part of the European IT Certification framework

The European IT Certification framework has been established in 2008 as a Europe based and vendor independent standard in widely accessible online certification of digital skills and competencies in many areas of professional digital specializations. The EITC framework is governed by the European IT Certification Institute (EITCI), a non-profit certification authority supporting information society growth and bridging the digital skills gap in the EU.

Eligibility for EITCA Academy 80% EITCI DSJC Subsidy support

80% of EITCA Academy fees subsidized in enrolment by

    EITCA Academy Secretary Office

    European IT Certification Institute ASBL
    Brussels, Belgium, European Union

    EITC / EITCA Certification Framework Operator
    Governing European IT Certification Standard
    Access contact form or call +32 25887351

    Follow EITCI on X
    Visit EITCA Academy on Facebook
    Engage with EITCA Academy on LinkedIn
    Check out EITCI and EITCA videos on YouTube

    Funded by the European Union

    Funded by the European Regional Development Fund (ERDF) and the European Social Fund (ESF) in series of projects since 2007, currently governed by the European IT Certification Institute (EITCI) since 2008

    Information Security Policy | DSRRM and GDPR Policy | Data Protection Policy | Record of Processing Activities | HSE Policy | Anti-Corruption Policy | Modern Slavery Policy

    Automatically translate to your language

    Terms and Conditions | Privacy Policy
    EITCA Academy
    • EITCA Academy on social media
    EITCA Academy


    © 2008-2025  European IT Certification Institute
    Brussels, Belgium, European Union

    TOP
    Chat with Support
    Chat with Support
    Questions, doubts, issues? We are here to help you!
    End chat
    Connecting...
    Do you have any questions?
    Do you have any questions?
    :
    :
    :
    Send
    Do you have any questions?
    :
    :
    Start Chat
    The chat session has ended. Thank you!
    Please rate the support you've received.
    Good Bad